Surface Analysis of Uncoated and PVD Coated Punch at the Hole-Flanging Process
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Punch without Coating
3.2. Punch with TiCN-MP Coating
3.3. Numerical Simulation of the Hole-Flanging Process
3.4. Disscusion
4. Conclusions
- The distinctive wear of the punch made of tool steel 1.3343 hardened to 61 HRC has been shown after 7000 strokes. Detailed SEM and EDX analyses showed intensive galling of the processed material and its release by the tool movement, resulting in adhesive wear. The wear resulted from the 20,000 strokes, after which the punch was changed during production due to intensive scratches in the produced hole surface.
- The PVD coating TiCN-MP with a thickness of 2.51 µm and a hardness HIT of 54 GPa applied to the hardened tool steel has shown very good adhesion to the subsurface layers, as proven by the scratch test. The measured compression strain in coating ε = −0.017 parallel to the surface assumes a good performance when the tensile stress is inducted parallel to the surface.
- The same level-of-wear of the coated punch, made of tool steel 1.3343 hardened to 61 HRC and coated by TiCN-MP, has been shown after 120,000 strokes. SEM and EDX analyses showed adhesive wear by galling of the processed material, located in the ogive area of the punch.
- A numerical simulation of the hole-flanging process identified the high level of normal contact pressure within 1096 to 796 MPa. The position of the high normal contact pressure is well correlated to the position of the adhesive wear for the uncoated and coated punches.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hyun, D.I.; Oak, S.M.; Kang, S.S.; Moon, Y.H. Estimation of hole flangeability for high strength steel plates. J. Mater. Process. Technol. 2002, 130–131, 9–13. [Google Scholar] [CrossRef]
- Thipprakmas, S.; Phanitwong, W. Finite element analysis of flange-forming direction in the hole flanging process. Int. J. Adv. Manuf. Technol. 2012, 61, 609–620. [Google Scholar] [CrossRef]
- Cui, Z.; Gao, L. Studies on hole-flanging process using multistage incremental forming. CIRP J. Manuf. Sci. Technol. 2010, 2, 124–128. [Google Scholar] [CrossRef]
- Centeno, G.; Silva, M.B.; Cristino, V.A.M.; Vallellano, C.; Martins, P.A.F. Hole-flanging by incremental sheet forming. Int. J. Mach. Tools Manuf. 2012, 59, 46–54. [Google Scholar] [CrossRef]
- Ghoreishi, M.; Low, D.K.Y.; Li, L. Comparative statistical analysis of hole taper and circularity in laser percussion drilling. Int. J. Mach. Tools Manuf. 2002, 42, 985–995. [Google Scholar] [CrossRef]
- Dubey, A.K.; Yadava, V. Laser beam machining—A review. Int. J. Mach. Tools Manuf. 2008, 48, 609–628. [Google Scholar] [CrossRef]
- Stachowicz, F. Estimation of hole-flange ability for deep drawing steel sheets. Arch. Civ. Mech. Eng. 2008, 8, 167–172. [Google Scholar] [CrossRef]
- Frącz, W.; Stachowicz, F.; Trzepieciński, T. Investigations of thickness distribution in hole expanding of thin steel sheets. Arch. Civ. Mech. Eng. 2012, 12, 279–283. [Google Scholar] [CrossRef]
- Krichen, A.; Kacem, A.; Hbaieb, M. Blank-holding effect on the hole-flanging process of sheet aluminum alloy. J. Mater. Process. Technol. 2011, 211, 619–626. [Google Scholar] [CrossRef]
- Li, M.; VanTyne, C.J.; Moon, Y.H. The effect of mechanical properties on hole flangeability of stainless steel sheets. J. Mech. Sci. Technol. 2015, 29, 5233–5239. [Google Scholar] [CrossRef]
- Heng-Sheng, L.; Chih-Wei, T. An investigation of cold extruding hollow flanged parts from sheet metals. Int. J. Mach. Tools Manuf. 2007, 47, 2133–2139. [Google Scholar] [CrossRef]
- Huang, Y.M. An elasto-plastic finite element analysis of the sheet metal stretch flanging process. Int. J. Adv. Manuf. Technol. 2007, 34, 641–648. [Google Scholar] [CrossRef]
