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Abstract

:

The Ni-doped ZrCo1−xNixSb half-Heusler compounds were prepared by arc-melting and spark plasma sintering technology. X-ray diffraction analysis results showed that all samples were crystallized in a half-Heusler phase. Thermoelectric properties of ZrCo1−xNixSb compounds were measured from room temperature to 850 K. The electrical conductivity and the absolute value of Seebeck coefficient increased with the Ni-doping content increasing due to the Ni substitution at Co. sites. The lattice thermal conductivity of ZrCo1−xNixSb samples was depressed dramatically because of the acoustic phonon scattering and point defect scattering. The figure of merit of ZrCo1−xNixSb compounds was improved due to the decreased thermal conductivity and improved power factor. The maximum ZT value of 0.24 was achieved for ZrCo0.92Ni0.08Sb sample at 850 K.
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1. Introduction


Due to the increasing globe energy demands and dwindling fossil fuel reserves, developing renewable energy conversion technologies is an effective way to solve the energy crisis. Thermoelectric materials show great potential application in the field of waste heat recovery, power generators and solid refrigeration due to their direct conversion between heat energy and electrical energy. The conversion efficiency of thermoelectric material is primarily governed by the dimensionless figure-of-merit, ZT = α2σT/(κL + κe)κ, where α, σ, α2σ, κL, κe and T are the Seebeck coefficient, electrical conductivity, power factor, lattice thermal conductivity and carrier thermal conductivity of total thermal conductivity κ and absolute temperature, respectively [1,2,3]. As the physical parameters α, σ, and κe are coupled via effective mass (m*) and carrier concentration (n), it is a major challenge to improve the ZT by independently optimizing these parameters. Normally, there are two approaches to enhance the ZT value. One is the optimization of power factor by band engineering or tuning the carrier concentration and the other is depressing the κL by point defect scattering, alloy scattering, nanostructuring et al. [4,5,6].



Recently, half-Heusler compounds with chemical formula MAB (M = Ti, Zr, Nb, and Hf; A = Co., Ni, and Fe; B = Sn, Sb) and cubic MgAgAs structure (F-43m) have attracted considerable research interest due to their good mechanical strength, non-toxicity and high thermal stability [7,8,9]. Half-Heusler compounds with 18 valence electron count (VEC) per unit cell have been widely studied as one of the promising thermoelectric materials working in the middle temperature range due to their narrow bandgap and high Seebeck coefficients, such as MCoSb, MNiSn (M = Ti, Zr, Nb, and Hf), et al. [10,11,12,13,14] Among these compounds with 18 VEC, MCoSb based half-Heusler compounds (M = Ti, Zr, Nb, and Hf) have been extensively investigated including the substituting at M, A or B sites and many studies have achieved high thermoelectric properties. Yuan et al. synthesized the ZrCoSb1−xSnx by substituting Sn on Sb sites and the maximum ZT value of 0.52 at 973 K was obtained [15]. Hsu et al. demonstrated that Fe doping can depress the lattice thermal conductivity of ZrFeCo1−xSbx and improve the ZT [16]. He et al. reported the (Zr, Hf)Co1−xNixSb compounds with a low thermal conductivity were synthesized and the peak ZT reached 1.0 at 1073 K [17]. As present, however, most of research about the MCoSb based half-Heusler compounds are p-type semiconductor. There are few studies about the n-type MCoSb-based half-Heusler compounds.



In this study, the n-type Ni-doped ZrCo1−xNixSb half-Heusler alloys were synthesized by arc-melting and spark plasma sintering technology. It is expected that the substitution of Ni on Co. sites can improve the power factor and depress the lattice thermal conductivity. The thermoelectric properties including the electrical transport properties, carrier scattering mechanism and thermal transport properties were discussed.




