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Abstract: Computational modeling is a widely used method for simulation and analysis of machining
processes. Smooth particle hydrodynamics (SPH) is a comparatively recently developed method that
is used for the simulation of processes where high strains and fragmentation occur. The purpose of
this work is the application of the SPH method for the prediction of cutting forces and chip formation
mechanism in orthogonal cutting of Ti6Al4V alloy. In addition, it is examined how the final results of
the simulation are influenced by the choice of the particular formulation of the SPH method, as well
as by the density of the particles.

Keywords: smooth particle hydrodynamics; Titanium alloy machining; numerical simulation; cutting
forces; chip formation

1. Introduction

Titanium alloys due to their unique mechanical properties are widely used in industrial
applications. Especially, the Ti6Al4V alloy is one of the most widely used alloys and constitutes
more than 50% of titanium products globally [1]. Most applications of this alloy are found in the
aerospace industry, but it is also used for the production of medical devices due to its biocompatibility.
However, it exhibits particular attributes as a material, such as low thermal conductivity, high strength
at elevated temperatures, and low modulus of elasticity which lead to low machinability ratings [2,3].
Machining is one of the most prevalent processes for the production of industrial components and,
due to the reasons mentioned above, cutting of titanium is usually accompanied by high cutting forces
and high cutting temperatures. These major factors lead to excessive tool wear, shortened tool life, and
poor surface quality of the final workpiece.

In practice, to increase productivity and at the same time keep quality at a high level, it is always
necessary for the proper machining parameters to be chosen. There are mainly two ways that this
goal can be attained. The first one involves conducting experiments to accumulate knowledge on the
dependence of machining conditions upon important physical quantities (cutting forces, temperature
etc.) during cutting. The second way involves the simulation of the machining process through the
development of computational models. During the last decades, simulations have become increasingly
popular and allow researchers to analyze, study, and understand in depth the physics of machining.

The finite element method (FEM) is one of the most frequently used numerical techniques for
engineering simulations. However, there are a number of difficulties that arise when it is used for
cutting simulations. Firstly, large strains lead to severe element distortions and consequently to
the termination of the simulation, due to negative volume elements. Secondly, in order to model
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the fracture of the workpiece, a failure criterion has to be implemented into the code, so that certain
elements are deleted from the grid when certain criteria are satisfied. The problem of distorted elements
is usually solved with remeshing algorithms, which recreate the mesh after a user-defined number of
time steps, resulting in increased computational cost. An alternative solution to this problem is based
on element erosion/deletion when the stresses or strains inside an element surpass a certain threshold.
The disadvantage of this approach is the fact that many elements can be artificially deleted from the
grid, leading to non-physical simulations.

In [4], the orthogonal cutting is simulated by the FEM where a simple geometric criterion,
combined with a mesh rezoning algorithm is used for the modeling of material separation. In [5–7],
fracture is simulated by an element deletion algorithm which is based on a fracture criterion. Also,
avoidance of severe element distortion is overcome by the usage of remeshing algorithms. In [8–10],
material separation in the simulations is modeled by the formation of adiabatic shear bands and the
usage of fracture criterions is avoided. However, the usage of remeshing algorithms still remains a
necessity for the same reasons. In [11], the influence of cutting conditions on the stress at the rear
surface of the tool is investigated. In [12], a mathematical model for the calculation of cutting forces is
developed, based on the results of a FEM model. In [13,14], the influence of the constitutive model
and the damage criteria on the prediction of cutting forces is studied. An alternative to classical FEM
techniques is the use of combined Lagrangian–Eulerian formulations, where the grid is not tied on the
workpiece but it is fixed in space [15–17].

During recent years, meshless numerical methods are gaining increased popularity because the
particles/nodes are not strictly connected with their neighbor particles, but are relatively free to move
in space, unlike the nodes of a finite element grid. In this study, the focus is on the smooth particle
hydrodynamics meshless method. The SPH method was developed in the 1980s and was used for the
numerical simulation of physical problems that belong to the field of astrophysics [18] and a decade
later was modulated for solid mechanics problems [19]. A comprehensive analysis of the SPH method
and examples regarding its applications in solid and fluid mechanics can be found in [20,21].

