Microstructure of a V-Containing Cobalt Based Alloy Prepared by Mechanical Alloying and Hot Pressed Sintering
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Petersson, A.; Ågren, J. Constitutive behaviour of WC–Co materials with different grain size sintered under load. Acta Mater. 2004, 52, 1847–1858. [Google Scholar] [CrossRef]
- Mingard, K.P.; Roebuck, B.; Marshall, J.; Sweetman, G. Some aspects of the structure of cobalt and nickel binder phases in hardmetals. Acta Mater. 2011, 59, 2277–2290. [Google Scholar] [CrossRef]
- Jiang, K.; Liu, R.; Chen, K.; Liang, M. Microstructure and tribological properties of solution-treated Tribaloy alloy. Wear 2013, 307, 22–27. [Google Scholar] [CrossRef]
- Xu, W.; Liu, R.; Patnaik, P.C.; Yao, M.X.; Wu, X.J. Mechanical and tribological properties of newly developed Tribaloy alloys. Mater. Sci. Eng. A 2007, 452–453, 427–436. [Google Scholar] [CrossRef]
- Sun, S.H.; Koizumi, Y.; Kurosu, S.; Li, Y.P.; Matsumoto, H.; Chiba, A. Build direction dependence of microstructure and high-temperature tensile property of Co–Cr–Mo alloy fabricated by electron beam melting. Acta Mater. 2014, 64, 154–168. [Google Scholar] [CrossRef]
- Cordero, M.C.; Srinivasarao, B.; Campos, M.; Junceda, A.G.; Torralba, J.M. On the role of processing parameters in sintered new Co-based (W,Al) alloys. J. Alloys Compd. 2016, 674, 406–412. [Google Scholar] [CrossRef]
- Ahmed, R.; Lovelock, H.L.V.; Davies, S.; Faisal, N.H. Influence of Re-HIPing on the structure–property relationships of cobalt-based alloys. Tribol. Int. 2013, 57, 8–21. [Google Scholar] [CrossRef]
- You, X.H.; Wang, G.G.; Wang, J.; Xu, T.; Zhang, H.Y.; Wei, H. Effect of solid solution treatment on microstructure and mechanical properties of hot-press CoCrW alloys. Acta Metall. Sin. 2016, 52, 161–167. [Google Scholar]
- Hou, J.; Dong, J.X.; Yao, Z.H.; Jiang, H.; Zhang, M.C. Influences of PPB, PPB affect zone, grain boundary and phase boundary on crack propagation path for a P/M superalloy FGH4096. Mater. Sci. Eng. A 2018, 724, 17–28. [Google Scholar] [CrossRef]
- Zhang, L.; Qu, X.H.; He, X.B.; Din, R.; Qin, M.L.; Zhu, H.M. Hot deformation behavior of Co-base ODS alloys. J. Alloys Compd. 2012, 512, 39–46. [Google Scholar] [CrossRef]
- Casasa, R.; Gálvez, F.; Campos, M. Microstructural development of powder metallurgy cobalt-based superalloys processed by field assisted sintering techniques (FAST). Mater. Sci. Eng. A 2018, 724, 461–468. [Google Scholar] [CrossRef]
- Ren, F.Z.; Zhu, W.W.; Chu, K.J. Fabrication, tribological and corrosion behaviors of ultra-fine grained Co–28Cr–6Mo alloy for biomedical applications. J. Mech. Behav. Biomed. Mater. 2016, 60, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Berthod, P.; Khair, M. Thermodynamic and experimental study of cobalt-based alloys designed to contain TiC carbides. Calphad 2016, 60, 34–41. [Google Scholar] [CrossRef]
- Burton, A.W.; Ong, K.; Rea, T.; Chan, I.Y. On the estimation of average crystallite size of zeolites from the Scherrer equation: A critical evaluation of its application to zeolites with one-dimensional pore systems. Microp. Mesop. Mater. 2009, 117, 75–90. [Google Scholar] [CrossRef]
- Meyers, M.A.; Chawla, K.K. Mechanical Behavior of Materials; Cambridge University Press: Cambridge, UK, 2009; p. 549. [Google Scholar]
- Yang, F.M.; Sun, X.F.; Zhang, W.; Kang, Y.P.; Guan, H.R.; Hu, Z.Q. Secondary M6C precipitation in K40S cobalt-base alloy. Mater. Lett. 2001, 49, 160–164. [Google Scholar] [CrossRef]
- Zhang, C.; Cui, L.; Wang, D.P.; Liu, Y.C.; Liu, C.X.; Li, H.J. The heterogeneous microstructure of heat affect zone and its effect on creep resistance for friction stir joints on 9Cr–1.5W heat resistant steel. Scrip. Mater. 2019, 158, 6–10. [Google Scholar] [CrossRef]
