Light-Weight Aluminum-Based Alloys—From Fundamental Science to Engineering Applications
1. Introduction and Scope
2. Contributions
3. Conclusions and Outlook
Conflicts of Interest
References
- Hughes, D.A.; Hansen, N. High angle boundaries formed by grain subdivision mechanisms. Acta Mater. 1997, 45, 3871–3886. [Google Scholar] [CrossRef]
- Valiev, R. Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 2004, 3, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Estrin, Y.; Vinogradov, A. Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater. 2013, 61, 782–817. [Google Scholar] [CrossRef]
- Segal, V.M. Materials processing by simple shear. Mater. Sci. Eng. A 1995, 197, 157–164. [Google Scholar] [CrossRef]
- Segal, V.M. Equal channel angular extrusion: From macromechanics to structure formation. Mater. Sci. Eng. A 1999, 271, 322–333. [Google Scholar] [CrossRef]
- Frint, P.; Hockauf, M.; Halle, T.; Strehl, G.; Lampke, T.; Wagner, M.F.-X. Microstructural Features and Mechanical Properties after Industrial Scale ECAP of an Al-6060 Alloy; Trans Tech Publications: Zürich, Switzerland, 2011; Materials Science Forum Volumes 667–669; ISBN 9783037850077. [Google Scholar]
- Frint, S.; Hockauf, M.; Frint, P.; Wagner, M.F.-X. Scaling up Segal’s principle of Equal-Channel Angular Pressing. Mater. Des. 2016, 97. [Google Scholar] [CrossRef]
- Horn, T.D.; Silbermann, C.B.; Frint, P.; Wagner, M.F.-X.; Ihlemann, J. Strain localization during equal-channel angular pressing analyzed by finite element simulations. Metals 2018, 8, 55. [Google Scholar] [CrossRef]
- Fritsch, S.; Wagner, M.F.-X. On the effect of natural aging prior to low temperature ECAP of a high-strength aluminum alloy. Metals 2018, 8, 63. [Google Scholar] [CrossRef]
- Berndt, N.; Frint, P.; Wagner, M.F.-X. Influence of extrusion temperature on the aging behavior and mechanical properties of an AA6060 aluminum alloy. Metals 2018, 8, 51. [Google Scholar] [CrossRef]
- Frint, P.; Härtel, M.; Selbmann, R.; Dietrich, D.; Bergmann, M.; Lampke, T.; Landgrebe, D.; Wagner, M.F.X. Microstructural evolution during severe plastic deformation by gradation extrusion. Metals 2018, 8, 96. [Google Scholar] [CrossRef]
- Förster, W.; Binotsch, C.; Awiszus, B. Process Chain for the Production of a Bimetal Component from Mg with a Complete Al Cladding. Metals 2018, 8, 97. [Google Scholar] [CrossRef]
- Kirbach, C.; Stockmann, M.; Ihlemann, J. A Fragmentation Criterion for the Interface of a Hydrostatic Extruded Al-Mg-Compound. Metals 2018, 8, 157. [Google Scholar] [CrossRef]
- Habisch, S.; Böhme, M.; Peter, S.; Grund, T.; Mayr, P. The Effect of Interlayer Materials on the Joint Properties of Diffusion-Bonded Aluminium and Magnesium. Metals 2018, 8, 138. [Google Scholar] [CrossRef]
- Scherzer, R.; Fritsch, S.; Landgraf, R.; Ihlemann, J.; Wagner, M.F.-X. Finite element simulation of the presta joining process for assembled camshafts: Application to aluminum shafts. Metals 2018, 8, 128. [Google Scholar] [CrossRef]
- Härtel, M.; Illgen, C.; Frint, P.; Wagner, M.F.-X. On the PLC effect in a particle reinforced AA2017 alloy. Metals 2018, 8, 88. [Google Scholar] [CrossRef]
- Siebeck, S.; Roder, K.; Wagner, G.; Nestler, D. Influence of boron on the creep behavior and the microstructure of particle reinforced aluminum matrix composites. Metals 2018, 8, 110. [Google Scholar] [CrossRef]
- Winter, L.; Hockauf, K.; Lampke, T. Temperature and Particle Size Influence on the High Cycle Fatigue Behavior of the SiC Reinforced 2124 Aluminum Alloy. Metals 2018, 8, 43. [Google Scholar] [CrossRef]
- Nestler, A.; Schubert, A. Roller Burnishing of Particle Reinforced Aluminium Matrix Composites. Metals 2018, 8, 95. [Google Scholar] [CrossRef]
- Sieber, M.; Morgenstern, R.; Scharf, I.; Lampke, T. Effect of nitric and oxalic acid addition on hard anodizing of AlCu4Mg1 in sulphuric acid. Metals 2018, 8, 139. [Google Scholar] [CrossRef]
- Grund, T.; Gester, A.; Wagner, G.; Habisch, S.; Mayr, P. Arc Brazing of Aluminium, Aluminium Matrix Composites and Stainless Steel in Dissimilar Joints. Metals 2018, 8, 166. [Google Scholar] [CrossRef]
- Schmidt, A.; Siebeck, S.; Götze, U.; Wagner, G.; Nestler, D. Particle-Reinforced Aluminum Matrix Composites (AMCs)—Selected Results of an Integrated Technology, User, and Market Analysis and Forecast. Metals 2018, 8, 143. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wagner, M.F.-X. Light-Weight Aluminum-Based Alloys—From Fundamental Science to Engineering Applications. Metals 2018, 8, 260. https://doi.org/10.3390/met8040260
Wagner MF-X. Light-Weight Aluminum-Based Alloys—From Fundamental Science to Engineering Applications. Metals. 2018; 8(4):260. https://doi.org/10.3390/met8040260
Chicago/Turabian StyleWagner, Martin Franz-Xaver. 2018. "Light-Weight Aluminum-Based Alloys—From Fundamental Science to Engineering Applications" Metals 8, no. 4: 260. https://doi.org/10.3390/met8040260
APA StyleWagner, M. F. -X. (2018). Light-Weight Aluminum-Based Alloys—From Fundamental Science to Engineering Applications. Metals, 8(4), 260. https://doi.org/10.3390/met8040260