- Thipprakmas, S.; Jin, M.; Murakawa, M. Study on flanged shapes in fineblanked-hole flanging process (FB-hole flanging process) using finite element method (FEM). J. Mater. Process. Technol. 2007, 192–193, 128–133. [Google Scholar] [CrossRef]
- Kacem, A.; Krichen, A.; Manach, P.Y. Prediction of damage in the hole-flanging process using a physically based approach. Int. J. Damage Mech. 2015, 24, 840–858. [Google Scholar] [CrossRef]
- Masmoudi, N.; Soussi, H.; Krichen, A. Determination of an adequate geometry of the flanged hole to perform formed threads. Int. J. Adv. Manuf. Technol. 2017, 92, 547–560. [Google Scholar] [CrossRef]
- Heng-Sheng, L.; Chien-Yu, L.; Chia-Hung, W. Hole flanging with cold extrusion on sheet metals by FE simulation. Int. J. Mach. Tools Manuf. 2007, 47, 168–174. [Google Scholar] [CrossRef]
- Totten, G.E. Handbook of Lubrication and Tribology—Vol. I Application and Maintenance, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2006; ISBN 978-0-8493-2095-8. [Google Scholar]
- Choi, H.S.; Kim, S.G.; Seo, P.K.; Kim, B.M.; Cha, B.C.; Ko, D.C. Experimental Investigation on Galling Performance of Tool Steel in Stamping of UHSS Sheets. Int. J. Precis. Eng. Manuf. 2014, 15, 1101–1107. [Google Scholar] [CrossRef]
- Evin, E.; Tomáš, M.; Výboch, J. Verification of friction models implemented in the program PAMSTAMP 2G by strip drawn test. In Proceedings of the NEWTECH 2011: Advanced Manufacturing Engineering: The International Conference, Brno, Czech Republic, 14–15 September 2011; University of Technology: Brno, Czech Republic, 2011; pp. 109–114. ISBN 978-80-214-4267-2. [Google Scholar]
- Evin, E.; Tomáš, M.; Výrostek, M.; Výboch, J. Local tribological characteristics of steel sheets for microforming. Key Eng. Mater. 2014, 586, 116–119. [Google Scholar] [CrossRef]
- Pereira, M.P.; Yan, W.; Rolfe, B.F. Contact pressure evolution and its relation to wear in sheet metal forming. Wear 2008, 265, 1687–1699. [Google Scholar] [CrossRef]
- Gorscak, D.; Filetin, T.; Cackovic, D. Selection of Steels and Coatings for Cold-Work Tools. Mater. Manuf. Process. 2009, 24, 828–831. [Google Scholar] [CrossRef]
- Groche, P.; Moeller, N.; Hoffmann, H.; Suh, J. Influence of gliding speed and contact pressure on the wear of forming tools. Wear 2011, 271, 2570–2578. [Google Scholar] [CrossRef]
- Moravec, J. Increase of the operating life of active parts of cold-moulding tools. Tehnicki Vjesnik 2017, 24, 143–146. [Google Scholar] [CrossRef]
- Clarysse, F.; Lauwerens, W.; Vermeulen, M. Tribological properties of PVD tool coatings in forming operations of steel sheet. Wear 2008, 264, 400–404. [Google Scholar] [CrossRef]
- Silva, F.; Martinho, R.; Andrade, M.; Baptista, A.; Alexandre, R. Improving the Wear Resistance of Moulds for the Injection of Glass Fibre–Reinforced Plastics Using PVD Coatings: A Comparative Study. Coatings 2017, 7, 28. [Google Scholar] [CrossRef]
- Li, H.; Rong, S.; Sun, P.; Wang, Q. Microstructure, Residual Stress, Corrosion and Wear Resistance of Vacuum Annealed TiCN/TiN/Ti Films Deposited on AZ31. Metals 2017, 7, 5. [Google Scholar] [CrossRef]
- Rodríguez-Barrero, S.; Fernández-Larrinoa, J.; Azkona, I.; López de Lacalle, L.N.; Polvorosa, R. Enhanced Performance of Nanostructured Coatings for Drilling by Droplet Elimination. Mater. Manuf. Process. 2014, 31, 593–602. [Google Scholar] [CrossRef]
- Fernández-Abia, A.I.; Barreiro, J.; López de Lacalle, L.N.; González-Madruga, D. Effect of mechanical pre-treatments in the behaviour of nanostructured PVD-coated tools in turning. Int. J. Adv. Manuf. Technol. 2014, 73, 1119–1132. [Google Scholar] [CrossRef]
- Elosegui, I.; Alonso, U.; Lopez de Lacalle, L.N. PVD coatings for thread tapping of austempered ductile iron. Int. J. Adv. Manuf. Technol. 2017, 2663–2672. [Google Scholar] [CrossRef]