- Wang, H.; Yan, W.; Zwaag, S.; Shi, Q.Q.; Wang, W.; Yang, K.; Shan, Y.Y. On the 650 °C thermostability of 9–12Cr heat resistant steels containing different precipitates. Acta Mater. 2017, 134, 143–154. [Google Scholar] [CrossRef]
- Jiang, W.H.; Yao, X.D.; Guan, H.R.; Hu, Z.Q.; Jiang, W.H. Secondary carbide precipitation in a directionally solified cobalt-base superalloy. Metall. Mater. Trans. A 1999, 30, 513–520. [Google Scholar] [CrossRef]
- Szczerba, M.J.; Kopacz, S.; Szczerba, M.S. Experimental studies on detwinning of face-centered cubic deformation twins. Acta Mater. 2016, 104, 52–61. [Google Scholar] [CrossRef]
- Mahajan, S. Critique of mechanisms of formation of deformation, annealing and growth twins: Face-centered cubic metals and alloys. Scrip. Mater. 2013, 68, 95–99. [Google Scholar] [CrossRef]
- Gu, J.; Zhang, L.X.; Ni, S.; Song, M. Formation of large scaled zero-strain deformation twins in coarse-grained copper. Scrip. Mater. 2016, 125, 49–53. [Google Scholar] [CrossRef]
- Lu, L.; Shen, Y.F.; Chen, X.H.; Qian, L.H.; Lu, K. Ultrahigh Strength and High Electrical Conductivity in Copper. Science 2004, 304, 422–425. [Google Scholar] [CrossRef]
- Tobar, M.J.; Amado, J.M.; Álvarez, C.; García, A.; Varela, A.; Yáñez, A. Characteristics of Tribaloy T-800 and T-900 coatings on steel substrates by laser cladding. Surf. Coat. Technol. 2008, 202, 2297–2301. [Google Scholar] [CrossRef]
- Lu, Y.J.; Wu, S.Q.; Gan, Y.L.; Li, J.L.; Zhao, C.Q.; Zhuo, D.X.; Lin, J.X. Investigation on the microstructure, mechanical property and corrosion behavior of the selective laser melted CoCrW alloy for dental application. Mater. Sci. Eng. C 2015, 49, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Q.; Zhou, J.Q. The fatigue crack growth in hierarchically nano-twinned materials. Eng. Fract. Mech. 2018, 204, 63–71. [Google Scholar] [CrossRef]
- Zhu, Y.T.; Liao, X.Z.; Wu, X.L. Deformation twinning in nanocrystalline materials. Prog. Mater. Sci. 2012, 57, 1–62. [Google Scholar] [CrossRef] [Green Version]
- Corderoa, M.C.; Campos, M.; Freund, L.P.; Kolb, M.; Neumeier, S.; Göken, M.; Torralba, J.M. Microstructure and compression strength of Co-based superalloys hardened by γ′ and carbide precipitation. Mater. Sci. Eng. A 2018, 734, 437–444. [Google Scholar] [CrossRef]
Point | Cr | W | V | Ni | Co | Fe | C | Phase |
---|---|---|---|---|---|---|---|---|
1 (bright) | 29.93 | 16.44 | 8.11 | 0 | 31.40 | 2.11 | 12.01 | M12C |
2 (dark) | 50.46 | 0 | 23.38 | 0 | 0 | 0 | 21.52 | M23C6 |
3 (dark) | 53.08 | 0 | 26.07 | 0 | 0 | 0.70 | 17.39 | M23C6 |
4 (grey) | 25.20 | 1.96 | 2.64 | 6.33 | 55.08 | 4.33 | 4.46 | γ-Co |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, N.; Yin, F.; Feng, L. Microstructure of a V-Containing Cobalt Based Alloy Prepared by Mechanical Alloying and Hot Pressed Sintering. Metals 2019, 9, 464. https://doi.org/10.3390/met9040464
Li N, Yin F, Feng L. Microstructure of a V-Containing Cobalt Based Alloy Prepared by Mechanical Alloying and Hot Pressed Sintering. Metals. 2019; 9(4):464. https://doi.org/10.3390/met9040464
Chicago/Turabian StyleLi, Niannian, Fengshi Yin, and Liu Feng. 2019. "Microstructure of a V-Containing Cobalt Based Alloy Prepared by Mechanical Alloying and Hot Pressed Sintering" Metals 9, no. 4: 464. https://doi.org/10.3390/met9040464
APA StyleLi, N., Yin, F., & Feng, L. (2019). Microstructure of a V-Containing Cobalt Based Alloy Prepared by Mechanical Alloying and Hot Pressed Sintering. Metals, 9(4), 464. https://doi.org/10.3390/met9040464