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Abstract: Microstructure and corrosion behavior of the Mg-3Al-xMn (x = 0, 0.12, 0.21, 0.36, 0.45)
(hereafter in wt.%) alloys were experimentally investigated by electron probe microanalysis (EPMA),
scanning electron microscope equipped with energy dispersive X-ray spectroscopy (SEM/EDX),
X-ray diffraction (XRD), electrochemical, and hydrogen evolution tests. A new self-constructed
Mg-Al-Mn-Fe thermodynamic database was used to predict the solidification paths of the alloys.
The addition of Mn showed no grain refinement in the cast Mg-3Al alloys. According to the
microstructure observation, Al-Fe phases were observed in the non-Mn-added alloy, while Al8Mn5(LT)
(Al8Mn5 in low temperature) became the main intermetallic phase in the Mn-added alloys, and the
amount increased gradually with the Mn addition. The τ–Al0.89Mn1.11 phase with lower Al/(Fe + Mn)
ratio was observed in the alloys with 0.36 and 0.45 wt.% Mn content. According to the electrochemical
tests, all five alloys showed localized corrosion characteristics in 3.5 wt.% NaCl solution. Compared
with the Mg-3Al alloy, the corrosion resistance of Mn-added alloys were significantly improved
and increased gradually with the Mn addition, which was due to the variation of Al-containing
intermetallic compounds. The present experimental investigations and thermodynamic calculations
confirmed the mechanism that the increasing amount of Al8Mn5(LT) with Mn addition could
encapsulate the B2-Al(Mn,Fe) phase with higher Fe. Therefore, it could prevent this detrimental
phase from contacting magnesium matrix, thus suppressing micro-galvanic corrosion and improving
corrosion resistance gradually.
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1. Introduction

Magnesium alloys attract a lot of attention due to weight-sensitive applications such as automotive,
aerospace, and electronics industries [1–5]. Corrosion performance is one of the major concerns for
applications of magnesium alloys [6,7]. Influences of alloy elements such as Ce [8,9], Nd [9–13],
Zn [14,15], Y [11,16], Ca [11,17], and Mn [9,11,15,18–23] on the corrosion behavior of magnesium alloys
have been investigated widely in literature. It is widely admitted that Mn addition could combat
impure Fe in Mg-Al alloys and reduce corrosion rates of the Mg-Al alloys [11,18,19]. It is reported
that the Fe/Mn ratio should not exceed a threshold value. If it goes beyond the ratio, the corrosion
rates would increase significantly [24]. For AM60, the ratio is 0.021, which means this alloy could
tolerate Fe impurity up to 0.021 of the Mn concentration (by weight) [25–30]. This ratio should be
related to the phase constitution of the alloys. Intermetallic compounds such as Al8Mn5(LT) [31–40],
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τ–Al0.89Mn1.11 [31,41], Al11Mn4(LT) (Al11Mn4 in low temperature) [38], and Al4Mn [42,43] have been
reported in Mg alloys. Previous studies reported the correlation between amount of elements and
corrosion behavior. Using calculated phase diagrams and Scheil solidification, Liu et al. [28] reported
that the detrimental effect of Fe on the Mg corrosion was caused by the precipitation of the Fe-rich
Bcc_B2 phase. Recently, Metalnikov et al. [19] experimentally investigated the influence of large Mn
addition (0.5, 1.4, 3.1 wt.%) on microstructure and corrosion behavior of the wrought Mg-5Al alloys.
The Mg-5Al-0.5Mn alloy was reported to have the best corrosion performance among the alloys in
their results, and Al8Mn5(LT) and (βMn) were identified in the Mn-added alloys. The formation
of the Al-Mn(-Fe) intermetallic phases with Mn addition needs systematical investigation to gain
a better understanding of the mechanisms of improving corrosion resistance in Mg-Al alloys with
Mn-addition. Thermodynamic calculations based on CALPHAD (calculation of phase diagram) type
thermodynamic databases have proved to be effective in precipitation and corrosion of Mg alloys [28,44].
It is undisputed that the accuracy of the thermodynamic database is primarily important for the related
calculations and predictions [45–48]. Al [49] and Mn [50] both were reported to improve the mechanical
properties of Mg alloys. Mn and Fe have an opposite effect on the corrosion properties [51]. Fe has
extremely deleterious effects on corrosion resistance due to the ability to serve as an active cathodic
site [24], while Mn addition could combat this effect by forming less active Al-Mn-(Fe) particles [51].
Therefore, the Mg-Al-Mn-Fe system is of great interest, and it is worth further investigating via the
thermodynamic calculations. In the past few years, the thermodynamic descriptions of some sub-binary
and ternary systems of the Mg-Al-Mn-Fe system have been updated [52–57].

