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Abstract: Laser powder bed fusion (LPBF) is useful for manufacturing complex structures; however,
factors affecting the forming quality have not been clearly researched. This study aimed to clarify
the influence of geometric characteristic size on the forming quality of solid struts. Ti–6Al–4V
struts with a square section on the side length (0.4 to 1.4 mm) were fabricated with different
scan speeds. Micro-computed tomography was used to detect the struts’ profile error and defect
distribution. Scanning electron microscopy and light microscopy were used to characterize the
samples’ microstructure. Nanoindentation tests were conducted to evaluate the mechanical properties.
The experimental results illustrated that geometric characteristic size influenced the struts’ physical
characteristics by affecting the cooling condition. This size effect became obvious when the geometric
characteristic size and the scan speed were both relatively small. The solid struts with smaller
geometric characteristic size had more obvious size error. When the geometric characteristic size
was smaller than 1 mm, the nanohardness and elastic modulus increased with the increase in scan
speed, and decreased with the decline of the geometric characteristic size. Therefore, a relatively high
scan speed should be selected for LPBF—the manufacturing of a porous structure, whose struts have
small geometric characteristic size.

Keywords: selective laser melting; Ti–6Al–4V alloy; metallurgical quality; mechanical properties

1. Introduction

As a unique type of structural and functional material, a porous structure has unique advantages in
fields including filtration and separation [1], energy absorption [2], heat exchange [3], electromagnetic
shielding [4], and artificial implants [5], and is widely used in aerospace, automotive, chemical, and
biological medical industries. Depending on the demand, the porous structure can be manufactured
from materials including metal [6,7], ceramics [8], and polymers [9]. With the deepening of their
application, porous structures with function-oriented design have been widely developed to obtain
precise and complex structures, such as porous implants [10]. However, it is difficult to fabricate such
structures using the traditional processing method. Additive manufacturing (AM) techniques are
attracting increasing attention due to their impressive capability to produce precise parts with
a controlled architecture [11]. Using a layer-wise building approach and a direct link with a
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computer-aided design (CAD) model, AM has been described as a crucial production technique
to achieve a more controlled porous structure [12–15]. A recently developed AM technique, the laser
powder bed fusion process (LPBF), usually called selective laser melting (SLM), can directly create
a functional and complex metal part, like a Ti-based porous scaffold for bone tissue engineering,
bringing a high degree of freedom to design [16,17]. Most researchers have focused on evaluating
the function or forming quality of as-designed porous samples fabricated by LPBF using a set of
universal process parameters embedded in the commercial equipment [6,18–22]. However, a porous
structure is composed of the struts or walls, which usually have small geometric characteristic size,
so a set of process parameters with a universal nature may not be optimal for manufacturing porous
structures. A small number of researchers have focused on the impact of process parameters on the
forming quality of LPBF-built porous structures. For example, Liu et al. [23] investigated the effect of
the scan speed on the forming defects, precision, and mechanical properties of biomedical titanium
alloy scaffolds fabricated by LPBF. Ahmadi et al. [24] studied the effects of laser power on features
including the surface roughness, strut diameter, relative density, hardness, and elastic modulus of the
porous structures. In addition, Jamshidinia and Kovacevic found that the thin wall achieved more
heat accumulation during the LPBF process, affecting the forming quality [25]. These findings indicate
that the small geometric characteristic size may be a factor affecting the forming quality of LPBF-built
porous structures.

On the basis of the above statement, the effect of the geometric characteristic size of the objective
part on the forming quality of the solid strut is discussed in this work. The energy density was
introduced to reveal the combined action of scan speed, laser power, hatching space, and layer
thickness [26], which represented the thermal input during the LPBF process. As the most commonly
used material in metal implant fields, Ti–6Al–4V alloy powder was selected for the experiment.
Taking the geometric characteristic size into consideration, the influence rule of the factor on the
forming quality of solid struts fabricated via LPBF using different scan speeds was investigated from
the perspective of thermal transmission. The entire experiment was made up of two steps. Firstly,
struts with different geometric characteristic size were fabricated using different combined process
parameters. Secondly, porous structures with two strut sizes were fabricated with two scan speeds to
verify the analysis in the first step.

