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Abstract: A transient computational fluid dynamics (CFD) modelling approach was used to study
the complex multi-phase flow in an argon-stirred industrial scale ladle with a nominal capacity of
150 tons. During the stirring process, when gas was injected through the porous plug from the bottom
into the steel bath, it breaks up into bubbles and infringes the slag layer creating an open-eye. The
volume of fluid model was used to investigate the open-eye formation process in the simulations. In
the numerical simulations, the open-eye area changed from 0.7 to 2.24 m2 with the increment of argon
flow rate from 200 to 500 NL/min for slag layer thickness of 40 cm. Furthermore, the influence of slag
layer height on the open-eye area was investigated. An argon flow rate of 200 NL/min was able to
break the slag layer for slag layer height of 40 cm, and the open-eye formation was not possible for the
same flow rate when the slag layer height was elevated from 40 to 55 cm. The numerical simulation
results were validated against industrial measurements carried out at Outokumpu Stainless located
in Tornio, Finland. The numerical simulation results of dynamics and time-averages of the slag
area showed a good agreement when compared to the industrial measurements. To conclude, it
is necessary to define gas flow rate based on the slag layer height to have an open-eye suitable
for alloying.
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1. Introduction

In ladle metallurgy, gas stirring is largely used to homogenize the composition of alloy elements,
temperature in the molten steel, and to remove inclusions. Gas stirring is typically carried out by
injecting argon into the steel through the porous plug or nozzle. The gas breaks into bubbles forming a
buoyant plume which, consequently, induces a circulating flow of steel in the ladle. The behavior of the
slag layer during the stirring process plays a pivotal role in refining the molten steel as the efficiency of
the chemical reactions between the slag-steel phases depends on the interaction between them. To
encourage the rate of refining reactions between steel and slag, gas stirring is exploited in order to
break the slag layer and promote emulsification of slag into the steel. In certain processes, the slag
layer is broken to form an open-eye to expose the steel surface for feeding purposes. On the other
hand, the formation of a larger open-eye may end up in capturing oxygen from the atmosphere into
the liquid steel, which is disadvantageous to the steel quality.
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Over the past few decades, open-eye formation has been studied in water-scale models [1–23] and
industrial-scale ladles [24–29]. Water-modelling studies [1–6] have focused on investigating the effect
of flow rate and slag layer height on the open-eye formation under the conditions of kinematic and
dynamic similarity with an industrial ladle. Furthermore, the measurements performed by Lv et al. [7],
Amaro-Villeda et al. [8], and Maruyama and Iguchi [9] studied the effect of slag layer height on the
open-eye size. Mazumdar et al. [10–17] contributed to a greater extent towards investigating the
fluid-flow analysis and open-eye formation process through experiments and simulations. Furthermore,
the work was also extended by developing the models for calculating dimensionless open-eye area and
mixing phenomena in ladles. Recently, Li et al. [18–22] performed both experiments and simulations
to study the formation of open-eye process and slag/steel/gas interface shape for various flow rates in a
water model ladle. Ramasetti et al. [23,26] also performed both experiments and numerical simulations
in a 1/5 scale water model for investigating the influence of gas flow rate and slag layer height on the
open-eye area with single and dual-plug configurations.

Overall, for the industrial ladle there are not many experimental measurements of open-eye
formation available in the literature when compared to the water model ladle. This is due to the
difficult conditions (e.g., high temperatures, process gases and dust) on the ladle surface, which make
it quite hard to capture the process with a video camera. During the past few years, Valentin et al. [24]
captured the open-eye formation process in a 170-ton industrial ladle and studied the effect of stirring
rate on it. Li et al. [25] modelled the complex multi-phase flow in an industrial scale ladle using the
volume of fluid (VOF) model. The open-eye diameter changed from 0.43 to 0.81 m with the elevation
of argon flow rate from 100 to 300 NL/min in the simulations. The open-eye diameter enlarged from
0.67 to 0.87 m, when the argon flow rate was elevated from 200 to 500 NL/min from the simulation
results of Liu et al. [26].

Liu et al. [26] also investigated the effect of plug configuration on the open-eye area and mixing
phenomena. Cloete et al. [27,28] used discrete particle model (DPM) and volume of fluid (VOF) models
to study the effect of design variables on the mixing efficiency in an industrial scale gas stirred ladle.
Recently, Liu et al. [29] performed simulations using the large eddy simulation (LES) approach coupled
with VOF and DPM for both a water model and an industrial ladle.