Therefore, this work combines microstructure observations, thermodynamic calculations, and
corrosion examinations with three aims: (i) to experimentally investigate the effect of Mn addition on
the microstructure of the Mg-3Al alloys, focusing on the identification of Al-containing intermetallic
compounds and evolution of morphologies and chemical compositions; (ii) to investigate the influence
of Mn on corrosion behavior of the Mg-3Al alloys; and (iii) to explain some microstructure observations
and corrosion behavior with thermodynamic calculations based on a new self-constructed Mg-Al-Mn-Fe
thermodynamic database.

2. Materials and Methods

2.1. Materials

In total, five Mg-3Al-xMn (x = 0, 0.12, 0.21, 0.36, 0.45) alloys were prepared via the approach
described below. Magnesium ingots (99.95 wt.%) were heated up to be melted at 690 ◦C under the
protection of an argon gas mixture containing SF6 and N2 in a resistance furnace. Subsequently,
a certain amount of aluminum ingots (99.97 wt.%) and Mg-5Mn master alloy were added into the Mg
bath, and the temperature was maintained at 690 ◦C for 120 min. Then, the melts were poured into a
steel mold and cooled with the furnace. The chemical compositions of the alloys were determined by
ICP-AES (inductively coupled plasma-atomic emission spectroscopy, ICAP 7000 type, Thermo Fisher
Scientific, Waltham, MA, USA), as shown in Table 1. It should be mentioned that traces of Mn in the
Mg-3Al alloy resulted from the impurity in raw materials. The samples were sectioned from the central
part of the ingots and cut into 10 mm × 10 mm × 10 mm cubic by wire-cut machine (DK7720 type,
Fangzheng CNC Machine Tool Co., Ltd., Taizhou, China). In order to eliminate the disturbance of the
Al12Mg17 phase, the samples were held at 400 ◦C for 15 h in an air furnace, followed by quenching in
cold water. To remove the oxidation film, the surface of samples after heat treatment were ground off

before experimental tests.
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Table 1. Alloy composition (wt.%) determined by ICP-AES (inductively coupled plasma-atomic
emission spectroscopy).

Alloys Al Mn Fe Cu Ni Si Fe/Mn Mg

Mg-3Al 2.97 0.01 0.013 0.001 0.006 0.001 1.300 Balance
Mg-3Al-0.12Mn 2.98 0.12 0.010 0.001 0.015 0.001 0.083 Balance
Mg-3Al-0.21Mn 2.86 0.21 0.010 0.001 0.030 0.001 0.048 Balance
Mg-3Al-0.36Mn 2.97 0.36 0.008 0.003 0.019 0.001 0.022 Balance
Mg-3Al-0.45Mn 2.96 0.45 0.015 0.002 0.018 0.001 0.033 Balance

2.2. Experimental Methods

In order to identify phase type, phase constitution, and morphologies of the Al-containing
intermetallic particles in the Mg-3Al-xMn alloys, XRD (D8 Advance type, Bruker Company, Stuttgart,
Switzerland), EPMA (JXA-8530F type, JEOL, Tokyo, Japan) and SEM/EDX (Helios NanoLab G3 UC type,
FEI Company, Hillsboro, OR, USA) were performed. To identify the type of intermetallic particles, we
adopted a particles extraction method [31,40,41] described below. The different alloys were immersed
in acetic acid aqueous solution (9 vol.%). After the sample was dissolved, the compound powders in the
solution were centrifuged, washed with pure water thrice and with ethanol twice, and then collected
after being dried at 50 ◦C for 5 h. Phase identification of these particles was conducted by XRD. The
patterns were indexed by the software Jade (Version 6, MDI, Livermore, CA, USA). The composition
of the intermetallic particles was determined by EPMA, because WDS (wavelength dispersive X-ray
spectroscopy, JEOL, Tokyo, Japan) is more accurate when performing quantitative analysis compared
with EDX. The samples for EPMA tests were ground with SiC papers progressively up to 2000 grit,
mechanically polished by 0.5 µm diamond paste, and ultrasonically cleaned with ethanol. To reveal the
grain boundaries, the samples for EPMA were electrolytic polished. The mechanical polished samples
were connected with the anode of the power supply and a stainless steel bar with the cathode. After
being polished under 15 V direct current for about 30 s in a mixture solution (10 mL perchloric acid and
190 mL ethanol), the samples were ultrasonically cleaned in ethanol and dried in the air. In addition,
SEM/EDX was applied to obtain the high magnification morphology and the elemental distribution of
the intermetallic particles. The samples for SEM/EDX were mechanically polished and then etched by
nitric acid ethanol solution (4 vol.%) for 10 min to reveal the 3-dimensional (3D) morphologies of the
intermetallic particles.

