Process and High-Temperature Oxidation Resistance of Pack-Aluminized Layers on Cast Iron
Abstract
:1. Introduction
2. Experiment
3. Results and Discussion
3.1. Effect of Pack Aluminizing Time on the Aluminide Layers
3.2. Effect of Aluminizing Temperature on the Aluminizing Layer
3.3. Microstructure of Aluminizing Layer
3.4. High-Temperature Oxidation Kientics
3.5. Microstructures and Phases of Oxidized Specimens
3.5.1. Cast Iron Substrate in Original Condition
3.5.2. Cast Iron after Pack Aluminizing
4. Conclusions
Author Contributions
Funding
Acknowledgements
Conflicts of Interest
References
- Di Cocco, V.; lacaviello, F.; Rossi, A.; Cavallini, M.; Natali, S. Graphite nodules and fatigue crack propagation micromechanisms in a ferritic ductile cast iron. Fatigue Fract. Eng. Mater. Struct. 2013, 36, 893–902. [Google Scholar] [CrossRef]
- Li, Y.; Dong, S.; Yan, S.; Liu, X.; He, P.; Xu, B. Surface remanufacturing of ductile cast iron by laser cladding Ni-Cu alloy coatings. Surf. Coat. Technol. 2018, 347, 20–28. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, Y.; Zhao, X.; Du, A.; Ma, R.; Wu, J.; Cao, X. Influence of Graphite Morphology on Phase, Microstructure, and Properties of Hot Dipping and Diffusion Aluminizing Coating on Flake/Spheroidal Graphite Cast Iron. Metals 2019, 9, 450. [Google Scholar] [CrossRef]
- Bates, B.L.; Wang, Y.Q.; Zhang, Y.; Pint, B.A. Formation and oxidation performance of low-temperature pack aluminide coatings on ferritic-martensitic steels. Surf. Coat. Technol. 2009, 204, 766–770. [Google Scholar] [CrossRef]
- Wang, C.J.; Badaruddin, M. The dependence of high temperature resistance of aluminized steel exposed to water-vapour oxidation. Surf. Coat. Technol. 2010, 205, 1200–1205. [Google Scholar] [CrossRef]
- Jiang, W.; Fan, Z.; Li, G.; Liu, X.; Liu, F. Effects of hot-dip galvanizing and aluminizing on interfacial microstructures and mechanical properties of aluminum/iron bimetallic composites. J. Alloys Compd. 2016, 688, 742–751. [Google Scholar] [CrossRef]
- Dhakar, B.; Chatterjee, S.; Sabiruddin, K. Phase stabilization of spraying mechanically blended alumina-chromia powders. Mater. Manuf. Processes 2017, 32, 355–364. [Google Scholar] [CrossRef]
- Pedraza, F.; Boulesteix, C.; Proy, M.; Lasanta, I.; de Miguel, T.; Illana, A.; Pérez, F.J. Behavior of Slurry Aluminized Austenitic Stainless Steels under Steam at 650 and 700 °C. Oxid. Met. 2017, 87, 443–454. [Google Scholar] [CrossRef]
- Abro, M.A.; Lee, D.B. High temperature corrosion of hot-dip aluminized steel in Ar/1% SO2 gas. Met. Mater. Int. 2017, 23, 92–97. [Google Scholar] [CrossRef]
- Wu, L.-K.; Wu, J.-J.; Wu, W.-Y.; Hou, G.-Y.; Cao, H.-Z.; Tang, Y.-P.; Zhang, H.-B.; Zheng, G.-Q. High temperature oxidation resistance of gamma-TiAl alloy with pack aluminizing and electrodeposited SiO2 composite coating. Corros. Sci. 2019, 146, 18–27. [Google Scholar] [CrossRef]
- Kochmanska, A.E. Microstructure of Al-Si Slurry Coatings on Austenitic High-Temperature Creep Resisting Cast Steel. Adv. Mater. Sci. Eng. 2018, 2018, 5473079. [Google Scholar] [CrossRef]
- Huang, M.; Wang, Y.; Zhang, M.-X.; Huo, Y.-Q.; Gao, P.-J. Effect of magnetron-sputtered Ai film on low-temperature pack-aluminizing coating for oil casing steel N80. Surf. Rev. Lett. 2014, 21, 1450053. [Google Scholar] [CrossRef]
- Yutanorm, W.; Juijerm, P. Diffusion enhancement of low-temperature pack aluminizing on austenitic stainless steel AISI 304 by deep rolling process. Kovove Mater. 2016, 54, 227–232. [Google Scholar] [CrossRef] [Green Version]
- Ma, F.; Gao, Y.; Zeng, Z.; Liu, E. Improving the Tribocorrosion Resistance of Monel 400 Alloy by Aluminizing Surface Modification. J. Mater. Eng. Perform. 2018, 27, 3439–3448. [Google Scholar] [CrossRef]
- Zhan, Z.; Liu, Z.; Liu, J.; Li, L.; Li, Z.; Liao, P. Microstructure and high-temperature corrosion behaviors of aluminide coatings by low-temperature pack aluminizing process. Appl. Surf. Sci. 2010, 256, 3874–3879. [Google Scholar] [CrossRef]