2. Experimental Procedures


The samples with nominal composition ZrCo1−xNixSb (x = 0, 0.04, 0.08, 0.12) were prepared by arc-melting of Zr (slug, 99.98%), Co (granule, 99.999%), Ni (shot, 99.999%) and Sb (rod, 99.9%) under argon atmosphere. Excess Sb (~5%) was added due to the high vapor pressure of Sb in the process of arc melting. The arc-melted ingots were re-melted three times to ensure compositional homogeneity. Then, the obtained ingots were ground into fine powders in agate mortar. The pulverized powders were consolidated by spark plasma sintering (SPS) process at 1373 K under 60 MPa for 6 min in a vacuum. The density (d) of ZrCo1–xNixSb samples was measured by Archimedes method. X-ray diffraction (XRD, Rigaku Rint 2000, Tokyo, Japan) was used to determine the constituent phase. The microstructure of samples was characterized by a field-emission scanning electron microscopy (FE-SEM, JXA-8200, JEOL, Tokyo, Japan). A ZEM-3 instrument (ULVAC-RIKO, Tokyo, Japan) was used to measure the electrical conductivity and Seebeck coefficient of samples simultaneously in Ar atmosphere. The thermal conductivity of samples was calculated using κ = dCpλ, where d, Cp, λ are the density, specific heat capacity and thermal diffusivity coefficient. The thermal diffusivity coefficient was measured by a laser flash apparatus (Netzsch, LFA427, Selb, Germany) in a flowing Ar atmosphere. The measurement of specific heat capacity was carried out using a differential scanning calorimetry (Netzsch, DSC404, Selb, Germany). Uncertainty in the electrical conductivity, Seebeck coefficient and thermal conductivity measurements is 3%, 5% and 5%, respectively. The Hall coefficient (RH) was measured by Van der Pauw’s method in vacuum under a magnetic field of ±0.5 T at room temperature. The carrier mobility (μH) and carrier concentration (n) were calculated by μH = RHσ and n = 1/(eRH), where e is the electron charge.




3. Results and Discussion


Figure 1 shows the XRD patterns of the prepared ZrCo1−xNixSb (x = 0, 0.04, 0.08, 0.12) samples. All major diffraction peaks could be indexed to the half-Heusler ZrCoSb phase (JCPDS 54-0448) and no impurity phase is observed, suggesting the Ni-doped ZrCo1−xNixSb half-Heusler alloys are single phase with the same MgAgAs-type crystallographic structure. As the tiny difference of atom radii of Co. and Ni, the lattice parameter of ZrCo1−xNixSb (x = 0, 0.04, 0.08, 0.12) samples was almost equal and no obvious peak shift of XRD was observed. Figure 2 displays the microstructure and the elemental distribution of constituent element of ZrCo0.96Ni0.04Sb half-Heusler sample. It can be clearly seen that all elements were distributed homogeneously and no visible other phase can be found, which is also consistent with the XRD result of Figure 1.



Figure 3 presents the electrical properties of ZrCo1−xNixSb half-Heusler samples. The undoped ZrCoSb half-Heusler sample shows a typical semiconducting behavior, and the σ increases with the temperature increasing. The σ of Ni-doped ZrCo1−xNixSb half-Heusler samples is significantly enhanced with the content of Ni increasing. In addition, the σ of Ni-doped ZrCo1−xNixSb samples shows a transition from the semiconducting behavior to semi-metal behavior and the transition temperature shifts to low temperature with the Ni-doping increasing. The enhancement of σ for ZrCo1−xNixSb half-Heusler compounds should be attributed to the increase of carrier concentration (n) and carrier mobility (μH), just as shown in Table 1. The n of Ni-doped ZrCo1−xNixSb half-Heusler compounds is in the order of 1020 cm−3 at room temperature and increases from 1.80 × 1020 cm−3 to 5.55 × 1020 cm−3 when the Ni-doping content increases from 0 to 0.12. Meanwhile, the measured μH increases at room temperature with the Ni-doping concentration increases. For instance, the μH increases from 5.08 cm2/Vs for ZrCoSb to 10.7 cm2/Vs for ZrCo0.96Ni0.04Sb sample. Figure 3b demonstrates the α of ZrCo1−xNixSb half-Heusler compounds as a function of temperature. The α of all ZrCo1−xNixSb samples is negative, indicating the conductive behavior of ZrCo1−xNixSb half-Heusler compounds is n-type and the major charge carriers are electrons. The absolute value of α of ZrCo1−xNixSb half-Heusler compounds first increases and then decreases with the Ni-doping concentration increasing. The maximal absolute value of α of ZrCo0.96Ni0.04Sb sample is 63.5 μV/K at 850 K. Moreover, the monotonic increase of α with increasing temperature indicates the single band conduction behavior of ZrCo1−xNixSb half-Heusler compounds. The variation of α may be related to the modification of band structure due to the Ni-doping, which further influences the density of states near the Fermi level. To better understand the dependence of the Seebeck coefficient on the carrier concentration of ZrCo1−xNixSb half-Heusler compounds, Pisarenko plots at 300 K were calculated, just as shown Figure 3c. It is assumed that the single parabolic band (SPB) model and acoustic phonon scattering mechanism are appropriate for the thermoelectric material, Pisarenko plots can be derived based on the relationship between the Seebeck coefficient and DOS effective mass according to the following Formulas (1)–(3) [18,19],