After the characterization of the intermetallic particles, hydrogen evolution and electrochemical
tests were performed to investigate the effect of Mn addition on the corrosion behavior of the
Mg-3Al alloys. All of the corrosion tests were carried out in 3.5 wt.% NaCl solution with aeration at
room temperature (around 25 ◦C), and the mechanical polished samples were adopted with 1 cm2

exposed area. The hydrogen evolution tests were performed for 3 days by an apparatus [7]. For the
electrochemical tests, the samples were sealed in epoxy and connected with copper lines. A platinum
plate was used as the counter electrode, and the saturated calomel electrode was used as the reference
electrode. Before the tests, the samples were held in NaCl solution for 10 min to reach a stable open
circuit potential (OCP). The electrochemical impedance spectrum (EIS) tests were conducted by an
electrochemical workstation (PARSTAT4000 type, Ametek Company, Berwyn, PA, USA). The EIS
tests were carried out in the 100 kHz to 0.01 Hz frequency range at OCP with a 5 mV amplitude of
perturbation. The EIS results were fitted using the ZsimpWin software (AMETEK, Berwyn, PA, USA).
Potentiodynamic polarization tests were performed by an electrochemical workstation (CHI660E
type, CH Instruments, Inc., Shanghai, China). The scan rate was about 0.5 mV/s with the range from
−1.7 V to −1.3 V. Considering the abnormal anodic behavior brought from negative difference effect,
the corrosion current density icorr was obtained by Tafel extrapolation using the cathodic branch [58].
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2.3. Thermodynamic Calculations

A new Mg-Al-Mn-Fe database was constructed based on the critical evaluation of the thermodynamic
description on the binary and ternary systems by the present authors. There are six binary systems
and four ternary systems in the Mg-Al-Mn-Fe system. For the Al-Mg system, the parameters were
from Zhong et al. [59], who optimized the system based on their own first principles calculations and
the available experimental thermodynamic and phase diagram data. The thermodynamic parameters
of the Mg-Mn system was from Gröbner et al. [60], who investigated the system based on their
own experimental data and available literature data. The thermodynamic description of the Mg-Fe
system recorded by COST507 [61] was adopted in the present work because it was widely accepted
in literature and not updated after that. The thermodynamic description of the Al-Mn system was
taken from Du et al. [62], and the refinement by Zheng et al. [52] on the cubic Al8Mn5(HT) (Al8Mn5

in high temperature) phase was considered. As for the Al-Fe system, the most widely accepted
evaluation is from Sundman et al. [63]. However, the description of the liquid phase was inconsistent
with the experimental data on the experimental integral enthalpy of the mixing of liquid Al-Fe
alloys. Therefore, the re-optimized parameters of liquid and the slightly revised parameters for the
solids by Zheng et al [52] were adopted in the present work. Parameters of the Fe-Mn system from
Huang et al. [64] with a minor adjustment by Djurovic et al. [65] were used in the present work.
Since the work by Du et al. [62] could reproduce the experimental data in both Al-rich and Mg-rich
corners well, and the liquidus projection and reaction scheme over wide temperature and composition
ranges were also well established, the description for the Al-Mg-Mn system was taken the work from
Du et al. [62]. The parameters of the Mg-Al-Fe ternary system were taken from the doctoral dissertation
of Liu [66]. The Al-Fe-Mn ternary system was recently optimized by Zheng et al. [53]. In their
work, Fe was firstly introduced into the sublattice model of Al8Mn5(LT) by considering the available
experimental data [54], and they also considered the order-disorder transformation between Bcc_A2
and Bcc_B2 phases, thus their work was adopted for the description of the Al-Fe-Mn system. According
to the work by Wang et al. [67], a direct extrapolation from the three binary systems can reproduce the
experimental data in the Fe-Mg-Mn system well. Therefore, there is no ternary parameters for the
Fe-Mg-Mn system. By considering the references above, we constructed a thermodynamic database
for the Mg-Al-Mn-Fe quaternary system.

Using the obtained Mg-Al-Mn-Fe thermodynamic database, calculated phase diagrams for six
binary systems and a representative isothermal section of four ternary systems are presented in
Figures 1–3. These diagrams show an agreement with those in literature, which support the validation
of the database. Based on the database, the solidification paths of the Mg-3Al-xMn alloys were then
presently performed by PANDATTM software (Version 2017, CompuTherm, Madison, WI, USA) using
the Scheil solidification model.
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(d) Fe-Mg-Mn at 400 ◦C. The dashed line in (c) represents the calculated Bcc_A2/Bcc_B2 transition line.

