Annealing Response of a Cold-Rolled Binary Al–10Mg Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Effect of Annealing Temperature on Precipitations in Al–10Mg Alloys
3.2. Effect of Annealing Temperature on Texture
3.3. Effect of Annealing Temperature on Mechanical Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Toros, S.; Ozturk, F.; Kacar, I. Review of warm forming of aluminum–magnesium alloys. J. Mater. Process. Tech. 2008, 207, 1–12. [Google Scholar] [CrossRef]
- Zha, M.; Li, Y.; Mathiesen, R.H. Achieve high ductility and strength in an Al-Mg alloy by severe plastic deformation combined with inter-pass annealing. Mater. Sci. Eng. A 2014, 598, 141–146. [Google Scholar] [CrossRef]
- Kendig, K.L.; Miracle, D.B. Strengthening mechanisms of an Al-Mg-Sc-Zr alloy. Acta Mater. 2002, 50, 4165–4175. [Google Scholar] [CrossRef]
- Mikhaylovskaya, A.; Kotov, A.; Kishchik, M.; Prosviryakov, A.; Portnoy, V. The Effect of Isothermal Multi-Directional Forging on the Grain Structure, Superplasticity, and Mechanical Properties of the Conventional Al–Mg-Based Alloy. Metals 2019, 9, 33. [Google Scholar] [CrossRef]
- Bo, W.; Chen, X.; Pan, F.; Mao, J.; Yong, F. Effects of cold rolling and heat treatment on microstructure and mechanical properties of AA 5052 aluminum alloy. Trans. Nonferr. Metal. Soc. 2015, 25, 2481–2489. [Google Scholar]
- Zha, M.; Meng, X.T.; Zhang, H.M.; Zhang, X.H.; Jia, H.L.; Li, Y.J.; Zhang, J.Y.; Wang, H.Y.; Jiang, Q.C. High strength and ductile high solid solution Al-Mg alloy processed by a novel hard-plate rolling route. J. Alloys Compd. 2017, 728, 872–877. [Google Scholar] [CrossRef]
- Lee, Y.B.; Shin, D.H.; Park, K.T. Effect of annealing temperature on microstructures and mechanical properties of a 5083 Al alloy deformed at cryogenic temperature. Scr. Mater. 2004, 51, 355–359. [Google Scholar] [CrossRef]
- Snopinski, P.; Król, M. Microstructure, Mechanical Properties and Strengthening Mechanism Analysis in an AlMg5 Aluminium Alloy Processed by ECAP and Subsequent Ageing. Metals 2018, 8, 969. [Google Scholar] [CrossRef]
- Lee, B.H.; Kim, S.H.; Park, J.H. Role of Mg in simultaneously improving the strength and ductility of Al-Mg alloys. Mater. Sci. Eng. A 2016, 657, 115–122. [Google Scholar] [CrossRef]
- Ma, B.X.; Wang, G.J.; Guo, E.J. Effect of annealing temperature on microstructure and tensile properties of Al–Mg alloy 5A06 sheet. Mater. Sci. Technol. 2013, 29, 1044–1047. [Google Scholar] [CrossRef]
- Mcnelley, T.R.; Garg, A. Development of structure and mechanical properties in Al-10.2 WT. PCT. Mg by thermomechanical processing. Scr. Mater. 1984, 18, 917–920. [Google Scholar] [CrossRef]
- Valiev, R.Z.; Enikeev, N.A.; Murashkin, M.Y. On the origin of the extremely high strength of ultrafine-grained Al alloys produced by severe plastic deformation. Scr. Mater. 2010, 63, 949–952. [Google Scholar] [CrossRef] [Green Version]
- Bensaada, S.; Bouziane, M.T.; Mohammedi, F. Effect of the temperature on the mechanism of the precipitation in Al-8% mass.Mg alloy. Mater. Lett. 2011, 65, 2829–2832. [Google Scholar] [CrossRef]
- Yi, G.; Cullen, D.A. Characterization of Al-Mg Alloy Aged at Low Temperatures. Metall. Mater. Trans. A 2017, 48, 2040–2050. [Google Scholar] [CrossRef]