2. Materials and Methods

2.1. Materials

Commercial Ti–6Al–4V alloy powder supplied by EOS GmbH was used in the experiment, meeting
ISO 5832-3 and ASTM F1472. As an optimized medical material, the trace elements of Ti–6Al–4V ELI
such as O, N, H, C, and Fe are relatively low in content (Table 1). As shown in Figure 1 (SEM, ΣIGMA,
Zeiss, German), the powder has high sphericity and few satellite spheres with a particle size range of
15–53 µm.
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Table 1. Chemical composition of Ti–6Al–4V powder (wt. %).

Ti Al V O N C H Fe

Bal. 5.90 3.91 0.12 0.05 0.08 0.012 0.3

2.2. Design and Fabrication

Selective laser melting of a porous structure is characterized by a controllable and precise layer-wise
material addition process. This method generates complex structures by selectively melting successive
layers of metal powder using a focused and computer-controlled laser beam (Figure 2a). The specimens
were fabricated using an LPBF machine (EOSINT M290; EOS GmbH, Munich, Germany), which was
equipped with a Yb fiber laser of 400 W with a wavelength range of 1000–1100 nm and a Gaussian
spot, and a building chamber filled with argon gas with an oxygen content below 200 ppm.
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Figure 2. (a) Schematic of the laser powder bed fusion process; (b) the LPBF machine of EOS M290;
(c) the selected scanning strategy; (d) the as-designed 3D model of solid struts; (e) the as-built Ti–6Al–4V
solid struts; and (f) the as-built Ti–6Al–4V porous structures for the confirmatory experiment.

The volumetric energy density (Ev) was calculated according to Equation (1) [22]:

Ev = P/(v × h × d), (1)

where P is the laser power, h is the hatching space, v is the scan speed, and d is the layer thickness.
This equation takes the most important laser parameters into account and is suitable for calculating
the thermal input during the LPBF process. An inside to outside scanning strategy with a meander
hatch style was selected. The meander hatch direction rotated by an angle of 67◦ in the following layer
(Figure 2c).

A porous structure is generally made up of struts with relatively small size and various angles.
In this work, the sample model consisted of struts with angles of 0◦, 45◦, and 90◦, which had a square
section with a side length (Ls) of 0.4 to 1.4 mm (Figure 2d). Three sets of parameters were used in this
fabrication process, resulting in different volumetric energy densities of 95.24, 51.28, and 35.09 J/mm3

(Table 2 and Figure 2e). To verify the correctness of the analysis, two kinds of porous structures with
as-designed Ls values of 0.6 and 1.4 mm were fabricated via the LPBF process with v values of 700 and
1900 mm/s, respectively (Figure 2f).
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Table 2. The selected process parameters for LPBF-fabrication.

Laser Powder/P
(W)

Scan Speed/v
(mm/s)

Hatch Spacing/h
(mm)

Layer Thickness/d
(mm)

Laser Spot
Diameter/D (mm)

