Mechanical Properties and Degradation Behavior of Mg(100−7x)Zn6xYx(x = 0.2, 0.4, 0.6, 0.8) Alloys
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Processing
2.2. Microstructure and Mechanical Properties
2.3. Electrochemical Measurements
2.4. Immersion Test
3. Results and Discussion
3.1. Microstructure and Mechanical Properties
3.2. Electrochemical and Degradation Behavior
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Yun, Y.; Dong, Z.; Lee, N.; Liu, Y.; Xue, D.; Guo, X.; Kuhlmann, J.; Doepke, A.; Halsall, H.B.; Heineman, W.; et al. Revolutionizing biodegradable metals. Mater. Today 2009, 12, 22–32. [Google Scholar] [CrossRef]
- Jin, W.H.; Chu, P.K. Surface functionalization of biomaterials by plasma and ion beam. Surf. Coat. Technol. 2018, 336, 2–8. [Google Scholar] [CrossRef]
- Zhang, J.; Li, H.Y.; Wang, W.; Huang, H.; Pei, J.; Qu, H.Y.; Yuan, G.Y.; Li, Y.D. The degradation and transport mechanism of a Mg-Nd-Zn-Zr stent in rabbit common carotid artery: A 20-month study. Acta Biomater. 2018, 69, 372–384. [Google Scholar] [CrossRef] [PubMed]
- Bian, D.; Zhou, W.R.; Deng, J.X.; Liu, Y.; Li, W.T.; Chu, X.; Xiu, P.; Cai, H.; Kou, Y.H.; Jiang, B.G.; et al. Development of magnesium-based biodegradable metals with dietary trace element germanium as orthopaedic implant applications. Acta Biomater. 2017, 64, 421–436. [Google Scholar] [CrossRef] [PubMed]
- Mutlu, I. Production and fluoride treatment of Mg−Ca−Zn−Co alloy foam for tissue engineering applications. Trans. Nonferr. Met. Soc. China 2018, 28, 114–124. [Google Scholar] [CrossRef]
- Song, G.L. Control of biodegradation of biocompatable magnesium alloys. Corros. Sci. 2007, 49, 1696–1701. [Google Scholar] [CrossRef]
- Luo, D.; Liu, Y.; Yin, X.M.; Wang, H.Y.; Han, Z.W.; Ren, L.Q. Corrosion inhibition of hydrophobic coatings fabricated by micro-arc oxidation on an extruded Mg–5Sn–1Zn alloy substrate. J. Alloys Compd. 2018, 731, 731–738. [Google Scholar] [CrossRef]
- Kong, X.D.; Wang, L.; Li, G.Y.; Qu, X.H.; Niu, J.L.; Tang, T.T.; Dai, K.R.; Yuan, G.Y.; Hao, Y.Q. Mg-based bone implants show promising osteoinductivity and controllable degradation: A long-term study in a goat femoral condyle fracture model. Mater. Sci. Eng. C 2018, 86, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Mirza, A.; King, A.; Troakes, C.; Exley, C. Aluminium in brain tissue in familial Alzheimer’s disease. J. Trace Elem. Med. Biol. 2017, 40, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Hua, N.B.; Chen, W.Z.; Wang, Q.T.; Guo, Q.H.; Huang, Y.T.; Zhang, T. Tribocorrosion behaviors of a biodegradable Mg65Zn30Ca5 bulk metallic glass for potential biomedical implant applications. J. Alloys Compd. 2018, 745, 111–120. [Google Scholar] [CrossRef]
- Peng, Q.M.; Huang, Y.D.; Zhou, L.; Hort, N.; Kainer, K.U. Preparation and properties of high purity Mg–Y biomaterials. Biomaterials 2010, 31, 398–403. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Shi, L.L.; Xu, J. Mg–Zn–Y alloys with long-period stacking ordered structure: In vitro assessments of biodegradation behavior. Mater. Sci. Eng. C 2013, 33, 3627–3637. [Google Scholar] [CrossRef] [PubMed]
