Metals Powders: Synthesis and Processing
1. Introduction and Scope
2. Contributions
Acknowledgments
Conflicts of Interest
References
- Civantos, A.; Beltrán, A.M.; Domínguez-Trujillo, C.; Garvi, M.D.; Lebrato, J.; Rodríguez-Ortiz, J.A.; García-Moreno, F.; Cauich-Rodriguez, J.V.; Guzman, J.J.; Torres, Y. Balancing porosity and mechanical properties of titanium samples to favor cellular growth against bacteria. Metals 2019, 9, 1039. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.H.; Sim, J.J.; Lim, J.H.; Seo, S.J.; Kim, D.W.; Hyun, S.K.; Park, K.T. Removal of Mg and MgO by-products through magnesiothermic reduction of Ti powder in self-propagating high-temperature synthesis. Metals 2019, 9, 169. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.M.; Wang, J.P.; Lee, D.W. Extraction of Tantalum powder via the magnesium reduction of tantalum pentoxide. Metals 2019, 9, 205. [Google Scholar] [CrossRef] [Green Version]
- Guerra Rosa, L.; Anjinho, C.A.; Amaral, P.M.; Cruz Fernandes, J. Mechanical properties of some metallic powder alloys and their contribution to the performance of diamond tools used for cutting granite. Metals 2019, 9, 1219. [Google Scholar] [CrossRef] [Green Version]
- Urban, P.; Ternero, F.; Caballero, E.S.; Nandyala, S.; Montes, J.M.; Cuevas, F.G. Amorphous Al-Ti Powders prepared by mechanical alloying and consolidated by electrical resistance sintering. Metals 2019, 9, 1140. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Park, K.; Chang, M.; Joo, S.; Hong, S.; Cho, S.; Kwon, H. Fabrication of functionally graded materials using aluminum alloys via hot extrusion. Metals 2019, 9, 210. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Yin, F.; Feng, L. Microstructure of a V-containing cobalt based alloy prepared by mechanical alloying and hot pressed sintering. Metals 2019, 9, 464. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Pan, D.; Xiang, Z.; Lu, W.; Batalu, D. Microstructure and magnetic properties of Mn55Bi45 powders obtained by different ball milling processes. Metals 2019, 9, 441. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Wang, C.; Chen, W.; Lin, J. Strategy to enhance magnetic properties of Fe78Si9B13 amorphous powder cores in the industrial condition. Metals 2019, 9, 381. [Google Scholar] [CrossRef] [Green Version]
- Cintas, J.; Astacio, R.; Cuevas, F.G.; Montes, J.M.; Weissgaerber, T.; Lagos, M.A.; Torres, Y.; Gallardo, J.M. Production of ultrafine grained hardmetals by electrical resistance sintering. Metals 2019, 9, 159. [Google Scholar] [CrossRef] [Green Version]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez Cuevas, F.P. Metals Powders: Synthesis and Processing. Metals 2019, 9, 1358. https://doi.org/10.3390/met9121358
Gómez Cuevas FP. Metals Powders: Synthesis and Processing. Metals. 2019; 9(12):1358. https://doi.org/10.3390/met9121358
Chicago/Turabian StyleGómez Cuevas, Francisco Paula. 2019. "Metals Powders: Synthesis and Processing" Metals 9, no. 12: 1358. https://doi.org/10.3390/met9121358
APA StyleGómez Cuevas, F. P. (2019). Metals Powders: Synthesis and Processing. Metals, 9(12), 1358. https://doi.org/10.3390/met9121358