3. Results and Discussion

3.1. Microstructure Observation

Back scattered electron (BSE) images of five electrolytic polished Mg-3Al-xMn alloys taken by
EPMA are shown in Figure 4. The Mg-3Al alloy consists of (αMg) matrix and a minute quantity of
white particles. In four Mn-added alloys, more white particles were observed at both (αMg) matrix
and grain boundaries. The amount of these white particles increased gradually with the increase of Mn
addition. The average grain size of the Mg-3Al-xMn alloys (x = 0, 0.12, 0.21, 0.36, 0.45) was measured
by ImageJ software as 102 ± 35, 129 ± 48, 256 ± 75, 152 ± 37, and 205 ± 69 µm. Compared with the
Mg-3Al alloy, the grain size of Mn-added alloys increased, indicating that the Mn addition had no
grain refinement effect in the cast Mg-3Al alloys.

Quite a few studies have been applied to investigate the effect of Mn addition on the grain size of
Mg-Al alloys. The grain refinement effect is related to the type of Al-Mn intermetallics in the alloys.
Cao et al. [68] reported ε-AlMn could act as the nucleation site for (αMg) grains due to small lattice
mismatch (~4% misfit) against (αMg), and Al8Mn5(LT) showed no grain refinement in their study due
to the bigger lattice mismatch (~20% misfit). In addition, the grain refinement effect of Mn addition
was observed in extruded or wrought Mg-Al alloys [18,19,50] and not observed in cast alloys [11,41,69].
This difference may relate to the thermal forming process. As is discussed later, the main Al-Mn
intermetallic in present Mn-added alloys is Al8Mn5(LT), which cannot refine the grain. That is the
reason why grain refinement effect was not observed in the present cast alloys.
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Figure 4. Back scattered electron (BSE) images of the electrolytic polished Mg-3Al-xMn alloys by electron
probe microanalysis (EPMA): (a) Mg-3Al, (b) Mg-3Al-0.12Mn, (c) Mg-3Al-0.21Mn, (d) Mg-3Al-0.36Mn,
(e) Mg-3Al-0.45Mn. The dark spots are shrinkage cavity formed in the solidification process.

To analyze the effect of Mn addition on the microstructure, it was crucial to identify the type and
investigate the composition and morphologies of particles in the alloys. Figure 5 was determined by
EPMA. The samples in this figure were mechanically polished. Figure 6; Figure 7 were obtained by
SEM/EDX, and the samples were subjected to mechanical polishing, then deep-etched by nitric acid
ethanol solution.

In the Mg-3Al alloy, irregular angular particles were observed in EPMA and SEM/EDX, which
are shown in Figure 5a, Figure 6a, and Figure 7, respectively. Due to the limited amount, they were
not successfully extracted and identified by XRD. For the phase composition of these particles, both
EPMA and EDX maps indicated they were Mn negligible or Mn free, meaning they were Al-Fe phases.
It should be mentioned that EPMA analysis could pick up Mg signals from surrounding (αMg) due
to the small size of the particles, which was the reason why some Mg was detected. As shown in
Figure 5a, the Al/Fe ratio of the particles determined by EPMA was about 3.25, which was close to the
composition of Al13Fe4. According to the Mg-Fe phase diagram and isothermal section of Mg-Al-Fe
shown in Figures 1c and 3b, respectively, we can see that the solid solubility of Fe in Mg was very
limited, indicating that the Fe atoms would precipitate as Al-Fe phases [22,70,71].
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Figure 7. (a) BSE images of the representative Al-Fe phase in the etched Mg-3Al alloy by SEM.
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respectively, in the particle.