- Son, Y.I.; Chung, C.H.; Gowkanapalli, R.R.; Moon, C.H.; Park, J.S. Kinetics of Fe2Al5 phase formation on 4130 steel by Al pack cementation and its oxidation resistance. Met. Mater. Int. 2015, 21, 1–6. [Google Scholar] [CrossRef]
- Wang, J.; Wu, D.J.; Zhu, C.Y.; Xiang, Z.D. Low temperature pack aluminizing kinetics of nickel electroplated on creep resistant ferritic steel. Surf. Coat. Technol. 2013, 236, 135–141. [Google Scholar] [CrossRef]
- Majumdar, S.; Paul, B.; Kain, V.; Dey, G.K. Formation of Al2O3/Fe-Al layers on SS 316 surface by pack aluminizing and heat treatment. Mater. Chen. Phys. 2017, 190, 31–37. [Google Scholar] [CrossRef]
- Lee, J.-W.; Kuo, Y.-C. A study on the microstructure and cyclic oxidation behavior of the pack aluminized Hastelloy X at 1100 °C. Surf. Coat. Technol. 2006, 201, 3867–3871. [Google Scholar] [CrossRef]
- Priest, M.S.; Zhang, Y. Synthesis of clean aluminide coatings on Ni-based superalloys via a modified pack cementation process. Mater. Corros. 2015, 66, 1111–1119. [Google Scholar] [CrossRef]
- Szkliniarz, W.; Moskal, G.; Szkliniarz, A.; Swadźba, R. The Influence of Aluminizing Process on the Surface Condition and Oxidation Resistance of Ti–45Al–8Nb–0.5(B, C) Alloy. Coatings 2018, 8, 113. [Google Scholar] [CrossRef]
- Lin, M.-B.; Wang, C.-J.; Volinsky, A.A. Isothermal and thermal cycling oxidation of hot-dip aluminide coating on flake/spheriodal graphite cast iron. Surf. Coat. Technol. 2015, 206, 1595–1599. [Google Scholar] [CrossRef]
- Lin, M.-B.; Wang, C.-J. Microstructure and high temperature oxidation behavior of hot-dip aluminized coating on high silicon cast iron. Surf. Coat. Technol. 2010, 205, 1220–1224. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, L.; Li, C.; Li, Z.; Li, H. Morphology and Wear Resistance of Composite Coatings Formed on a TA2 Substrate Using Hot-Dip Aluminising and Micro-Arc Oxidation Technologies. Materials 2019, 12, 799. [Google Scholar] [CrossRef] [PubMed]
- Boulesteix, C.; Pedraza, F. Suitable sealants for cracked aluminized austenitic steels and their oxidation behavior. Surf. Coat. Technol. 2017, 327, 9–17. [Google Scholar] [CrossRef]
- Sun, Y.; Dong, J.; Zhao, P.; Dou, B. Formation and phase transformation of aluminide coating prepared by low-temperature aluminizing process. Surf. Coat. Technol. 2017, 330, 234–240. [Google Scholar] [CrossRef]
- Cheng, W.-J.; Wang, C.-J. Growth of intermtallic layer in the aluminide mild steel during hot-dipping. Surf. Coat. Technol. 2009, 204, 824–828. [Google Scholar] [CrossRef]
- Jeng, S.-C. Oxidation behavior and microstructural evolution of hot-dipped aluminum coating on Ti-6Al-4V alloy at 800 °C. Surf. Coat. Technol. 2013, 235, 867–874. [Google Scholar] [CrossRef]
- Tholence, F.; Norell, M. Nitride precipitation during high temperature of ductile cast irons in synthetic exhaust gases. J. Phys. Chem. 2005, 66, 530–534. [Google Scholar] [CrossRef]
C | Si | Mn | P | S | Fe |
---|---|---|---|---|---|
3.0 | 1.6 | 0.7 | 0.5 | 0.12 | allowance |
Region | Al (at. %) | Fe (at. %) |
---|---|---|
I | 73.88 | 26.22 |
II | 71.89 | 28.11 |
III | 69.55 | 30.45 |
IV | 49.63 | 50.37 |
V | 13.93 | 86.07 |
VI | 05.21 | 94.79 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Fan, Y.; Zhao, X.; Du, A.; Ma, R.; Cao, X. Process and High-Temperature Oxidation Resistance of Pack-Aluminized Layers on Cast Iron. Metals 2019, 9, 648. https://doi.org/10.3390/met9060648
Wang X, Fan Y, Zhao X, Du A, Ma R, Cao X. Process and High-Temperature Oxidation Resistance of Pack-Aluminized Layers on Cast Iron. Metals. 2019; 9(6):648. https://doi.org/10.3390/met9060648
Chicago/Turabian StyleWang, Xing, Yongzhe Fan, Xue Zhao, An Du, Ruina Ma, and Xiaoming Cao. 2019. "Process and High-Temperature Oxidation Resistance of Pack-Aluminized Layers on Cast Iron" Metals 9, no. 6: 648. https://doi.org/10.3390/met9060648
APA StyleWang, X., Fan, Y., Zhao, X., Du, A., Ma, R., & Cao, X. (2019). Process and High-Temperature Oxidation Resistance of Pack-Aluminized Layers on Cast Iron. Metals, 9(6), 648. https://doi.org/10.3390/met9060648