- Hazi, A.C.; Gerber, I.; Schinhammer, M.; Löffler, J.F.; Uggowitzer, P.J. On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg-Y-Zn alloys. Acta Biomater. 2010, 6, 1824–1833. [Google Scholar]
- Ye, L.; Liu, Y.; Zhao, D.S.; Zhuang, Y.L.; Gao, S.B.; Liu, X.Q.; Zhou, J.P.; Gui, J.N.; Wang, J.B. Effects of Sn on the microstructure and mechanical properties of a hot-extruded Mg-Zn-Y-Sn alloy. Mater. Sci. Eng. A 2018, 724, 121–130. [Google Scholar] [CrossRef]
- Liu, H.; Ju, J.; Bai, J.; Sun, J.P.; Song, D.; Yan, J.L.; Jiang, J.H.; Ma, A.B. Preparation, microstructure evolutions, and mechanical property of an ultra-fine grained Mg-10Gd-4Y-1.5Zn-0.5Zr alloy. Metals 2017, 7, 398. [Google Scholar] [CrossRef]
- Lyu, S.Y.; Li, G.D.; Hu, T.; Zheng, R.X.; Xiao, W.L.; Ma, C.L. A new cast Mg-Y-Sm-Zn-Zr alloy with high hardness. Mater. Lett. 2018, 217, 79–82. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.H.; Xu, C.; Liu, S.J.; Jiao, Y.F.; Xu, L.J.; Wang, Y.B.; Meng, J.; Wu, R.Z.; Zhang, M.L. Investigation of high-strength and superplastic Mg–Y–Gd–Zn alloy. Mater. Des. 2014, 61, 168–176. [Google Scholar] [CrossRef]
- Zhang, Y.B.; Yu, S.R.; Song, Y.L.; Zhu, X.Y. Microstructures and mechanical properties of quasicrystal reinforced Mg matrix composites. J. Alloys Compd. 2008, 464, 575–579. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, Y.K.; Kim, W.T.; Kim, D.H. Mechanical property and corrosion resistance of Mg-Zn-Y alloys containing icosahedral phase. Korean J. Met. Mater. 2011, 49, 145–152. [Google Scholar]
- Zhang, E.L.; He, W.W.; Du, H.; Yang, K. Microstructure, mechanical properties and corrosion properties of Mg–Zn–Y alloys with low Zn content. Mater. Sci. Eng. A 2008, 488, 102–111. [Google Scholar] [CrossRef]
- Qin, C.L.; Hu, Q.F.; Li, Y.Y.; Wang, Z.F.; Zhao, W.M.; Louzguine-Luzgin, D.V.; Inoue, A. Novel bioactive Fe-based metallic glasses with excellent apatite-forming ability. Mater. Sci. Eng. C 2016, 69, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xiao, W.L.; Wang, F.; Hu, T.; Ma, C.L. The roles of long period stacking ordered structure and Zn solute in the hot deformation behavior of Mg-Gd-Zn alloys. J. Alloys Compd. 2018, 745, 33–43. [Google Scholar] [CrossRef]
- Liu, X.Q.; Zhao, D.S.; Ye, L.; Zhuang, Y.L.; Gao, S.B.; Wang, J.B. Effect of Er contents on the microstructure of long period stacking ordered phase and the corresponding mechanical properties in Mg-Dy-Er-Zn alloys. Mater. Sci. Eng. A 2018, 718, 461–467. [Google Scholar] [CrossRef]
- Jiang, H.S.; Qiao, X.G.; Xu, C.; Kamado, S.; Wu, K.; Zheng, M.Y. Influence of size and distribution of W phase on strength and ductility of high strength Mg-5.1Zn-3.2Y-0.4Zr-0.4Ca alloy processed by indirect extrusion. J. Mater. Sci. Technol. 2018, 34, 277–283. [Google Scholar] [CrossRef]
