Numerical Analysis of a New Nonlinear Twist Extrusion Process
Abstract
:1. Introduction
2. Kinetics and Kinematics of NLTE Process
3. Simulations of the Linear and the Nonlinear Twist Extrusion
4. Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bridgman, P.W. Studies in Large Plastic Flow and Fracture; McGraw-Hill: New York, NY, USA, 1952. [Google Scholar]
- Valiev, R.Z.; Langdon, T.G. Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement. Prog. Mater. Sci. 2006, 51, 881–981. [Google Scholar] [CrossRef]
- Segal, V.M.; Reznikov, V.I.; Drobyshevskiy, A.E.; Kopylov, V.I. Plastic working of metals by simple shear. Russ. Metall. 1981, 1, 99–105. [Google Scholar]
- Serban, N.; Cojocaru, V.D.; Butu, M. Mechanical Behavior and Microstructural Development of 6063-T1 Aluminum Alloy Processed by Equal-Channel Angular Pressing (ECAP): Pass Number Influence. JOM 2012, 64, 607–614. [Google Scholar] [CrossRef]
- Serban, N.; Ghiban, N.; Cojocaru, V.D. Mechanical Behavior and Microstructural Development of 6063-T1 Aluminum Alloy Processed by Equal-Channel Angular Pressing (ECAP): Die Channel Angle Influence. JOM 2013, 65, 1411–1418. [Google Scholar] [CrossRef]
- Zhilyaev, A.P.; Langdon, T.G. Using high-pressure torsion for metal processing: Fundamentals and applications. Prog. Mater. Sci. 2008, 53, 893–979. [Google Scholar] [CrossRef]
- Saito, Y.; Tsuji, N.; Utsunomiya, H.; Sakai, T.; Hong, R. Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process. Scr. Mater. 1998, 39, 1221–1227. [Google Scholar] [CrossRef]
- Romberg, J.; Freudenberger, J.; Bauder, H.; Plattner, G.; Krug, H.; Hollander, F.; Scharnweber, J.; Eschke, A.; Kuhn, U.; Klauss, H.; et al. Ti/Al Multi-Layered Sheets: Accumulative Roll Bonding (Part A). Metals 2016, 6, 30. [Google Scholar] [CrossRef]
- Romberg, J.; Freudenberger, J.; Watanabe, H.; Scharnweber, J.; Eschke, A.; Kuhn, U.; Klauss, H.; Oertel, C.G.; Skrotzki, W.; Eckert, J.; et al. Ti/Al Multi-Layered Sheets: Differential Speed Rolling (Part B). Metals 2016, 6, 31. [Google Scholar] [CrossRef]
- Utsunomiya, H.; Saito, Y.; Suzuki, H.; Sakai, T. Development of the continuous shear deformation process. Proc. Inst. Mech. Eng. Ser. B 2001, 215, 947–957. [Google Scholar] [CrossRef]
- Zisman, A.A.; Rybin, V.V.; Van Boxel, S.; Seefeldt, M.; Verlinden, M.B. Equal Channel Angular Drawing of Aluminium Sheet. Mater. Sci. Eng. A 2006, 427, 123–129. [Google Scholar] [CrossRef]
- Lee, J.C.; Seok, H.K.; Suh, J.Y. Microstructural evolutions of the Al strip prepared by cold rolling and continuous equal channel angular pressing. Acta Mater. 2002, 50, 4005–4019. [Google Scholar] [CrossRef]
- Orlov, D.; Beygelzimer, Y.; Synkov, S.; Varyukhin, V.; Horita, Z. Evolution of Microstructure and Hardness in Pure Al by Twist Extrusion. Mater. Trans. 2008, 49, 2–6. [Google Scholar] [CrossRef] [Green Version]
- Pardis, N.; Ebrahimi, R. Deformation behavior in Simple Shear Extrusion (SSE) as a new severe plastic deformation technique. Mater. Sci. Eng. A 2009, 527, 355–360. [Google Scholar] [CrossRef]
- Bagherpour, E.; Reihanian, M.; Ebrahimi, R. On the capability of severe plastic deformation of twining induced plasticity (TWIP) steel. Mater. Des. 2012, 36, 391–395. [Google Scholar] [CrossRef]
- Latypov, M.I.; Yoon, E.Y.; Lee, D.J.; Kulagin, R.; Beygelzimer, Y.; Seyed Salehi, M.; Kim, H.S. Microstructure and Mechanical Properties of Copper Processed by Twist Extrusion with a Reduced Twist-Line Slope. Metall. Mater. Trans. A 2014, 45, 2232–2241. [Google Scholar] [CrossRef] [Green Version]
- Iwahashi, Y.; Horita, Z.; Nemoto, M.; Langdon, T. An investigation of microstructural evolution during equal-channel angular pressing. Acta Mater. 1997, 45, 4733–4741. [Google Scholar] [CrossRef]
- Wetscher, F.; Pippan, R. Cyclic high-pressure torsion of nickel and Armco iron. Philos. Mag. 2006, 86, 5867–5883. [Google Scholar] [CrossRef] [Green Version]