Over the past few years, the studies have concentrated more on modelling water-model ladles
and there have been relatively few studies on modelling industrial ladles through experiments and
simulations. In the current work, the influence of gas flow rate and slag layer height on open-eye
formation was investigated through industrial measurements and numerical simulations. The industrial
measurements were conducted at Outokumpu Stainless Oy located in Tornio, Finland. As for the
simulation part, the VOF model was used to investigate the slag/steel/gas behavior in the ladle.

2. Mathematical Model

2.1. Governing Equations

In the present work, a VOF model is used to solve the complex multi-phase flow three-phase
and to investigate the slag/steel/gas interface behavior in the industrial-scale ladle. The governing
equations of the VOF model and standard k− ε turbulence model are described below [30].

Equations (1) and (2) presents the continuity and momentum equations solved in the current work.
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where ρ is the density, ui is the fluid flow velocity, p is the pressure, µe is the viscosity, gi is the
gravitational acceleration, Fi is the body force and Fvol is the volume force, given by:

Fi = αρlgi, (3)

Fvol = σi j
ρκi∇αi

1
2

(
ρi + ρ j

) (4)

A more detailed description of the VOF and standard k− ε model used in the current work can be
found in earlier studies [23,31].

2.2. Physical Properties and Operating Condictions

The industrial scale ladle studied in this work is a 150 ton ladle. The physical properties and
operating conditions used in the current work are shown in Table 1.

Table 1. Thermo-physical properties and operating conditions employed.

Physical Properties at 1812 K Value Unit

Density of liquid steel [32] 6913 kg/m3

Viscosity of liquid steel [32] 0.005281 Pa·s
Density of slag 2746 kg/m3

Viscosity of slag 0.081 Pa · s
Density of argon gas 0.8739 kg/m3

Viscosity of argon gas 2.2616 × 10−5 Pa · s
Temperature of bath 1812 K

Flow rate of argon gas 200, 400 and 500 NL/min *
Slag layer height 25, 40 and 55 cm

* Normal temperature and pressure (NTP): 293.15 K and 101325 Pa.

2.3. Execution of the Experiments

The industrial measurements were performed with gas flow rates ranging from 200 to 500 NL/min
and slag layer thickness varying from 25 to 55 cm. Slag layer thickness was measured manually using
a steel rod. An infrared (IR) camera from Sapotech Oy was used to monitor the open-eye formation
and evolution in the industrial ladle operated at very high temperature. The open software ImageJ
software was used to analyze the open-eye size.

2.4. Initial and Boundary Conditions

At the start of the gas-stirring process, the steel and slag are at rest with no gas injection from the
porous plug at the bottom. Heat transfer was excluded from the simulations. Instead, it was assumed
that the argon gas immediately heats up to the temperature of the liquid steel (1812 K). Accordingly,
the velocity inlet boundary condition in the simulations was computed by the argon gas flow rates by
Equation (5).

Vin =
QL

A
=

(
pS

pL

TR

TT

)
QS

A
(5)

where subscript R is the ladle operating condition and T is the standard condition. TS = 293.15 K,
TL = 1812 K, pS = 101,325 Pa, and pL = pS + ρsteelgH. A is the porous plug area, and QS is the measured
argon gas flow rate at normal temperature and pressure (NTP). It should be noted that Equation (5) does
not account for the pressure head caused by top slag, as it is very small compared to that of the steel bath.

2.5. Employed Physical Properties of Slag

The average slag composition (excluding minor amounts of Cr2O3, Ni, S and P) was 61.3 wt%
CaO, 26.0 wt% SiO2, 7.8 wt% MgO, 0.2 wt% MnO, 4.3 wt% Al2O3 and 0.4 wt% Fe2O3. The composition
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was determined based on four slag samples taken from the process studied, while the employed
average slag temperature represents an average of the temperatures measured during the validation
experiments. For the sake of simplicity, the top slag was assumed to be liquid. The viscosity of the slag
was calculated using the viscosity module of FactSage ver. 7.2. [33]. The viscosity module relates the
dynamic viscosity of the slag to the structure of the slag melt, which is calculated using the modified
quasichemical model [30]. The density of the slag was calculated using the partial molar volume
method using Equations (6) and (7) [34].

ρslag =
Mslag

Vm,slag
, (6)

Vm,slag =
n∑

i = 0

xiVi, (7)

where Mslag is the molar mass of the slag, Vm,slag is the molar volume of slag, xi is the molar fraction of
species i in slag and Vi is the partial molar volume of species i in the slag. The values of Vi at 1500 ◦C
(1773 K) were taken from [31]; the error induced from using the same values for the temperatures of
this work was assumed to be small. The dynamic viscosity and density of the slag were calculated
based on an average slag composition and at a temperature of 1539 ◦C (1812.15 K).