One of the earliest implementations of the SPH method to orthogonal cutting simulations can
be found in [22], where the benefits of the method are presented in comparison to the traditional
FEM approach. In [23], a 2D model is presented where friction is predicted in workpiece/cutting tool
interface without the usage of a friction model, since both bodies are modeled with SPH particles.
In [24], a model of the same type is used for the prediction of the variation of cutting forces caused
by a worn cutting tool. In [25–30], SPH models of orthogonal, or oblique, cutting are created where
the cutting tool is modeled with finite elements and the workpiece with SPH particles, which means
that a friction model had to be used. In [30], the effect of subsequent cuts on the evolution of residual
stresses in the workpiece is presented. Studies of SPH simulations regarding the influence of factors
describing the material behavior such as the friction coefficient, the equation of state, or the usage of a
damage-evolution criterion can be found in [31–33]. The influence of more intrinsic parameters to the
SPH method, such as timestep and particle density, can be found in [34]. Similarly, in [35] the effect of
important SPH control parameters is examined.

One of the deficiencies of the SPH method in metal cutting simulations is the inability of prediction
of a realistic chip curvature, as it is mentioned in [36]. For this reason, alternative formulations are
proposed to the standard SPH scheme, where this issue is resolved. One of these formulations
is called renormalization and more details about its foundations and development can be found
in [37,38]. Orthogonal cutting simulations with SPH can be found in the literature [23–35] for different
formulations. However, there are no studies that examine the influence of the chosen formulation,
on the prediction of the cutting forces. The aim of this study is the investigation of the differences
in the prediction of cutting forces between two different formulations. For this purpose, numerical
simulations of orthogonal cutting of Ti6Al4V titanium alloy are presented, where both formulations
are used, namely the standard and the renormalized. This parametric analysis is complemented by
conducting numerical simulations with different particle densities.
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In Section 2, the mathematical foundations of SPH are summarized. The presentation of the theory
in this section is based on [21]. In Section 3, the main formulas describing the material behavior are also
provided, while in Section 4, the configuration of the numerical simulation is described. Furthermore,
the way the parametric analysis was conducted, is described in detail. In Section 5, the main results of
the parametric analysis are presented. For all the simulations, the commercial solver LSDYNA [39]
was used.

2. SPH Foundations

In the SPH method, a function is represented by the following integral

f(x) =
∫

Ω
f(x′)δ(x− x′)dx′ (1)

where δ(x− x′) is the Dirac delta function, which can be approximated by a smoothing function
W(x − x′, h) that is chosen to fulfill a number of properties.

(a) The first property is the compact condition

W(x − x′, h) = 0, if |x − x′|>κh

where h is the smoothing length and κ is a constant that affects the non zero area centered around
point x.

(b) The second property that the smoothing function fulfills is the fact that it converges to the
Dirac function

lim
h→0

W(x− x′, h) = δ(x− x′)

(c) The final property that usually is fulfilled is the normalization condition∫
Ω

W(x− x′, h)dx′ = 1

The integral representation in Equation (1) is replaced by the equation

< f(x) >=
∫

Ω
f(x′)W(x− x′, h)dx′ (2)

where < > is called the kernel approximation operator. Since the function W is zero for points outside
a sphere with center at x and radius κh, it is possible to replace the problem domain Ω with the support
domain R =

{
x′ ∈ R3 :

∣∣∣x− x′
∣∣∣≤ κh

}
. For the evaluation of the function in Equation (2), a numerical

integration is carried out over a finite number of points in the neighborhood of x. In SPH, these points
are represented by particles; each of them is considered to occupy a distinct amount of space and
have a distinct mass. As can be seen from Figure 1, the particle Xi is positioned at the center of the
support domain R of function W. For the numerical integration of Equation (2) the following sum has
to be evaluated

< f(Xi)>=
N

∑
j=1

f(Xj)W(Xj−Xi, h)∆Vj. (3)

where N is the number of neighbor particles j inside the support domain and ∆Vj is the volume of each
particle. Since each particle has a separate mass, the volume is substituted by the relation

∆Vj= mj/$j (4)
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So, Equation (3) can be rewritten as