200 700, 1300, 1900 0.1 0.03 0.1

2.3. Measurements and Characterizations

A micro-computed tomography (µCT) scanner (FF35 CT; YXLON International, Hamburg,
Germany) with 5 µm resolution was used to scan the samples at 200 kV and 50 µA. The samples were
rotated over 360◦ in steps of 0.18◦ during the acquisition. Two-dimensional (2D) projection images
(n = 2000) were then collected. The 3D models of the fabricated samples were reconstructed through
slice image data using commercially available software (VG Studio MAX 3.0; Volume Graphics GmbH,
Heidelberg, Germany). The same software was also used to detect the size deviation distribution of
the as-built samples compared to the 3D model with an error of 5 µm (n = 3). The sample section
profile and defect distribution (pores) were then extracted from the CT data. After CT scanning,
the struts with the same square were cut off together from the base plate via wire electrical discharge
machining (WEDM). The relative density of struts with the same square section was measured using
the Archimedes method on each set of samples. The Archimedes test results were calculated based
on a combination of dry weighing and weighing in pure ethanol and on the theoretical density of
4.43 g/cm3 for Ti–6Al–4V. Taking open porosity and the highly developed surface of the samples into
consideration, the samples were coated with wax after the first dry weighing. The relative density
(%relative) of the samples was calculated using Equation (2):

%relative = m1/[(m2 − m3)/%ethanol − (m2 − m1)/%wax], (2)

where m1 is the mass of the sample without a wax coating in air, m2 is the mass of the sample with
a wax coating in air, and m3 is the mass of the sample with a wax coating in pure ethanol. Due to
the weight of the struts being too small, ten samples of each set were measured together, and the
arithmetic mean value of relative density was calculated (n = 10). Taking the small size of the struts
into consideration, nanoindentation tests on the polished sections of as-built struts with an angle of
90◦ were performed using a nanoindenter (G200, Agilent, Ltd., Santa Clara, CA, USA) to evaluate the
mechanical properties, including the elastic modulus and nanohardness. A loading–unloading test
mode was used with a maximum indentation depth of 2000 nm, a loading speed of 10 nm/s, and a
hold time of 10 s (n = 5). The Oliver-Pharr method [27] was then applied to calculate the nanohardness
and elastic modulus. The microstructure of LPBF-produced struts with an angle of 90◦ was observed
using a field-emission scanning electron microscope (S-4800; Hitachi, Ltd., Tokyo, Japan) and a light
microscope (GX41; Olympus, Ltd., Tokyo, Japan). To reveal the microstructure, an etchant containing
50 mL distilled water, 25 mL HNO3, and 5 mL HF was used for the polished samples. The difference in
phase composition was analyzed by X-ray diffraction (XRD) using an X-ray diffractometer (D/max
2500 PC, Rigaku, Ltd., Tokyo, Japan) with Cu Kα radiation at 40 kV with a beam current of 100 mA.
A scan speed of 2◦/min was used for the scan range of 30–80◦ in steps of 0.02◦. The porosity (Φ) of the
fabricated porous structure was obtained from Equation (3):

Φ = 1 − Vporous/Vbulk, (3)

where Vporous is the volume of the LPBF-produced structure measured from reconstructed 3D models
using commercially available software (Magics 21.0.0; Materialise, Leuven, Belgium) and Vbulk is the
total volume of the solid cube that has the same outline size as the porous sample (n = 3). The main
information of all the measuring methods is presented in Table 3.
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Table 3. Measuring objectives and methods in this study.

Objective Method Apparatus

Size deviation and defect
distribution µCT YXLON-FF35 CT, 200 Kv-50 µA, VG Studio MAX 3.0

Relative density Archimedes method SOPTOP-FA2004, %wax = 0.9 g/cm3, %ethanol = 0.79 g/cm3

Porosity of porous structure Φ = 1 − (Vporous/Vbulk) Materialise-Magics 21.0.0
Mechanical properties Nanoindentation test Agilent-G200, d = 2000 nm, v = 10 nm/s, t = 10 s

Phase identification XRD Rigaku-D/max 2500 PC, Cu, 40 kV, 100 mA
Microstructure observations SEM and LM S-4800-Hitachi, Olympus-GX41