2.6. Numerical Details

The geometry, computational domain and boundary conditions of the ladle configuration studied
is shown in Figure 1. A completely hexahedral structured mesh for the ladle was created using the
blocking feature of ANSYS ICEM computational fluid dynamics (CFD) software (version 17, Espoo,
Finland). The number of cells was approximately 1 million cells. The criteria used in the earlier studies
of Ramasetti et al. [23,31] is used in the present work.
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3. Results and Discussion

3.1. Influence of Argon Flow Rate on Open-Eye Formation for Slag Layer Thickness of 40 cm

Figures 2 and 3 show the argon gas propagation and the open-eye formation process at the initial
stages of gas stirring for flow rates of 200 and 500 NL/min. The argon gas, which was injected into
the bath through the nozzle, splits up into bubbles and impinge the slag layer at high flow rates
forming a open-eye. Figures 2 and 3 show that the upwelling argon gas appears to be continuous
and concentrated before breaking the slag layer. The time taken for the argon gas to reach the slag
layer appears to be shorter for a flow rate of 500 NL/min (see Figure 2) in comparison to 200 NL/min
(Figure 3). At 3.0 s physical time, the argon gas was already able to break the slag layer and the
open-eye formation can be observed for a flow rate of 500 NL/min (see Figure 3b), while for a flow rate
of 200 NL/min the open-eye is not completely formed (see Figure 2b).
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Figure 3. The argon gas floating and open-eye formation process: Q = 500 NL/min.

The influence of argon flow rate on the open-eye area for a slag layer thickness of 40 cm is
displayed in Figures 4 and 5 from the experimental and simulation results. The position and size of
the open-eye generated was not constant throughout the process; the value of the open-eye area was
averaged over a period of 60 s. The argon flow rate of 200 NL/min was able to break the slag layer and
generate a smaller open-eye with an area of 0.7 m2 (relative area of 10.3%) in experiments (Figure 4a)
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and 0.69 m2 (relative area of 10.2%) through simulations (Figure 5a). The open-eye formation did not
appear when the industrial scale ladle operated with a flow rate lesser than 200 NL/min. For a flow
rate of 400 NL/min, the open-eye area generated was approximately 1.58 m2 (relative area of 23.3%) in
experiments (Figure 4b) and 1.59 m2 (relative area of 23.5%) through simulations. At a flow rate of
500 NL/min, the area of the open-eye was 2.24 m2 (relative area of 33.1%) in experiments (Figure 4c)
and 2.3 m2 (relative area of 34.0%) through simulations (Figure 5c). At higher flow rates, the edge
of the open-eye moves closer to the ladle wall, resulting in an increase of fluid flow adjacent to the
ladle wall. This may increase refractory wear and thus diminish the ladle life. The predicted trend of
increase in the open-eye area with argon flow rate were in acceptable agreement with the industrial
observations of Valentin et al. [24]. The simulation results of the open-eye area accorded well with the
simulations of Li et al. [25] and Liu et al. [26]. This information can be used to select the optimal argon
flow rates to achieve a sufficient-sized open-eye for alloying purposes.
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Figure 6 depicts the fluctuation of the open-eye area with time for flow rates of 200, 400 and
500 NL/min. It can be observed that the open-eye area is regularly changing, indicating the dynamic
behavior of the slag layer. Initially, the open-eye expands rapidly and the area reaches a peak value
that is dependent of the flow rate (see Figure 6). The time to reach the peak value, however, does not
seem to depend on the flow rate. Instead, the time to reach the peak is approximately the same for all
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of the flow rates studied. After the peak has been reached, the area begins to decrease until it becomes
steady and fluctuates around a constant level, which, in turn, is dependent on the flow rate. The time
to reach the constant level also seems to be independent of the flow rate, but the amplitude of the
fluctuation advances with the flow rate. The peak values of the open-eye area for flow rates of 200,
400 and 500 NL/min were 1.6 m2, 3.2 m2 and 5.0 m2, respectively. The time-averaged values of the
open-eye area were 0.69 m2, 1.6 m2 and 2.24 m2.Metals 2019, 9, x FOR PEER REVIEW 7 of 14 
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Figure 7 depicts the flow velocity profiles at four different heights in the perpendicular direction
where the flow enters from the porous plug. For all the flow velocity profiles at different heights,
the highest mixture flow velocity occurred at the distance of 0.5 m from the vertical centre. This is
the reason that the bubble plume developed from the argon gas injection through the porous plug
located at this position. It can be seen from Figure 7 that the highest velocities (2.1–3.25) m/s for
200–500 NL/min) are obtained at the bottom of the ladle where the plume is quite narrow. At higher
positions, the velocities decrease and the plume widens. The anticipated velocity fields follow the
same trends in comparison to the experimental results of Xie et al. [35,36].
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Krishnapisharody and Irons [6] developed a mechanistic model for measuring the dimensionless
open-eye size. The dimensionless open-eye area is expressed in terms of Froude number, which is
further modified into the following correlation [31].