- Beygelzimer, Y.; Varyukhin, V.; Synkov, S.; Orlov, D. Useful properties of twist extrusion. Mater. Sci. Eng. A 2009, 503, 14–17. [Google Scholar] [CrossRef] [Green Version]
- Beygelzimer, Y.; Prilepo, D.; Kulagin, R.; Grishaev, V.; Abramova, O.; Varyukhin, V.; Kulakov, M. Planar Twist Extrusion versus Twist Extrusion. J. Mater. Process. Technol. 2011, 211, 522–529. [Google Scholar] [CrossRef]
- Beygelzimer, Y.; Reshetov, A.; Synkov, S.; Prokof’eva, O.; Kulagin, R. Kinematics of metal flow during twist extrusion investigated with a new experimental method. J. Mater. Process. Technol. 2009, 209, 3650–3656. [Google Scholar] [CrossRef]
- Latypov, M.; Alexandrov, I.; Beygelzimer, Y.; Lee, S.; Kim, H. Finite element analysis of plastic deformation in twist extrusion. Comput. Mater. Sci. 2012, 60, 194–200. [Google Scholar] [CrossRef]
- Maulidi, M.; Miyamoto, H.; Yuasa, M. Grain Refinement of Pure Magnesium Using Nonlinear Twist Extrusion. Mater. Sci. Forum 2018, 939, 54–62. [Google Scholar] [CrossRef]
- Fang, N. A New Quantitative Sensitivity Analysis of the Flow Stress of 18 Engineering Materials in Machining. J. Eng. Mater. Technol. 2005, 127, 192–196. [Google Scholar] [CrossRef]
- Mousavi, S.A.; Shahab, A.R.; Mastoori, M. Computational study of Ti–6Al–4V flow behaviors during the twist extrusion process. Mater. Des. 2008, 29, 1316–1329. [Google Scholar] [CrossRef]
- Mousavi, S.A.; Shahab, A.R.; Mastoori, M. Numerical and experimental studies of the plastic strains distribution using subsequent direct extrusion after three twist extrusion passes. Mater. Sci. Eng. A 2010, 527, 3967–3974. [Google Scholar] [CrossRef]
- Marat, I.; Latypov, Y.B.; Kim, H.S. Comparative Analysis of Two Twist-Based SPD Processes: Elliptical Cross-Section Spiral Equal-Channel Extrusion vs. Twist Extrusion. Mater. Trans. 2013, 54, 1587–1591. [Google Scholar] [Green Version]
- Marat, I.; Latypov, Y.B.; Kim, H.S. Finite element analysis of the plastic deformation in tandem process of simple shear extrusion and twist extrusion. Mater. Des. 2015, 83, 858–865. [Google Scholar]
- Lyszkowski, R.; Polkowski, W.; Czujko, T. Severe Plastic Deformation of Fe-22Al-5Cr Alloy by Cross-Channel Extrusion with Back Pressure. Materials 2018, 11, 2214. [Google Scholar] [CrossRef] [PubMed]
Model | Element Type | Element Family | Number of Elements |
---|---|---|---|
LTE Die | Explicit-Tetrahedral-C3D4 | 3D Stress | 305,835 |
LTE Dummy Die | Explicit-Hexahedral-C3D8R | 3D Stress | 2538 |
LTE Punch | Explicit-Hexahedral-C3D8R | 3D Stress | 925 |
LTE Specimen | Explicit-Hexahedral-C3D8R | 3D Stress | 20,000 |
LTE Dummy Specimen | Explicit-Hexahedral-C3D8R | 3D Stress | 4500 |
NLTE Die | Explicit-Tetrahedral-C3D4 | 3D Stress | 419,316 |
NLTE Dummy Die | Explicit-Hexahedral-C3D8R | 3D Stress | 19,866 |
NLTE Punch | Explicit-Hexahedral-C3D8R | 3D Stress | 1679 |
NLTE Specimen | Explicit-Hexahedral-C3D8R | 3D Stress | 48,750 |
NLTE Dummy Specimen | Explicit-Hexahedral-C3D8R | 3D Stress | 15,794 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yalçinkaya, T.; Şimşek, Ü.; Miyamoto, H.; Yuasa, M. Numerical Analysis of a New Nonlinear Twist Extrusion Process. Metals 2019, 9, 513. https://doi.org/10.3390/met9050513
Yalçinkaya T, Şimşek Ü, Miyamoto H, Yuasa M. Numerical Analysis of a New Nonlinear Twist Extrusion Process. Metals. 2019; 9(5):513. https://doi.org/10.3390/met9050513
Chicago/Turabian StyleYalçinkaya, Tuncay, Ülke Şimşek, Hiroyuki Miyamoto, and Motohiro Yuasa. 2019. "Numerical Analysis of a New Nonlinear Twist Extrusion Process" Metals 9, no. 5: 513. https://doi.org/10.3390/met9050513
APA StyleYalçinkaya, T., Şimşek, Ü., Miyamoto, H., & Yuasa, M. (2019). Numerical Analysis of a New Nonlinear Twist Extrusion Process. Metals, 9(5), 513. https://doi.org/10.3390/met9050513