After adding 0.12 wt.% Mn into the Mg-3Al alloy, the intermetallics changed from Al-Fe phases to
Al8Mn5(LT). XRD patterns of the particles extracted from the Mn-added alloys are shown in Figure 8.
As we can see, Al8Mn5(LT) (space group R3m (160) ICDD PDF file 00-032-0021) and MgF2 (space group
P42/mnm (136) ICDD PDF 00-041-1443) were identified in the Mg-3Al-0.12Mn and Mg-3Al-0.21Mn
alloys. The MgF2 was likely formed from the reaction of the Mg melt with the protection of SF6 gas
during the sample fabrication [32,72,73]. To investigate the composition of Al-Mn(-Fe) particles, their
Al/(Mn + Fe) ratios were measured by EPMA and are summarized in Figure 9b. For the Mg-3Al-0.12Mn
and Mg-3Al-0.21Mn alloys, the Al/(Mn + Fe) ratios of these particles were measured to be from 1.2
to 1.9. The Al/Mn ratio of Al8Mn5(LT) was at the range of 0.9–1.6 based on the partial Al-Mn phase
diagram shown in Figure 9a. Moreover, the measured Al/(Mn + Fe) of Al8Mn5(LT) was reported up to
1.97 [74] or 1.95 [31] in literature. In view of these results, these particles were identified as Al8Mn5(LT)
in the present work, which was consistent with the XRD results.
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As we can see from Figure 8, τ–Al0.89Mn1.11 was observed with further addition of Mn to
0.36 wt.%. Al8Mn5(LT), and τ–Al0.89Mn1.11 (space group tP2 (123) ICDD file 00-030-0028) was identified
in the Mg-3Al-0.36Mn and Mg-3Al-0.45Mn alloys. The crystal structures of the crucial phases are
summarized in Table 2. It should be noted that no peaks of MgF2 were detected in the Mg-3Al-0.36Mn
and Mg-3Al-0.45Mn alloys. τ–Al0.89Mn1.11 is a metastable phase and is not shown in the Al-Mn
stable phase diagram (Figure 9a). Han and Liu [31] identified τ–Al0.89Mn1.11 via TEM and XRD, and
the Al/(Mn+Fe) ratio was reported to be around 0.85, which was different from the range of both
Al8Mn5(LT) and (βMn). In the present work, the measured Al/(Mn + Fe) ratio of some particles
in the Mg-3Al-0.36Mn and Mg-3Al-0.45Mn alloys was about 0.85, as shown in Figure 9b. Thus,
these particles were regarded as τ–Al0.89Mn1.11, as shown in Figure 5(d3,e2). Additionally, a lower
Al/(Mn + Fe) ratio of Al8Mn5(LT) in the Mg-3Al-0.36Mn and Mg-3Al-0.45Mn alloys compared to that
in the Mg-3Al-0.12Mn and Mg-3Al-0.21Mn alloys was obtained, which could be dated back to the
solidification process. During the solidification, the Al concentration at the liquid/solid interface of
the alloys with lower Mn content was relatively lower than that with higher Mn content, leading to
the formation of Al8Mn5(LT) and τ–Al0.89Mn1.11 with a lower Al/(Mn + Fe) ratio [31]. Interestingly,
some Al-Mn(-Fe) particles with relatively higher Fe content were obtained in the Mg-3Al-0.12Mn and
Mg-3Al-0.45Mn alloys, as presented in Figure 5(b3,e3), respectively. Compared with the composition
of B2-Al(Mn,Fe) in literature [74], these Fe-richer Al-Mn(-Fe) particles were likely to be B2-Al(Mn,Fe).
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Table 2. Crystal structure of some crucial phases in the present study.

Phase Other Name
Crystal
System

Pearson
Symbol

Space
Group

Lattice Parameters
Reference

a, b, c/Å α, β, γ

Al8Mn5(LT) γ2
D810-Al8Mn5

Hexagonal hR52 R3m 12.54, 12.54, 15.74 α = β = 90◦,
γ = 120◦ [75]

Al8Mn5(HT) γ1
D82-Al8Mn5

Cubic cI52 I43m 8.89, 8.89, 8.89 α = β = γ = 90◦ [74,76]

τ–Al0.89Mn1.11 τ Tetragonal tP2 P4/mmm 2.77, 2.77, 3.54 α = β = γ = 90◦ [77,78]

Al11Mn4(LT) - Triclinic ap15 P1 5.11, 8.87, 5.06 α = 89◦, β = 101◦,
γ = 105◦ [79]

B2-Al(Mn,Fe) Bcc_B2,
B2-AlMn Cubic cP2 Pm3m 3.08, 3.08, 3.08 α = β = γ = 90◦ [74,80]

(βMn) - Cubic cP20 P4132 6.29, 6.29, 6.29 α = β = γ = 90◦ [81]
MgF2 - Tetragonal tP6 P42/mnm 4.63, 4.63, 3.06 α = β = γ = 90◦ [82]

As for the morphologies, the particles in Figure 6b,c were indexed as Al8Mn5(LT), as it was
the only Al-Mn(-Fe) intermetallic detected by XRD in Mg-3Al-0.12Mn and Mg-3Al-0.21Mn alloys.
However, the particles in Figure 6d,e were difficult to distinguish from Al8Mn5(LT) and τ–Al0.89Mn1.11,
because both phases were detected by XRD in Mg-3Al-0.36Mn and Mg-3Al-0.45Mn alloys.