   α   =   ±    k B   e   [  ξ −    (  r + 5 / 2  )   F  r + 3 / 2    ( ξ )     (  r + 3 / 2  )   F  r + 1 / 2    ( ξ )     ]    



(1)






    F n   ( ξ )    =     ∫  0 ∞     x n    1 +  e  x − ξ     d x   



(2)






   n   =   4 π    (    2  m ∗   k B  T    h 2     )    3 / 2    F  1 / 2    ( ξ )    



(3)




where ξ, r, kB, m*, and h are the reduced Fermi energy, scattering factor, Boltzmann constant, the density of states effective mass and Planck’s constant, respectively. Pisarenko plots is described as


   α   =     8  π 2   k B   m ∗  T   3 e  h 2       (   π  3 n    )    2 / 3     



(4)







The density of states effective mass of 4.1m0 was derived for the Ni-doped ZrCo1−xNixSb half-Heusler compounds, which is higher than that of the undoped ZrCoSb half-Heusler compound (2.8m0). The difference also indicates that the Ni-doping in the ZrCo1−xNixSb half-Heusler plays a beneficial influence on the band structure. Therefore, the α of Ni-doped ZrCo1−xNixSb half-Heusler compounds is improved. In addition, He et al. also reported that the Ni-doping could lead to the large effective mass in the (Hf, Zr)Co1−xNixSb system [17]. The effects of doping on the band structure of ZrCoSb still needs further investigation in the theoretical and experimental aspects. Figure 3d shows the temperature dependence of power factor for ZrCo1−xNixSb half-Heusler compounds. The Ni-doping improves the power factor of ZrCo1−xNixSb half-Heusler compounds evidently. For example, the power factor of ZrCo0.92Ni0.08Sb at 850 K is about 18 μWK−2·cm−1, which is far higher than that of undoped ZrCoSb sample.



Figure 4a shows the temperature dependences of κ for ZrCo1−xNixSb half-Heusler compounds. The κ of all samples decreases with the temperature increasing and no bipolar effect occurs, which indicates the acoustic scattering is the dominant process. The κ of ZrCo1−xNixSb half-Heusler compounds decreases with the Ni-doping content increasing. Normally, the κL can be obtained by subtracting the κe from κ and κe can be calculated according to the Wiedemann-Franz law, κe = LσT, where L is the Lorenz constant. Herein, L is calculated using the Formulas (1)–(4) based on the SPB model and acoustic phonon scattering [20], just as shown in Figure 4b.


   L   =      (     k B   e   )   2   [     (  r + 7 / 2  )   F  r + 5 / 2    ( ξ )     (  r + 3 / 2  )   F  r + 1 / 2    ( ξ )    −    (     (  r + 5 / 2  )   F  r + 3 / 2    ( ξ )     (  r + 3 / 2  )   F  r + 1 / 2    ( ξ )     )   2   ]    



(5)