3. Results

3.1. Morphology Features, Relative Density and Defects

The results of the geometric profile error comparison between the as-built samples and the
as-designed 3D model are presented in Figure 3 and Table 4. As illustrated in Figure 3, the solid struts
with small Ls (0.4, 0.6, 0.8 mm) more easily gained a positive error in size. The higher v made this
phenomenon more obvious. The solid struts with larger Ls (>1 mm) had a more stable size. This was
in agreement with the results shown in Table 4. Under different v values of 1900, 1300, and 700 mm/s,
the struts with an Ls value of 0.4 mm had sizes of 412 ± 20, 465 ± 27, and 489 ± 34 µm, respectively, and
the strut with an Ls value of 1.4 mm had sizes of 1432 ± 15, 1421 ± 23, and 1430 ± 51 µm, respectively.
For the overhanging struts with an angle of 0◦, the actual size was larger than that of the vertical struts.
This was because the molten pool would usually generate many tumor forms on the bottom surface,
owing to the permeation effect, causing an uneven geometric profile and over-dimension as a condition
of low scan speed (Figure 5).
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The relative density of the as-built samples is depicted in Figure 4. Under the process conditions
of different scan speeds, the struts presented inconsistent variation trends with increasing geometric
characteristic size. On one hand, for the struts with small Ls (0.4, 0.6, and 0.8 mm), the relative
densities of the samples with a v of 1900 mm/s were highest, separately reaching 96.8%, 96.5%, and
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96%. The relative density of samples with a v of 700 mm/s was lowest, only reaching 86%, 90%, and
93%. On the other hand, for the struts with an Ls value of 1.4 mm, the relative density of the samples
with a v of 1300 mm/s was highest, reaching 98.1%, and the relative density of samples with a v of
1900 mm/s was lowest at 95%. Thus, it could be seen that the relative density was sensitive to not only
scan speed but also to the geometric characteristic size.Metals 2019, 9, x FOR ARTICLE 6 of 12 
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In the thresholding CT images shown in Figure 5, the pore distribution of the as-built struts with
different dimensions, angles, and scan speeds is roughly demonstrated. This result echoes the relative
density, as described in Figure 4. It is apparent that the number of pores decreased with the increase in
scan speed for the struts with an Ls value of 0.4 mm, and the struts with an angle of 45◦ or 0◦ tended to
generate pores. However, the struts with an Ls value of 1.4 mm had the least pores in the condition of
a v value of 1300 mm/s.
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3.2. Phase Identification and Microstructure

Figure 6 shows the X-ray diffraction analysis performed to identify phases of the struts with Ls

values of 0.4 and 1.4 mm under different process conditions. As shown in Figure 6a, a brief observation
of four struts within a wide 2θ range of 30◦ to 80◦ revealed that the LPBF-built Ti–6Al–4V samples’
phase was mainly composed of α/α’ phase. It is known that all of these phases are α’ phases, due to
the large cooling rate caused by laser melting and solidification [28]. For the struts with an Ls value of
1.4 mm, when the scan speed increased, the diffraction peaks broadened considerably and the intensity
decreased, which implied the formation of considerable refined crystal [29]. The XRD characterization
with a small 2θ range of 39.5◦ to 41.5◦ is depicted in Figure 6b. It shows that the refined 2θ locations of
peaks of struts with an Ls value of 1.4 mm generally shifted to the higher 2θ with the increase in scan
speed. In addition, under the process condition of a v of 700 mm/s, the peak of the strut with an Ls

value of 0.4 mm became thinner than that of the strut with an Ls value of 1.4 mm. This means that the
strut with an Ls value of 0.4 mm had a coarser microstructure than did the strut with an Ls value of
1.4 mm. The relatively small geometric characteristic size might have affected the heat dissipation of
newly produced solid struts.Metals 2019, 9, x FOR ARTICLE 7 of 12 
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Figure 6. X-ray diffraction analysis results of as-built samples: (a) diffraction angle 2θ of 30◦–80◦;
(b) diffraction angle 2θ of 39.5◦ to 41.5◦.

