Synthesis of Bulk Amorphous Alloy from Fe-Base Powders by Explosive Consolidation
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ghidelli, M.; Gravier, S.; Blandin, J.J.; Raskin, J.; Lani, F.; Pardoen, T. Size-dependent failure mechanisms in ZrNi thin metallic glass films. Scr. Mater. 2014, 89, 9–12. [Google Scholar] [CrossRef]
- Han, Z.; Wu, W.F.; Li, Y.; Wei, Y.J.; Gao, H.J. An instability index of shear band for plasticity in metallic glasses. Acta Mater. 2009, 57, 1367–1372. [Google Scholar] [CrossRef]
- Botta, W.J.; Berger, J.E.; Kiminami, C.S.; Roche, V.; Nogueira, R.P.; Bolfarini, C. Corrosion resistance of Fe-based amorphous alloys. J. Alloy. Compd. 2014, 586, 105–110. [Google Scholar] [CrossRef]
- Janotova, I.; Hosko, J.; Svec, P.; Matko, I.; Janickovic, D.; Gemming, T.; Stoica, M. The study of structure of Fe-B-P based metallic glass. Appl. Surf. Sci. 2013, 269, 102–105. [Google Scholar] [CrossRef]
- Gao, J.E.; Chen, Z.P.; Du, Q.; Li, H.X.; Wu, Y.; Wang, H.; Liu, X.J.; Lu, Z.P. Fe-based bulk metallic glass composites without any metalloid elements. Acta Mater. 2013, 61, 3214–3223. [Google Scholar] [CrossRef]
- Guo, S.F.; Qiu, J.L.; Yu, P.; Xie, S.H.; Chen, W. Fe-based bulk metallic glasses: Brittle or ductile? Appl. Phys. Lett. 2014, 105, 4067. [Google Scholar] [CrossRef]
- Yang, W.; Liu, H.; Fan, X.; Xue, L.; Dun, C.; Shen, B. Enhanced glass forming ability of Fe-based amorphous alloys with minor Cu addition. J. Non-Cryst. Solids 2015, 419, 65–68. [Google Scholar] [CrossRef]
- Yang, W.; Liu, H.; Dun, C.; Li, J.; Zhao, Y.; Shen, B. Nearly free electron model to glass-forming ability of multi-component metallic glasses. J. Non-Cryst. Solids 2013, 361, 82–85. [Google Scholar] [CrossRef]
- Suryanarayana, C.; Inoue, A. Iron-based bulk metallic glasses. Int. Mater. Rev. 2013, 58, 131–166. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, R. Present status of amorphous soft magnetic alloys. J. Magn. Magn. Mater. 2000, 215, 240–245. [Google Scholar] [CrossRef]
- Zheng, H.; Hu, L.; Zhao, X.; Wang, C.; Sun, Q.; Wang, T.; Hui, X.; Yue, Y.; Bian, X. Poor glass-forming ability of Fe-based alloys: Its origin in high-temperature melt dynamics. J. Non-Cryst. Solids 2017, 71, 120–127. [Google Scholar] [CrossRef]
- Inoue, A.; Zhang, T.; Takeuchi, A. Bulk amorphous alloys with high mechanical strength and good soft magnetic properties in Fe-TM-B (TM = IV–VIII group transition metal) system. Appl. Phys. Lett. 1997, 71, 464–466. [Google Scholar] [CrossRef]
- Lu, Z.P.; Liu, C.T.; Porter, W.D. Role of yttrium in glass formation of Fe-based bulk metallic glasses. Appl. Phys. Lett. 2003, 83, 2581–2583. [Google Scholar] [CrossRef]
- Ponnambalam, V.; Shiflet, S.J.P.G.J.; Poon, S.J.; Shiflet, A.G.J. Fe-Mn-Cr-Mo-(Y, Ln)-C-B (Ln=Lanthanides) bulk metallic glasses as formable amorphous steel alloys. J. Mater. Res. 2004, 19, 3046–3052. [Google Scholar] [CrossRef]
- Li, J.F.; Shao, Y.; Liu, X.; Yao, K.F. Fe-based bulk amorphous alloys with high glass formation ability and high saturation magnetization. Sci. Bull. 2015, 60, 396–399. [Google Scholar] [CrossRef]
- Zhang, W.; Miao, H.; Li, Y.; Chang, C.; Xie, G.; Jia, X. Glass-forming ability and thermoplastic formability of ferromagnetic (Fe, Co, Ni)75P10C10B5 metallic glasses. J Alloy. Compd. 2017, 707, 57–62. [Google Scholar] [CrossRef]
- Paul, T.; Singh, A.; Harimkar, S.P. Densification and crystallization in Fe-based bulk amorphous alloy spark plasma sintered in the supercooled liquid region. Adv. Eng. Mater. 2017, 19, 1700224. [Google Scholar] [CrossRef]
- Li, X.J.; Wang, J.X.; Yan, H.H. The survey and development trend of the research for the mechanism of explosive consolidation of powders. Rare Met. Mater. Eng. 2004, 33, 566–570. [Google Scholar]
- Wang, B.; Xie, F.; Wang, B.; Luo, X. Microstructure and properties of the Ti/Al2O3/NiCr composites fabricated by explosive compaction/cladding. Mater. Sci. Eng. C 2015, 50, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Mamalis, A.G.; Vottea, I.N.; Manolakos, D.E. On the modelling of the compaction mechanism of shock compacted powders. J. Mater. Process. Technol. 2001, 108, 165–178. [Google Scholar] [CrossRef]
- Farinha, A.R.; Mendes, R.; Baranda, J.; Calinas, R.; Vieira, M.T. Behavior of explosive compacted/consolidated of nanometric copper powders. J. Alloy. Compd. 2009, 483, 235–238. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Zhao, Z.; Zhou, N. Explosive compaction and mechanical properties of amorphous particle reinforced Al-based amorphous composites. Rare Met. Mater. Eng. 2009, 38, 48–51. [Google Scholar]
- Wang, B.; Xie, F.; Li, Z.; Zhang, H. Explosive compaction of Al2O3, nanopowders. Ceram. Int. 2016, 42, 8460–8466. [Google Scholar] [CrossRef]
- Farinha, A.R.; Vieira, M.T.; Mendes, R. Explosive consolidation of 316L stainless steel powder—Effect of phase composition. Adv. Powder Technol. 2014, 25, 1469–1473. [Google Scholar] [CrossRef]
- Wang, W.H.; Dong, C.; Shek, C.H. Bulk metallic glasses. Mater. Sci. Eng. 2004, 44, 45–89. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Lu, M.; Ai, Y.; Tao, C.; Xiong, Y. Synthesis of Bulk Amorphous Alloy from Fe-Base Powders by Explosive Consolidation. Metals 2018, 8, 727. https://doi.org/10.3390/met8090727
Li J, Lu M, Ai Y, Tao C, Xiong Y. Synthesis of Bulk Amorphous Alloy from Fe-Base Powders by Explosive Consolidation. Metals. 2018; 8(9):727. https://doi.org/10.3390/met8090727
Chicago/Turabian StyleLi, Jianbin, Ming Lu, Yongbao Ai, Cong Tao, and Yun Xiong. 2018. "Synthesis of Bulk Amorphous Alloy from Fe-Base Powders by Explosive Consolidation" Metals 8, no. 9: 727. https://doi.org/10.3390/met8090727
APA StyleLi, J., Lu, M., Ai, Y., Tao, C., & Xiong, Y. (2018). Synthesis of Bulk Amorphous Alloy from Fe-Base Powders by Explosive Consolidation. Metals, 8(9), 727. https://doi.org/10.3390/met8090727