< f(Xi)>=
N

∑
j=1

f(Xj)W(Xj−Xi, h)
mj

$j
(5)
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It is worth mentioning that the density at point Xi is the weighted average of the masses of the
neighbor particles, i.e.,

$(Xi) =
N

∑
j=1

mjW(Xj−Xi, h) (6)

Since many smoothing functions fulfill the aforementioned properties (a–c), there is a variety of
different functions proposed over the years. A smoothing function, except properties a to c, is necessary
to have a small support domain, which means that it converges to zero quickly and also it is important
to have smooth derivatives. In this study, the commercial solver LS-DYNA Ver.R10.1.0.rev.123264 [39]
is used for the numerical simulations, in which the cubic B-spline is chosen as a smoothing function.
The B-spline was proposed in [40] and is one of the most widely used kernels, since it is numerically
efficient due to its small support domain.

W(x− x′, h) =
1
πh3


1− 2

3 u2 + 3
4 u3, 0 ≤ u ≤ 1

1
4 (2− u)3 1 ≤ u ≤ 2
0 u > 2

(7)

where u =|x− x′|/h.

3. Material Modeling

3.1. Constitutive Model

For the mathematical modeling of the mechanical behavior of the workpiece material, the
Johnson–Cook (J–K) constitutive relation was chosen. The Johnson–Cook model can be found in
MAT_015 card [39] of LS-DYNA

σeq = (A + Bεn
eq(1 + cln

.
ε
∗
eq)

C(1− T∗m) (8)

where, σeq is the Von Misses equivalent stress, εeq the equivalent strain,
.
ε
∗
eq the equivalent strain

rate divided by a reference strain rate
.
ε
∗
eq =

.
εeq/

.
ε0 and stands for the homologous temperature

T∗ = (T− Tr)/(Tm−Tr), where Tr is the room temperature and Tm is the melting temperature. Also,
A, is the initial yield stress of the material, B, is the hardening constant, n, is the hardening exponent,
C, is the strain rate constant and, m, is the thermal softening exponent. The values chosen for the
parameters of the J–K model greatly affect the results of cutting simulations and the values provided
in the literature for the same material vary among different authors. The values chosen in this study
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are provided from [41] and can be seen in Table 1. This choice is reported in [42], where it is shown
that this set of parameters for the material model, provides the most accurate results for the cutting
force. Also, the J–K model is used only for the workpiece since the cutting tool, due to its relatively
great stiffness, is modeled as a rigid body.

Table 1. Material properties of the workpiece.

Material Parameters Values

A (MPa) 997.9
B (MPa) 653.1

C 0.0198
m 0.7
n 0.45

.
εre f (s−1) 1

Tr (K) 298
Tm (K) 1878

Young’s Modulus (E, GPa) 113.8
Density $ (kg/m3) 4430

Friction coefficient (f) 0.2

3.2. Equation of State

Apart from the constitutive model, it is necessary to define the material pressure by relation
to the density of the material. In LS-DYNA the simplest equation of state is the linear polynomial
equation [39], where the pressure is related to the density with the relation

P = C0+C1µ+ C2µ
2+C3µ

3 + (C4+C5µ+ C6µ
2)E (9)

where µ = ($− $0)/$0. If C0= C2= C3= C4= C5= C6= 0, then C1 is equal to the bulk modulus, since
P = Kµ. Although the linear polynomial is considered a simplified model, it has been shown that the
final results do not vary considerably when more accurate state equations are used [32].

3.3. Material Separation Modelling

For the proper simulation of cutting processes, the implementation of material separation by
fracture or adiabatic shear banding is necessary. In traditional finite element codes, a fracture criterion,
combined with an element deletion algorithm, is frequently used for elements located inside the
material separation zone to be deleted. In the SPH method, the simulation of processes, where severe
strains occur, can be modeled without the usage of a fracture criterion, since the SPH particles are
loosely connected. In other words, the nodes of a finite element are strictly connected, regardless of the
distance between each other; the element has to be deleted if their disconnection is necessary. On the
contrary, a particle in the SPH code is affected by the neighbor particles that lie inside the support
domain and there is not a predetermined connection between certain particles.