To further understand the microstructural differences, observation using an optical metallographic
microscope and SEM was conducted on the initial microstructure of the X–Y planes perpendicular
to the building direction, and the results are provided in Figures 7 and 8. Figure 7 reveals that the
section microstructure was composed of very fine acicular martensites α’ and primary columnar β
grains with different shapes, which grew along the building direction. The interior of the primary
columnar β grains mainly consisted of relatively coarse acicular martensites α’ throughout the entire
grain. This result is consistent with the findings of the XRD analysis in Figure 6a. Due to the optical
metallographic microscope having relatively low magnification and the generation of multilevel
martensites α’ caused by the repetitive thermal loading of layer-wise laser melting, there was no
obvious difference observed in the acicular martensites of struts with different process conditions.
However, the primary columnar β grains became thicker and coarser with increasing scan speed.
Moreover, as SEM images with 2000×magnification, shown in Figure 8, under the same condition of a
v of 700 mm/s, the martensites α’ in the strut with an Ls value of 0.4 mm were obviously coarser than
that of the struts with an Ls value of 1.4 mm, on the whole.
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Figure 7. Optical images of microstructures of solid struts on the X–Y plane: (a) v = 1900 mm/s, Ls = 1.4
mm; (b) v = 1300 mm/s, Ls = 1.4 mm; and (c) v = 700 mm/s, Ls = 1.4 mm.
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Figure 8. SEM images of the solid struts microstructure of martensites α’ on the X–Y plane:
(a) v = 700 mm/s, Ls = 1.4 mm; (b) v = 700 mm/s, Ls = 0.4 mm.

3.3. Mechanical Performance

Figure 9a depicts the nanoindentation load–displacement curves measured on the polished
sections of the as-built struts with an angle of 90◦ and Ls values of 0.4 and 1.4 mm. The indentation
depths of the struts with an Ls value of 1.4 mm were larger than those of the struts with an Ls value of
0.4 mm after unloading. As shown in Figure 9b,c, for the struts with a v of 1300 mm/s, the nanohardness
and elastic modulus increased with increasing geometric characteristic size. It is noteworthy that the
nanohardness and elastic modulus increased very slightly and indistinctively after Ls reached 1 mm.
For the struts with an Ls value of 0.4 mm, the nanohardness reached 3.78 to 4.12 GPa and the elastic
modulus reached 96.044 to 110.613 GPa. For the struts with an Ls value of 1.4 mm, the nanohardness
reached 4.12 to 4.4 GPa and the elastic modulus reached 126.42 to 131.57 GPa. Overall, they all
decreased with increasing scan speed.
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4. Discussion

The existing experimental results suggested that the geometric characteristic size within a certain
range would affect the physical characteristics of an LPBF-fabricated porous structure, including the
morphology features, relative density, microstructure, and mechanical properties. This phenomenon
can be explained through the simplified thermal transmission model in a laser powder bed fusion
process (Figure 10). As a classical additive manufacturing method using a powder bed, three main
thermal transferring forms occur during the LPBF process: thermal conduction from molten pool to
part, thermal conduction from part to substrate, and thermal radiation from part to atmosphere [30].
It is important to note that thermal conduction between the part and the powder is negligible because
the thermal conductivity coefficient of the metal powder is much smaller than that of the metal part [31].
Therefore, the as-built part could be regarded as a thermal container. According to Equation (1),
the energy density is inversely proportional to the scan speed. The energy density represents its
thermal source strength and the geometric characteristic size in a certain range reflects its own thermal
storage volume and thermal-sinking capability. These two aspects will influence the temperature
distribution of the as-built part. Higher energy density means that the molten pool will receive more
heat from the laser beam, resulting in higher peak temperature, longer keeping time, and decreased
undercooling degree [28]. A geometric characteristic size that is too small means that the molten pool
and as-built part have a poor cooling condition, and less thermal storage volume and interfacial area
with atmosphere and substrate, which results in a lower cooling rate. However, the phenomenon may
gradually emerge when the geometric characteristic size is small enough (<1 mm).
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As shown in Figure 10, a higher energy density means that the molten pool has less surface
tension and better wettability, absorbing more powder. Due to the layer-wise manufacturing method,
the side surface generally bonds a large quantity of incompletely melted particles, which may need
post treatment for further applications. Based on the above analysis, a geometric characteristic size
that is too small may more easily cause the as-built part to gain more obvious size errors under the
high-scan-speed conditions. This is because the newly forming part will remain at a high temperature
for a longer time under the poor cooling condition. Then, the side wall of the part will bond more
particles, resulting in an obvious size error. The relative density of the LPBF-built part is associated
with pore deficiency. Too high a temperature of the molten pool with too high energy density will
cause the evaporation of elements, generating pores with rounded shapes. Too high a cooling rate
of the molten pool with too low an energy density will cause the incomplete fusion of powder, also
generating pores with sharp shapes and incompletely melted particles. In addition, the poor cooling
condition relating to too small a geometric characteristic size will aggravate pore generation under the
condition of high energy density.