A∗e
A∗p

= −3.0 + 13.78 (1− ρ∗)−1/2(Q∗)1/3
(H

h

)
1/2 (8)

where A∗e = Ae
H2 (A∗e is the non-dimensional open-eye area, Ae is the open-eye area and H is the bath

height), A∗p = 1.41 (Q∗)0.4 (A∗p is the non-dimensional plume area, Q∗ is the non-dimensional flow

rate), Q∗ = Q
g0.5H2.5 (g is the gravitational acceleration, Q is the gas flow rate), ρ∗ =

ρslag
ρsteel

(ρslag is the
density of the slag and ρsteel is the density of the molten steel), h is the height of the slag layer) [31].

The anticipated trend of the dimensionless open-eye area showed acceptable agreement with the
experimental results available from the literature. The experimental results of various authors and the
meanings of the non-dimensional parameters in Figures 8 and 9 can be found in [6].
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3.2. Influence of Increasing Slag Layer Height to 55 cm from 40 cm on Open-Eye Formation

Figures 10 and 11 display the influence of argon flow rate on the open-eye formation when the
slag layer height was increased to 55 cm. At a low argon flow rate of 200 NL/min, increasing the slag
layer thickness from 40 cm to 55 cm prevents the open-eye formation. The lowest argon flow rate was
not high enough to break the slag layer during the experiments, which can be observed in Figure 8a
and the same result was obtained in the simulations as well. This implies that it is necessary to decrease
argon flow rates for higher slag layer thickness operating conditions to inhibit open-eye formation and
to reduce inclusion formation by atmospheric reoxidation. This is because, according to the study of
Valentin et al. [24], the inclusion content is larger when a open-eye is formed compared to the situation
with a closed slag layer. At argon flow rates of 400 and 500 NL/min, open-eye formation follows the
same trend as in the cases with a slag layer thickness of 40 cm, with a reduction in the open-eye size to
some extent. At 400 NL/min, the open-eye area reduces from 1.58 m2 (relative area of 23.3%) to 1.32 m2

(relative area of 19.5%) in experimental results, and from 1.59 m2 (relative area of 23.5%) to 1.44 m2

(relative area of 21.1%) through simulation results. At 500 NL/min, the open-eye area reduces from
2.24 m2 (relative area of 33.1%) to 1.81 m2 (relative area of 26.7%) in experimental results, and from
2.29 m2 (relative area of 34.0%) to 1.95 m2 (relative area of 28.8%) through simulation results.Metals 2019, 9, x FOR PEER REVIEW 10 of 14 
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Figure 11. Open-eye size in the ladle from simulation results for a slag layer thickness of 55 cm:
(a) Q = 200 NL/min, (b) Q = 400 NL/min, and (c) Q = 500 NL/min.

3.3. Influence of Decreasing Slag Layer Thickness to 25 cm from 40 cm on Open-Eye Formation

The open-eye formation in the ladle when the slag layer thickness was reduced to 25 cm for argon
flow rates of 200, 400 and 500 NL/min is displayed in Figures 12 and 13. At argon flow rates of 200 and
400 NL/min, the open-eye formation follows the same trend as in the case of 40cm slag layer thickness,
but with an increase in open-eye size. At a flow rate of 200 NL/min, the open-eye area enlarges to
1.08 m2 (relative area of 15.9%) in experimental results and to 0.95 m2 (relative area of 14.0%) through
simulations when the slag layer height was decreased from 40 cm to 25 cm. In addition, at a flow rate
of 400 NL/min, the open-eye area increases to 1.82 m2 (relative area of 26.8%) in experimental results to
1.89 m2 (relative area of 27.9%) through simulations. At a higher argon flow rate of 500 NL/min, the
open-eye formation follows the same trend as in the case with a slag layer height of 40 cm, but the
open-eye size is very large and there is a large deformation of the slag layer both near the open-eye
position and far from it. The size of the open-eye is almost half of the ladle surface cross-sectional area.
The results indicate that, the higher argon flow rates leads to the formation of larger open-eyes, and
at high flow rates if the slag layer thickness is lower it may result in the generation of a fluctuating
open-eye. Emulsification of slag into steel was found to be more aggressive compared to cases with
gas flow rates of 200 and 400 NL/min.Metals 2019, 9, x FOR PEER REVIEW 11 of 14 
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Figure 13. Open-eye size in the ladle from simulation results for a slag layer thickness of 25 cm:
(a) Q = 200 NL/min, (b) Q = 400 NL/min, and (c) Q = 500 NL/min.