Based on the above discussion, the morphologies and the Fe content of the particles in
the Mg-3Al-xMn alloys are summarized in Table 3. The Al8Mn5(LT) particles showed different
morphologies in Mn-added alloys, including micro-plates (Figure 5(b2,c3,d1,e1)), rods/ribbons
(Figure 5(b1,c1) and Figure 6(b1,c1), dice-like shape (Figure 6(c3)), and polyhedral shape (Figure 5(c2,d2),
Figure 6(b2,b3,c2)). τ–Al0.89Mn1.11 with micro-plates (Figure 5(e2)) along with polyhedral shape
(Figure 5(d3)) and B2-Al(Mn,Fe) with micro-plates (Figure 5(b3)) and polyhedral shape (Figure 5(e3))
were observed. Al-Fe phases were in irregular blocky shape (Figure 5a, Figure 6a, and Figure 7a).
As shown in Figure 9c, the Fe content in Al8Mn5(LT) was measured to be at the range of 0.2–4 at.%,
which was similar to the reported value in literature [31,34]. The Fe content at the range of 0.5–5.9 at.%
was measured for τ–Al0.89Mn1.11, which was higher than the reported one by Han et al. [41]. In addition,
it should be noted that the Fe content in B2-Al(Mn,Fe) and Al-Fe phases was significantly higher than
that in Al8Mn5(LT) and τ–Al0.89Mn1.11.

Table 3. Summary of the phases, Fe content, and morphologies of the Al-containing intermetallic
particles based on EPMA and SEM analysis.

Phase Fe Range (at.%) Morphologies Alloys

Al8Mn5(LT) 0.2–4

Micro-plates
Rods/ribbons

Dice-like particles
Polyhedral particles

Mg-3Al-xMn
(x = 0.12, 0.21, 0.36, 0.45)

τ–Al0.89Mn1.11 0.5–5.9 Micro-plates
Polyhedral particles

Mg-3Al-xMn
(x = 0.36, 0.45)

B2-Al(Mn,Fe) 12.5–17.3 Micro-plates
Polyhedral particles

Mg-3Al-xMn
(x = 0.12, 0.45)

Al-Fe phase 15.3–17.3 Irregular blocky particles Mg-3Al

The morphologies and the composition of the Al-containing intermetallic particles in the
Mg-3Al-xMn alloys were discussed above. However, due to the limited amount, the percentages of
these intermetallic phases could not be determined experimentally, and the sequences of solidification of
these phases were still not clear. Such problems could be explained by the thermodynamic calculations.

3.2. Thermodynamic Calculation

As discussed before, the tolerance limit of Fe impurity is very important in Mg alloys. The Fe/Mn
ratio of all alloys in the present work exceeded the tolerance limit of that in AM60 (0.021). Thus,
it was worthwhile to trace the Fe impurity in the alloys. The calculations were performed based on
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the real composition of the Mg-3Al-xMn alloys. With the established database, Figure 10 shows the
calculated solidification paths of the Mg-3Al-xMn alloys using PANDATTM software based on Scheil
solidification. For the Mg-3Al alloy, B2-Al(Mn,Fe), (αMg), Al2Fe, Al5Fe2 Al13Fe4, and Al12Mg17 phases
were predicted to form in order. The Fe impurity was calculated to exist in the form of B2-Al(Mn,Fe),
Al2Fe, Al5Fe2, and Al13Fe4 phases at different stages of solidification. This calculation was in good
agreement with the results from EPMA and SEM/EDX, which can be seen from Figures 5a, 6a and 7.
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In Mn-added alloys, the sequences of solidification paths of the phases were generally similar to
each other. The phases of B2-Al(Mn,Fe), (αMg), Al8Mn5(LT), and Al11Mn4(LT) were precipitated in
sequence, which was significantly different from that of the Mg-3Al alloy. Moreover, in Mn-added
alloys, impure Fe dissolved into B2-Al(Mn,Fe) and Al8Mn5(LT) phases by substituting the Mn lattice
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sites [55,56,74]. This was due to their affinity and similarity in terms of atomic radii [41,83]. From the
thermodynamic point of view, B2-Al(Mn,Fe) could be stable in all five alloys because it was the first
precipitated phase in all five alloys and could be encapsulated by the subsequent precipitated phases,
such as Al8Mn5(LT). However, B2-Al(Mn,Fe) was only experimentally detected in the Mg-3Al-0.12Mn
and Mg-3Al-0.45Mn alloys due to the limited amount. The deduction was supported by the experiments
by Zeng et al. [74] and present thermodynamic calculations. Two phase particles with a core-shell
structure in AZ91D magnesium alloy with the Fe-richer B2-Al(Mn,Fe) core enveloped by low-Fe
Al8Mn5(LT) shell were observed by means of a focused ion beam (FIB) from Zeng et al. [74]. Considering
the predicted solidification sequences and the similar morphology of Al8Mn5(LT) from the present
work and Zeng et al. [74], a similar enveloping phenomenon likely existed in this study.