- Li, Z.M.; Wan, D.Q.; Huang, Y.; Ye, S.T.; Hu, Y.L. Characterization of a Mg95.5Zn1.5Y3 alloy both containing W phase and LPSO phase with or without heat treatment. J. Magnes. Alloys 2017, 5, 217–224. [Google Scholar]
- Zhang, Y.B.; Yu, S.R.; Zhu, X.Y.; Luo, Y.R. Study on as-cast microstructures and solidification process of Mg–Zn–Y Alloys. J. Non-Cryst. Solids 2008, 354, 1564–1568. [Google Scholar] [CrossRef]
- Song, G.L.; Atrens, A. Corrosion mechanisms of magnesium alloys. Adv. Eng. Mater. 1999, 1, 11–33. [Google Scholar] [CrossRef]
- Xin, Y.C.; Hu, T.; Chu, P.K. Degradation behavior of pure magnesium in simulated body fluids with different concentrations of HCO3−. Corros. Sci. 2011, 53, 1522–1528. [Google Scholar] [CrossRef]
- Virtanen, S. Biodegradable Mg and Mg alloys: Corrosion and biocompatibility. Mater. Sci. Eng. B 2011, 176, 1600–1608. [Google Scholar] [CrossRef]
- Xu, L.P.; Pan, F.; Yu, G.N.; Yang, L.; Zhang, E.L.; Yang, K. In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy. Biomaterials 2009, 30, 1512–1523. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.L.; Xiao, T.N.; Li, Y.Y.; Wang, Z.F.; Liu, L.; Xiong, H.Q.; Zhao, W.M. Corrosion behavior of Mg-Zn-Ca amorphous alloys with Nd addition in simulated body fluids. China Foundry 2014, 11, 503–509. [Google Scholar]
- Chen, J.D.; Wang, Y.J.; Wei, K.; Zhang, S.H.; Shi, X.T. Self-organization of hydroxyapatite nanorods through oriented attachment. Biomaterials 2007, 28, 2275–2280. [Google Scholar] [CrossRef] [PubMed]
- Pekounov, Y.; Petrov, O.E. Bone resembling apatite by amorphous-to-crystalline transition driven self-organisation. J. Mater. Sci. Mater. Med. 2008, 19, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.Y.; Wu, G.M.; Zhang, Y.H.; Zhao, Q. Growth and characterization of Mg(OH)2 film on magnesium alloy AZ31. Appl. Surf. Sci. 2011, 257, 6129–6137. [Google Scholar] [CrossRef]
Sample No. | X | Mg | Zn | Y |
---|---|---|---|---|
Alloy 1 | 0.2 | 98.6 | 1.2 | 0.2 |
Alloy 2 | 0.4 | 97.2 | 2.4 | 0.4 |
Alloy 3 | 0.6 | 95.8 | 3.6 | 0.6 |
Alloy 4 | 0.8 | 94.4 | 4.8 | 0.8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, H.; Liang, Z.; Wang, Z.; Qin, C.; Zhao, W.; Yu, H. Mechanical Properties and Degradation Behavior of Mg(100−7x)Zn6xYx(x = 0.2, 0.4, 0.6, 0.8) Alloys. Metals 2018, 8, 261. https://doi.org/10.3390/met8040261
Xiong H, Liang Z, Wang Z, Qin C, Zhao W, Yu H. Mechanical Properties and Degradation Behavior of Mg(100−7x)Zn6xYx(x = 0.2, 0.4, 0.6, 0.8) Alloys. Metals. 2018; 8(4):261. https://doi.org/10.3390/met8040261
Chicago/Turabian StyleXiong, Hanqing, Zhuofan Liang, Zhifeng Wang, Chunling Qin, Weimin Zhao, and Hui Yu. 2018. "Mechanical Properties and Degradation Behavior of Mg(100−7x)Zn6xYx(x = 0.2, 0.4, 0.6, 0.8) Alloys" Metals 8, no. 4: 261. https://doi.org/10.3390/met8040261
APA StyleXiong, H., Liang, Z., Wang, Z., Qin, C., Zhao, W., & Yu, H. (2018). Mechanical Properties and Degradation Behavior of Mg(100−7x)Zn6xYx(x = 0.2, 0.4, 0.6, 0.8) Alloys. Metals, 8(4), 261. https://doi.org/10.3390/met8040261