3.4. Contact and Friction Modeling

In this study, the frictional forces are considered to follow the Coulomb law

τ = fσn (10)

where τ is the frictional stress and σn is the normal stress. The friction coefficient f is constant over
the entire contact area. In LS-Dyna, the friction coefficient can be defined in the AUTOMATIC-
NODES-TO-SURFACE card. Also, on the same card, contact between the workpiece and the cutting
tool is defined. A penalty type algorithm is used so that the particles of the workpiece remain in the
exterior of the cutting tool’s boundaries.
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4. Numerical Simulation Configuration

Due to its relative simplicity, most published research is concerned with the simulation of
orthogonal cutting. However, the results of a simulation need to be validated by actual experimental
data and orthogonal cutting is not a widely used process in practice. Therefore, in many studies
experimental data is derived from actual machining operations. Machining processes are mainly
3-dimensional and can be approximated by a 2-dimensional process to a certain extent. In this study,
experimental results from reference [43] are used, where actual orthogonal cutting is conducted.

In the experimental reference, the cutting tool is moving with constant speed V into a flat strip of
width Wc = 1 mm, height H = 2 mm and a length L = 10 mm. The experiment is repeated for three
depths of cut hc = 0.06, 0.04 and 0.1 mm. The material of the cutting tool is WC/Co tungsten carbide
and of the workpiece Ti6Al4V titanium alloy (Table 2). The experimental conditions are summarized
in Table 3.

Table 2. The chemical composition of T1-6Al-4V titanium alloy according to AMS 4928 standard [1].

Al C Fe H N O V OT

5.5–6.75 0.1 0.3 0.0125 0.05 0.2 3.5–4.5 0.4

Table 3. Experimental conditions described in (data from [43]).

Machining Parameters Values

Cutting speed V [m/s] 0.5

Rake angle, γ [deg] 15

Clearance angle, α [deg] 2

Cutting edge radius r [µm] 20

Depth of cut, hc [mm] 0.04 0.06 0.1

The simulation set up can be seen in Figure 2. The height of the workpiece H is three times the
depth of cut (H = 3 hc) and the width of the strip Wc is 0.01 mm. The length of the workpiece L is
1.5 mm, when the depth of cut is hc = 0.1 mm and is reduced to 1 mm for the remaining two values
of hc. For the cutting tool and for the lower part of the workpiece up to one third its height, finite
elements are used, and the rest of the workpiece is modeled with SPH particles. The nodes at the
bottom and the edge of the strip are constrained in all directions.

The simulation of the experiment with the actual strip length is, from a computational standpoint,
time-consuming and also unnecessary since the cutting process transitions to a steady state, where the
cutting forces are stabilized long before the cutting tool reaches the end of the strip. The same applies
for the width of the workpiece because all nodes are constrained to the z direction and are free to move
in the x-y plane; it is redundant for the actual width of the workpiece to be modeled and scaling of
the cutting forces to a factor of 100 is preferable. Finally, the SPH method is computationally more
demanding than the standard FEM, and this is the reason why it is usually preferred for the area close
to the path of the cutting tool to be modeled with particles. For the other parts, finite elements are
considered more suitable and the mesh becomes gradually coarser at the bottom of the workpiece.

The parametric analysis is conducted based upon two parameters, the SPH formulation and the
density of the particles. Initially, the distance d between the particles and the depth of cut hc are fixed
to a certain value and the simulation is carried out twice. Initially, a standard SPH formulation is used,
followed by a renormalized formulation.

Consequently, the simulation with the renormalized formulation is carried out once again and the
particle distance d is reduced to half of the initial value. Afterward, a different value for the depth of
cut hc is selected and the same procedure is repeated.
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5. Results and Discussion