It is known that for metal materials, hardness is closely related to the microstructure. There
is also a loose corresponding relationship between hardness and strength, namely, high hardness
corresponding to high strength. High hardness is attributed to the refinement of the α/α’ phase and β

phase caused by rapid solidification, and much dislocation generation caused by residual stress in
additive-manufactured Ti–6Al–4V parts [32]. The elastic modulus is associated with the residual stress
level to a certain extent [33]. Based on the proposed thermal model, the higher energy density and
small geometric characteristic size cause more thermal input and a poor cooling condition, respectively.
This will weaken the grain refinement strengthening effect and decrease the residual stress, causing a
decline in hardness and strength. A relatively low scan speed and small geometric characteristic size
correspond to a low elastic modulus, which is partially due to the decrease of the residual stress [32].

As is known, the relative density is associated with the pore deficiency, and the porosity is
associated with the size of the as-built struts of a porous structure. As shown in Figure 11, different
from the porous structure with an Ls value of 1.4 mm, the relative density and porosity of the porous
structures with an Ls value of 0.6 mm and a v of 700 mm/s were obviously less than those for the
structures with a v of 1900 mm/s. This finding indirectly indicated that the struts of the porous sample
with an Ls value of 1.4 mm achieved more pores and larger positive size error under the v of 700 mm/s.
In other words, a porous structure with an Ls value of 0.6 mm and a v of 1900 mm/s had a better
forming quality than did those with a v of 700 mm/s. These experimental results are in accordance with
the results shown in Figures 3 and 4, confirming the validity of the above analysis to a certain extent.
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Figure 11. A comparison of the relative density and porosity for samples in the verification experiment.

5. Conclusions

In this study, taking the geometric characteristic size into consideration, samples consisting of
solid struts with different section characteristic sizes (0.4 to 1.4 mm) were fabricated by selective
laser melting with three scan speeds (700, 1300, and 1900 mm/s). The morphology features, relative
density, microstructure, and mechanical properties were measured and a simple thermal model was
presented to systematically explain the effect of geometric characteristic size under different scan speed
conditions. The following was determined:

(1) The geometric characteristic size influenced the physical characteristics of the LPBF-produced
struts by affecting the cooling condition. A small geometric characteristic size resulted in a poor
cooling condition. The effect may only become obvious when the geometric characteristic size is small
(<1 mm).

(2) The relative density of the solid strut with an Ls value of 0.4 mm reached the highest value
of 96.8% when the v was 1900 mm/s, but the relative density of the solid strut with an Ls value of
1.4 mm reached the highest value of 98.1% when the v was 1300 mm/s. The solid strut with smaller
geometric characteristic size had a more obvious size error. To a certain degree, the nanohardness and
elastic modulus increased with increasing scan speed, and decreased with the decline of the geometric
characteristic size when the geometric characteristic size was smaller than 1 mm.

(3) In contrast to the solid bulk forming process, for a superior forming quality, a higher scan
speed should be set for the LPBF-manufacturing of porous structures, especially for structures with
small geometric characteristic size in solid struts.
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