3.4. Summary of Open-Eye Area for Different Argon Flow Rates and Slag Layer Heights

Table 2 presents the summary of all the experimental and simulation results of open-eye areas for
enlargement of flow rates from 200 to 500 NL/min and the slag layer height from 25 to 55 cm.

Table 2. Summary of experimental and simulated values for open-eye area with various gas flow rates
and slag layer height.

Slag Layer Height (cm) 25 40 55

Flow Rate (NL/min) Exp. (m2) Sim. (m2) Exp. (m2) Sim. (m2) Exp.(m2) Sim. (m2)
200 1.08 0.95 0.72 0.69 NA NA
400 1.82 1.89 1.58 1.59 1.32 1.44
500 NA NA 2.24 2.30 1.81 1.95

Average Relative Error 6.61%
R2 0.93

Notes: NA = not available.

Overall, the open-eye area increases with elevation in flow rate and decreases with elevation in
the slag layer height in experiments, while the same trend in also followed in the simulations. The low
gas flow rate of 200 NL/min was not able to break the slag layer and generate an open-eye for a high
slag layer height of 55 cm. The open-eye tended to be more dynamic when the ladle was operated with
a high flow rate of 500 NL/min and a low slag layer height of 25 cm was used.

As expected, the open eye area expanded with a higher gas flow rate and diminished with a
thicker slag layer. Figure 14 depicts the comparison between the experimental and simulation values
of the open-eye area for different slag layer thicknesses. The agreement between the simulations and
experiments is very good. The results indicate that the gas flow rate and slag layer height play an
important role in generating a suitable open-eye size for alloying purposes. To keep the open eye
constant, a thicker slag layer needs to be compensated for with a higher gas flow rate.

In industrial practice, the lower limit for the gas flow rate is set by the need to break up the slag
layer. To maximize the yield of alloying materials it is necessary to have a sufficiently large open eye
area to ensure that alloying materials end up in the metal phase. However, the upper limit is set by
operating factors such as the cost of argon gas, the increased refractory wear induced by higher flow
velocities, increased heat losses and oxidation through the open eye and increased inclusion formation.
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4. Conclusions

In this present study, the influence of argon flow rate and slag layer height on the fluid flow
and open-eye formation in a 150 ton industrial scale ladle was investigated. The numerical model to
simulate the multi-phase flow in the ladle was developed using the VOF model. To validate the model,
the open-eye formation of an industrial ladle was captured using an IR camera. The simulated open-eye
areas were found to be in good acceptance with the experimental footage and the CFD model developed
has been verified by results measured in an industrial ladle. The results provide useful guidance for
the selection of suitable flow rates and slag layer heights for operating industrial-scale ladles.

The following conclusions can be drawn from the experimental and simulation results:

(1) The injected argon flow rate has a significant influence on the fluid flow velocities and the
open-eye size generated in the ladle.

(2) The elevation in flow rate of argon gas, the open-eye size and the spreading area of molten steel
increases. The open-eye increases from 10.3% to 33.1% of the ladle’s free top surface area with an
increase of flow rate from 200 to 500 NL/min and a 40 cm slag layer thickness.

(3) The velocity of the fluid flow developed due to the injection of argon gas through the nozzle was
very high adjacent to the nozzle inlet and reduces as the flow reaches the argon/steel/slag interface.

(4) The slag layer height has a great effect on the formation of the open-eye. The reduction of the slag
layer thickness from 40 to 25 cm resulted in a much larger deformation of slag layer and a more
rapidly fluctuating open-eye at a high flow rate of 500 NL/min. The increase of the slag layer
thickness from 40 to 55 cm resulted in non-formation of an open-eye at 200 NL/min.
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