The total mole percentages of B2-Al(Mn,Fe) and Al8Mn5(LT) of these five alloys after solidification
were calculated and are displayed in Figure 11a. It can be seen that Al8Mn5(LT) was not precipitated
in the Mg-3Al alloy, while the mole percentage of B2-Al(Mn,Fe) held steady with 0–0.36 wt.% Mn
addition but increased when the content of Mn addition was 0.45 wt.%. The reason for this was that the
Fe impurity in the Mg-3Al-0.45Mn alloy was higher than that of other alloys, as shown in Table 1. For
Al8Mn5(LT), the percentage increased steadily with the increasing of Mn addition, which was consistent
with the statistic number of particles per mm2 (Figure 11b) based on the low magnification EPMA
images. Furthermore, the mole percentage of B2-Al(Mn,Fe) was far less than that of Al8Mn5(LT). This
was one of the reasons why B2-Al(Mn,Fe) was not detected by EPMA in the Mg-3Al, Mg-3Al-0.21Mn,
and Mg-3Al-0.36Mn alloys. More importantly, although the amount of Fe-richer B2-Al(Mn,Fe) seemed
negligible due to the detrimental effect, it played an important role in the corrosion of Mg-Al-based
alloys [28].
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Figure 11. (a) Predicted mole percentage of B2-Al(Mn,Fe) and Al8Mn5(LT) by Scheil solidification in
different Mg-3Al-xMn alloys. (b) The statistic number of particles per mm2 in the Mg-3Al-xMn alloys
based on low magnification EPMA images.

3.3. Electrochemical Tests and Corrosion Analysis

Potentiodynamic polarization curves are shown in Figure 12, which were tested in 3.5 wt.% NaCl
solution at room temperature. The cathodic branches of the polarization curves of Mn-added alloys
were lower than those of the Mg-3Al alloy, which indicated that there was a reduction of the cathodic
hydrogen reaction. Obvious passivation behavior was observed in the anodic polarization curves of the
Mg-3Al-0.36Mn and Mg-3Al-0.45Mn alloys, however, curves of others alloys showed active dissolution
characteristics. The breakdown potential Eb (marked by the black arrow) of passive film was also
obtained [58,84]. Critical parameters from potentiodynamic polarization curves are summarized in
Table 4. With the increase of Mn addition, the current density icorr decreased gradually, and the value of
the Mg-Al alloy was 26 times larger than that of the Mg-3Al-0.45Mn alloy. The larger value of (Eb-Ecorr)
illustrated more stable passivation film. The value of Mg-3Al-0.45Mn was 94 mV, which was markedly
larger than that of Mg-3Al-0.36Mn, indicating that the passive film was more stable, and there was less
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tendency for localized corrosion to appear [84]. In summary, the corrosion resistance was enhanced
with the increase of Mn addition, and the Mg-3Al-0.45Mn alloy showed the best corrosion resistance
among the five alloys.
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Table 4. Critical parameters determined from polarization curves for the Mg-3Al-xMn alloys.

Alloys icorr/uA·cm−2 Ecorr/VSCE Eb/VSCE (Eb − Ecorr)/mV

Mg-3Al 410.1 −1.560 - -
Mg-3Al-0.12Mn 112.5 −1.545 - -
Mg-3Al-0.21Mn 51.3 −1.546 - -
Mg-3Al-0.36Mn 18.6 −1.485 −1.471 14
Mg-3Al-0.45Mn 15.8 −1.512 −1.417 95

The EIS results presented in Figure 13 show all alloys consisted of two capacitance loops and
one inductive loop, indicating that the corrosion mechanisms and processes were similar among
these alloys. The first capacitance loop at high frequency represented the double electric layer at
the metal/solution interfaces, while the second one at medium frequency was the capacity of the
corrosion products. The inductive loop at low frequency confirmed pitting corrosion behavior [85,86].
The aperture of impedance increased with the enhancement of Mn content, which indicated that the
corrosion resistance was improved [18]. The EIS spectrums were fitted by an equivalent circuit [18,85],
as shown in Figure 13b and Table 5. Rs was the solution resistance, and Rc and Cc represented the
resistance and the capacitance of the corrosion product layer, respectively. CPE was the constant phase

element for double layer capacitance, and its impedance was defined as ZCPE =
[
C( jω)n

]−1
, where C

was capacitance, j was the current, and ω was the frequency [18]. Rdiff and L denoted the inductive
resistance and the inductance of the partial protective film. Rct was the charge transfer resistance
describing the resistance of interface between corrosion product layer and alloy, which was the last
barrier for preventing aggressive Cl− in the solution from reaching the metal surface [85,87]. A larger
Rct meant a better corrosion resistance. The values of Rct became larger with the increasing of Mn
addition, meaning the Mg matrix corrosion could be prevented by the Mn addition in the alloys. This
was also supported by the polarization curves discussed above.
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Table 5. Fitting results of the EIS data for the Mg-3Al-xMn alloys.