In Figure 3, the equivalent stress contours are depicted for a fixed depth of cut hc = 0.04 mm.
In Figures 4 and 5, the stress contours are shown for depths of cut of hc = 0.06 and 0.1 mm, respectively.
By comparing the frames a and b for each depth of cut, an obvious observation is the chip curvature.
By using the standard SPH formulation, a straight numerical chip is produced that follows the chip
face of the cutting tool. The usage of the renormalized formulation leads to the production of a more
realistic chip. The nonrealistic chip curvature of the standard formulation is attributed to the absence of
particles in the exterior areas of the boundaries of the solution domain (workpiece) [36]. This absence
leads to non-approximate calculations near the boundaries.
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and d = 0.01 mm; (b) renormalized formulation and d = 0.01 mm; (c) renormalized formulation and
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As can be seen in Figure 3b,c, the chip curvature is increased for a greater particle density and the
same observation applies and for the other two values of the depth of cut. In contrast, the maximum
stress is not affected considerably, regardless of the depth of cut, the formulation or the density of the
particles. This can be explained by the fact that the maximum stress that is induced on the workpiece
in the primary shear stress zone is dependent on the strength of the material.
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In Figure 6, the plastic strain contours are depicted for each value of the depth of cut. In this
figure, only the chips that are produced by the renormalized SPH are chosen, with the greater particle
density. The areas with the larger values of strain can be seen at the secondary shear zone at the
interface between the cutting tool and the chip, at the tertiary shear zone where the cutting tool rubs
the surface of the workpiece, and also at the shear zones that are created at the primary shear zone.
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(c) 0.1 mm.

In Figures 7–9, the cutting force Fc and the feed force Ff are depicted in relation to time. Each figure
corresponds to one of the three values for the depth of cut. Also, as can be seen from these figures, the
forces start to stabilize at the time of 0.1 to 0.3 ms. For the values depicted in each of these figures, an
average value is computed from the time that the forces remain relatively stable until the end of the
simulation. The average values are compared to the experimental ones.

As shown in Figure 7a, the results of the standard SPH scheme are not satisfactory since the
predicted values are less than half the values of the experimental ones. In contrast, the values predicted
by the renormalized formulation, which are depicted in Figure 7b, are very close to the experimental
ones. The cutting force Fc and feed force Ff are overpredicted with an error of about 7.56% and 4.39%,
respectively. By comparing Figure 7b with Figure 7c, it is obvious that the forces predicted by the
model with greater particle density are more stable and oscillate less. In addition, lower values are
predicted for the cutting force Fc and there is also a small increase in the feed force Ff. The cutting
force Fc is underpredicted with an error of about 15% and the feed force Ff is overpredicted with an
error of 6.8%.
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As can be seen in Figures 8a and 9a, the results produced from the standard SPH formulation
remain far from the experimental values regardless of the depth of cut. By comparing Figure 8b
to Figures 8c and 9b to Figure 9c, the same pattern is observed. The models with greater particle
density provide relatively decreased values for the cutting force Fc and increased values for the feed
force Ff. Also, especially for the cutting forces, there is less variation between the maximum and
minimum values. For a depth of cut of hc = 0.06 mm, the cutting force Fc is overpredicted with an
error of 7.9%, the feed force Ff is underpredicted with a divergence of 20% from the experimental
value. By increasing the number of particles, the predicted value of the cutting force Fc is lower than
the experimental and the error is increased slightly to 9%. The predicted value for the feed force Ff
is increased and almost coincides with the experimental value. For a depth of cut of hc = 0.01 mm,
as can be seen in Figure 9, the averaged predicted cutting force Fc is very close to the experimental
value and they differentiate by less than 1.2%. However, the model which is comprised of a greater
number of particles underpredicts the cutting force Fc with an error of 10.4%. For both models, as can
be seen from Figure 9b,c, the feed force Ff is underpredicted and the averaged values differ from the
experimental with a percentage of 25%.

The numerically predicted cutting and feed forces are gathered in Tables 4 and 5. At this point,
it is obvious that only models where the renormalized formulation is used provide results close to
the experimental values. Also, there is a negative correlation between cutting forces Fc and particle
density. Models with smaller particle density estimate the cutting forces more accurately, which is an
indication that the SPH models might converge to a value different from the experimental; still, the
maximum deviation does not exceed 15%. For the feed forces Ff, a clear pattern is not visible. Although
there is a positive correlation between feed force and particle density, the sensitivity is almost zero for
hc = 0.1 mm and there is a slight change of the predicted values for hc = 0.04 mm, but for hc = 0.06 mm,
the deviation between the feed forces estimated by the different particle density models approaches
26%. Generally, the cutting force Fc is estimated more accurately comparing to the feed force Ff and
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this can be attributed to the parameters chosen for the J–K model. As mentioned in reference [42],
parameters provided in the literature for the J–K model usually do not lead to accurate estimations of
both cutting and feed forces as well.