As shown in Figure 4c, the decrease of κ of ZrCo1−xNixSb half-Heusler compounds mainly results from the contribution of κL. According to the theory of Klemens-Callaway [21], the substitution of impurity atoms at the host atom site can result in a large number of defect centers due to mass fluctuation (mass differences) and strain field fluctuation (size and interatomic coupling force differences). Therefore, the reduction of κL can be attributed to the substitution of Ni at the Co site. Similar results were also found in the TiNiSn, ZrNiSn and TiCoSb systems [22,23,24]. In addition, the κL shows temperature dependence of T−1 above 520 K, just as illustrated by blue dot line, indicating that phonon-phonon scattering is the dominant scattering for the Ni-doped ZrCo1−xNixSb half-Heusler compounds in the temperature range from 520 to 850 K. Below 520 K, the κL deviates the T−1 and follows the T−0.5 behavior, suggesting the point defect scattering plays a great role in scattering mechanism. For ZrCo0.88Ni0.12Sb half-Heusler compound, the κL is 10.4 W/mK at room temperature which is reduced by 34% than that of undoped ZrCoSb compound and the minimum κL of ZrCo0.88Ni0.12Sb is 5.52 W/mK at 850 K. Combined with the electrical and thermal transport properties, the ZT of Ni-doped ZrCo1−xNixSb half-Heusler compounds is calculated and shown in Figure 4d. Due to the reduced κL and the enhanced power factor by substituting Ni on Co sites, the ZT value is improved. The highest ZT value of 0.24 is achieved at 850 K for ZrCo0.92Ni0.08Sb half-Heusler compound, which is much higher than that of pristine ZrCoSb half-Heusler compound. As the κL of ZrCo1−xNixSb half-Heusler compounds is still high (5~10 W/mK), it is believed that the ZT value may be possibly further improved by appropriate doping or nanostructuring.




4. Conclusions


In this study, the n-type Ni-doped ZrCo1−xNixSb half-Heusler compounds were prepared by arc-melting and SPS process. By substituting Ni with Co site, the electrical conductivity of ZrCo1−xNixSb half-Heusler compounds increases due to the great increase in carrier concentration. Meanwhile, the power factor is considerably improved due to the enhanced Seebeck coefficient and electrical conductivity. A maximum power factor of 18 μWK−2·cm−1 is obtained at 850 K for ZrCo0.92Ni0.08Sb half-Heusler compound. The lattice thermal conductivity of ZrCo1−xNixSb is greatly depressed by Ni substitution and the lowest value of 5.52 W/mK is obtained for ZrCo0.92Ni0.08Sb at 850 K. The ZT value of ZrCo1−xNixSb half-Heusler compound is markedly esnhanced, which is primarily attributed to the increased power factor and the decreased lattice thermal conductivity. The highest ZT value was 0.24 for ZrCo0.92Ni0.08Sb half-Heusler compound at 850 K.
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Figure 1. XRD patterns of ZrCo1−xNixSb (x = 0, 0.04, 0.08, 0.12) half-Heusler compounds. 
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Figure 2. SEM image and elemental maps of ZrCo0.96Ni0.04Sb half-Heusler compound. 
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Figure 3. Temperature-dependent electrical properties of ZrCo1−xNixSb half-Heusler samples (a) electrical conductivity (b) Seebeck coefficient (c) power factor (d) Pisarenko plots of ZrCo1−xNixSb assuming SPB model. 
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Figure 4. Temperature-dependent (a) total thermal conductivity, (b) Lorenz constant, (c) lattice thermal conductivity, and (d) ZT of ZrCo1−xNixSb half-Heusler compounds. 
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Table 1. Some structural and physical parameters of ZrCo1−xNixSb compounds at room temperature.
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	x
	Relative Density
	σ (Ω−1·cm−1)
	n (1020 cm−3)
	μH (cm2/Vs)
	α (μV/K)
	κL (Wm−1·K−1)
	m* (m0)





	0
	98.5%
	146
	1.80
	5.08
	−3.4
	16.2
	2.80



	0.04
	98.4%
	529
	4.59
	7.20
	−74.8
	14.2
	4.08



	0.08
	98.8%
	773
	4.92
	9.82
	−67.7
	12.7
	4.09



	0.12
	98.6%
	954
	5.55
	10.7
	−63.5
	10.3
	4.11











© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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