Specimen Rs
/Ω·cm−2

Cc
/µF·cm−2

Rc
/Ω·cm−2

CPE Rct
/Ω·cm−2

L
/H·cm−2

Rdiff
/Ω·cm−2C

/µF·cm−2
n

(0–1)

Mg-3Al 4.81 6.62 12.75 3.05 1 21.34 14.46 78.9
Mg-3Al-0.12Mn 2.91 8.38 10.26 11.12 0.9123 37.03 26.42 86.4
Mg-3Al-0.21Mn 1.03 7.34 29.14 51.34 0.3518 53.95 58.68 255.4
Mg-3Al-0.36Mn 2.99 5.99 22.01 6.23 0.8646 95.21 49.58 279.5
Mg-3Al-0.45Mn 4.73 7.08 20.76 49.23 0.5554 106.54 58.09 341.9

Figure 14 shows the effect of Mn on hydrogen evolution volume of the Mg-3Al-xMn alloys in
3.5 wt.% NaCl solution. In three days immersion, the hydrogen volume of the Mg-3Al alloy was about
three to eleven times that of the Mn-added alloys, demonstrating that Mn addition improved corrosion
resistance by decreasing the cathodic hydrogen reaction. The hydrogen volume of the alloys decreased
gradually with the increase of Mn, which was in agreement with the electrochemical tests. As discussed
above, due to the limited amount of Mn, the Fe impurity precipitated as the Al-Fe phases in the Mg-3Al
alloy. The micro-galvanic corrosion between Al-Fe phases and the (αMg) matrix was extremely serious.
After adding some Mn into the alloys, B2-Al(Mn,Fe), Al8Mn5(LT), and τ–Al0.89Mn1.11 precipitated
with Fe. Although there was still micro-galvanic corrosion between these Al-Mn(-Fe) particles and the
(αMg) matrix [32,88], this detrimental effect was suppressed significantly. There were two reasons
for the improvement. First, the potential difference of Al-Mn(-Fe) particles was significantly less than
Al-Fe particles with respect to the magnesium matrix [11,22,37,89]. Second, as shown in the above
thermodynamic calculations, the first precipitated Fe-rich B2-Al(Mn,Fe) could be encapsulated by
Al8Mn5(LT), which prevented the contact of the Fe-rich phase and the (αMg) matrix [74]. Additionally,
the increasing amount of Al8Mn5(LT) with the increment of Mn content alleviated the harmful effect
gradually. Thus, Mn addition improved the corrosion behavior of the Mg-Al alloys by changing the
type and the amount of the intermetallic particles.
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4. Conclusions

The effects of Mn addition on microstructure and corrosion behavior of the Mg-3Al-xMn (x = 0.12,
0.21, 0.36, 0.45) alloys were investigated through the combination of experiments and thermodynamic
calculations. The main conclusions drawn are as follows:

(1) Mn addition did not show the grain refinement on the cast Mg-3Al-xMn alloys. A small
amount of the Al-Fe particles was observed in the Mg-3Al alloy. Al8Mn5(LT) existed as the main
intermetallic compound in all Mn-added alloys. Only in the Mg-3Al-0.36Mn and the Mg-3Al-0.45Mn
alloys, a lower Al/(Mn + Fe) ratio τ–Al0.89Mn1.11 phase was observed.

(2) Based on the Scheil solidification calculation, Fe-richer B2-Al(Mn,Fe) was predicted to form
as the first precipitated phase in all alloys. Due to the limited amount, B2-Al(Mn,Fe) was only
experimentally observed in the Mg-3Al-0.12Mn and Mg-3Al-0.45Mn alloys. Al8Mn5(LT) would
envelop B2-Al(Mn,Fe) in Mn-added alloys.

(3) Pitting corrosion characteristic was observed from the polarization and EIS curves in all
alloys. Passivation stages were only detected in the polarization curves of the Mg-3Al-0.36Mn and the
Mg-3Al-0.45Mn alloys. Both the electrochemical and the hydrogen evolution tests indicated that Mn
addition gradually improved the corrosion resistance of the Mg-Al alloys in NaCl solution. The high
cathodic Al-Fe intermetallic compounds could be changed into Al8Mn5(LT) by adding minor quantities
of Mn (0.12 wt.%). Increasing Mn addition would lead to more Al8Mn5(LT), which could encapsulate
the Fe-richer B2-Al(Mn,Fe) phase and thus alleviate micro-galvanic corrosion in the alloys.
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