Table 4. Comparison between predicted and experimental cutting forces Fc for all models.

Depth of Cut hc
[mm]

Experimental
Cutting Force

[N/mm]

Standard
Formulation

(d = 0.01 [mm])
[N/mm]

Renormalized
Formulation

(d = 0.01 [mm])
[N/mm]

Renormalized
Formulation

(d = 0.005 [mm])
[N/mm]

0.04 86
35.6 92.5 73

−58.6% +7.6% −15.1%

0.06 112
53,76 120.9 101.9

−52% +7.94% −9.02%

0.1 173
86 175 155

−50.3% +1.2% −10.4%

Table 5. Comparison between predicted and experimental feed forces Ff for all models.

Depth of Cut hc
[mm]

Experimental Feed
Force [N/mm]

Standard
Formulation

(d = 0.01 [mm])
[N/mm]

Renormalized
Formulation

(d = 0.01 [mm])
[N/mm]

Renormalized
Formulation

(d = 0.005 [mm])
[N/mm]

0.04 41
15.5 42.8 43.8

−62,2% +4.39% +6.8%

0.06 45
14.9 35.95 45.1

−66,9% −20.1% 0.2%

0.1 51
18.15 38.39 38.6

−64.4% −24.7% −24.3%

6. Conclusions

The orthogonal cutting of Ti6Al4V alloy was modeled by using the smooth particle hydrodynamics
method. The main focus of this study was the influence of the choice between two different SPH
formulations (standard and renormalized) on the prediction of cutting and feed forces. It was found
that the implementation of the renormalized formulation leads to a satisfactory prediction of cutting
forces. In contrast, the predictions of the standard formulations deviate from the experimental values
of more than 50%. In addition, the usage of the renormalized formulation leads to a more realistic
estimation of the chip geometry and this may be the main reason for the large difference in the
estimation of the cutting forces between the two formulations.

This study was also complimented by the investigation of the influence of particle density in the
estimation of chip geometry and cutting forces. From the results, it is evident that the curvature of the
numerical chip increases when a greater number of particles is used. Also, models with more particles
predict lower values of cutting forces and larger values for the feed forces.

Due to the meshless nature of this method, modeling of material separation was possible without
the implementation of a fracture criterion or a remeshing algorithm. Because of these advantages,
programming of the SPH method for cutting simulations is easier. Fracture criterions require calibration
from experiments and element deletion algorithms may lead to an unrealistic mass loss in the
simulation. Furthermore, remeshing algorithms are computationally demanding. Thus, SPH is
a promising alternative to a classical FEM.
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Nomenclature

A Initial yield stress [MPa]
B Hardening constant [MPa]
C Strain Rate Constant
d Distance between particles [mm]
E Young’s Modulus [GPa]
Fc Cutting Force [N/mm]
Ff Feed Force [N/mm]
f Friction coefficient
H Height of the workpiece [mm]
h Smoothing length [mm]
hc Depth of cut [mm]
K Bulk modulus [GPa]
L Length of the workpiece [mm]
m Thermal softening exponent
mj Mass of particle j
n Hardening exponent
P Pressure [GPa]
r Cutting edge radius [µm]
Tr Room temperature [K]
Tm Melting temperature [K]
V Cutting speed [m/s]
Wc Width of the workpiece
W Kernel function
Xi Position vector of particle i
x Position vector of a point in space
α Clearance angle [deg]
γ Rake angle [deg]
δ Dirac function
∆Vj Volume of particle j
εeq Equivalent strain
.
εeq Equivalent strain rate [1/s]
.
εre f Reference strain rate [1/s]
µ Relative change of density
$ Density [Kg/m3]
$j Density of particle j
σn Normal stress [GPa]
σeq Equivalent stress [GPa]
τ Frictional stress [GPa]
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