- Fernández-Valdivielso, A.; López de Lacalle, L.N.; Urbikain, G.; Rodriguez, A. Detecting the key geometrical features and grades of carbide inserts for the turning of nickel-based alloys concerning surface integrity. J. Mech. Eng. Sci. 2015, 230, 3725–3742. [Google Scholar] [CrossRef]
- Bao, Y.; Zhang, N.; Yang, G. Theoretical approach in predicting perforation of aluminum alloy foam target against different ogive-nosed projectile. Appl. Mech. Mater. 2010, 44–47, 3060–3066. [Google Scholar] [CrossRef]
- Sitek, M.; Stachowicz, F. An effect of punch geometry on a size of a hole contour burr (in Poland Wpływ geometrii stempla na stopien wywiniecia obrzeza otworu). Rudy Metale 2004, 49, 60–64. [Google Scholar]
- Huang, Y.M.; Chien, K.H. Influence of Cone Semi-Angle on the Formability Limitation of the Hole-Flanging Process. Int. J. Adv. Manuf. Technol. 2002, 19, 597–606. [Google Scholar] [CrossRef]
- Sresomroeng, B.; Premanond, V.; Kaewtatip, P.; Khantachawana, A.; Koga, N.; Watanabe, S. Anti-adhesion performance of various nitride and DLC films against high strength steel in metal forming operation. Diam. Relat. Mater. 2010, 19, 833–836. [Google Scholar] [CrossRef]
- Bull, S.J.; Bhat, D.G.; Staita, M.H. Properties and performance of commercial TiCN coatings. Part 1: Coating architecture and hardness modelling. Surf. Coat. Technol. 2003, 163–164, 499–506. [Google Scholar] [CrossRef]
- Czichos, H.; Habig, K.H. Tribologie—Handbuch, 4th ed.; Springer Vieweg: Wiesbaden, Germany, 2015; ISBN 978-3-8348-2236-9. [Google Scholar]
- Bruce, R.W. Handbook of Lubrication and Tribology, Volume II: Theory and Design, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2006; ISBN 978-1420069082. [Google Scholar]
- De Rooij, M.B. Tribological Aspects of Unlubricated Deep Drawing Processes. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 1998. [Google Scholar]
- Bull, S.J.; Bhat, D.G.; Staita, M.H. Properties and performance of commercial TiCN coatings. Part 2: Tribological performance. Surf. Coat. Technol. 2003, 163–164, 507–514. [Google Scholar] [CrossRef]
C | Mn | P | S | Si | Al | Nb | Ti |
---|---|---|---|---|---|---|---|
0.065 | 0.76 | 0.007 | 0.004 | 0.023 | 0.038 | 0.026 | 0.002 |
Spec. No. | ReH (MPa) | ReL (MPa) | Rm (MPa) | Ag (%) | A80 (%) |
---|---|---|---|---|---|
1 | 379 | 374 | 554 | 15.5 | 27.0 |
2 | 386 | 378 | 561 | 15.6 | 29.4 |
3 | 375 | 372 | 554 | 15.6 | 29.3 |
Average | 380 | 374 | 556 | 15.6 | 28.5 |
Standard deviation | 4 | 2 | 3 | 0 | 1.1 |
C | Si | Mn | P | S | Cr | Mo | V | W |
---|---|---|---|---|---|---|---|---|
0.92 | 0.31 | 0.33 | 0.019 | 0.005 | 3.88 | 4.76 | 1.85 | 6.36 |
Statistical Variables | ISO 25 178 | ISO 4287 | |||||
---|---|---|---|---|---|---|---|
Sq | Sp | Sv | Sz | Sa | Ra-long 1 | Ra-trans 1 | |
Average | 0.44 | 4.06 | 2.34 | 6.39 | 0.35 | 0.170 | 0.140 |
Standard deviation | 0.06 | 0.55 | 0.16 | 0.22 | 0.04 | 0.003 | 0.002 |
µ-Mean (-) | µ-StDev (-) | F (N) | v (cm·s−1) | Distance (m) |
---|---|---|---|---|
0.780 | 0.076 | 2 | 20 | 200 |
0.700 | 0.029 | 4 | 20 | 200 |
0.495 | 0.066 | 5 | 20 | 200 |
Stage No. | Normal Pressure (GPa) | |||
---|---|---|---|---|
1 | ||||
2 | ||||
4 | ||||
6 | ||||
10 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomáš, M.; Džupon, M.; Evin, E.; Spišák, E. Surface Analysis of Uncoated and PVD Coated Punch at the Hole-Flanging Process. Metals 2018, 8, 218. https://doi.org/10.3390/met8040218
Tomáš M, Džupon M, Evin E, Spišák E. Surface Analysis of Uncoated and PVD Coated Punch at the Hole-Flanging Process. Metals. 2018; 8(4):218. https://doi.org/10.3390/met8040218
Chicago/Turabian StyleTomáš, Miroslav, Miroslav Džupon, Emil Evin, and Emil Spišák. 2018. "Surface Analysis of Uncoated and PVD Coated Punch at the Hole-Flanging Process" Metals 8, no. 4: 218. https://doi.org/10.3390/met8040218
APA StyleTomáš, M., Džupon, M., Evin, E., & Spišák, E. (2018). Surface Analysis of Uncoated and PVD Coated Punch at the Hole-Flanging Process. Metals, 8(4), 218. https://doi.org/10.3390/met8040218