- Goswami, R.; Spanos, G.; Pao, P.S. Precipitation behavior of the β phase in Al-5083. Mater. Sci. Eng. A 2010, 527, 1089–1095. [Google Scholar] [CrossRef]
- D’Antuono, D.S.; Gaies, J.; Golumbfskie, W. Direct measurement of the effect of cold rolling on β phase precipitation kinetics in 5xxx series aluminum alloys. Acta Mater. 2017, 123, 264–271. [Google Scholar]
- D’Antuono, D.S.; Gaies, J.; Golumbfskie, W. Grain boundary misorientation dependence of β phase precipitation in an Al–Mg alloy. Scr. Mater. 2014, 76, 81–84. [Google Scholar] [CrossRef]
- Miszczyk, M.M.; Paul, H.; Driver, J.H.; Poplewska, J. The influence of deformation texture on nucleation and growth of cube grains during primary recrystallization of AA1050 alloy. Acta Mater. 2017, 129, 178–387. [Google Scholar] [CrossRef]
- Liu, J.; Banovic, S.W.; Biancaniello, F.S.; Jiggetts, R.D. Through-thickness texture gradient in an annealed Al-Mg alloy sheet. Met. Mater. Trans. A 2005, 36, 869–874. [Google Scholar] [CrossRef]
- Gatti, J.R.; Bhattacharjee, P.P. Microstructure and Texture of Al-2.5wt.% Mg Processed by Combining Accumulative Roll Bonding and Conventional Rolling. J. Mater. Eng. Perform. 2014, 23, 4453–4462. [Google Scholar] [CrossRef]
- Gatti, J.R.; Bhattacharjee, P.P. Annealing textures of severely cold and warm-rolled Al–2.5wt.% Mg alloy. J. Alloy. Compd. 2014, 615, 950–961. [Google Scholar] [CrossRef]
- Ihara, K.; Oga, H.; Miura, Y. Interaction between moving boundaries and Al3Sc precipitates in an Al-5 mass% Mg-0.3 mass% Sc alloy. J. Jpn. Inst. Light Met. 2006, 56, 361–365. [Google Scholar] [CrossRef]
- Humphreys, F.J. The nucleation of recrystallization at second phase particles in deformed aluminium. Acta Metall. 1977, 25, 1323–1344. [Google Scholar] [CrossRef]
- Kang, J.; Wilkinson, D.S.; Jain, M. On the sequence of inhomogeneous deformation processes occurring during tensile deformation of strip cast AA5754. Acta Mater. 2006, 54, 209–218. [Google Scholar] [CrossRef]
- Yizhe, M.; Jianguo, L.; Lei, F. Effect of Coarse β(Al3Mg2) Phase on Microstructure Evolution in 573 K Annealed Al-10Mg Alloy by Uniaxial Compression. Acta Met. Sin. 2018, 54, 1451–1460. [Google Scholar]
- Yang, H.W.; Widiantara, I.P.; Joo, Y.H. Effect of deformation path on texture and tension properties of submicrocrystalline Al-Mg-Si alloy fabricated by differential speed rolling. Mater. Lett. 2018, 213, 54–57. [Google Scholar] [CrossRef]
- Zha, M.; Li, Y.J.; Mathiesen, R.H.; Baumgart, C.; Roven, H.J. Influence of Mg Content, Grain Size and Strain Rate on Mechanical Properties and DSA Behavior of Al-Mg Alloys Processed by ECAP and Annealing. Mater. Sci. Forum. 2014, 794, 870–875. [Google Scholar] [CrossRef]
- Robinson, J.M. In-situ deformation of aluminium alloy polycrystals observed by high-voltage electron microscopy. Mater. Sci. Eng. A 1995, 203, 238–245. [Google Scholar] [CrossRef]
- Xiao, L.G.; Li, X.Q.; Jian, K.W. A model for the occurrence of serrated yielding in substitutional alloys. Sci. China Math. 1990, 33, 1386–1396. [Google Scholar]
- Avtokratova, E.; Sitdikov, O.; Mukhametdinova, O. Microstructural evolution in Al–Mg–Sc–Zr alloy during severe plastic deformation and annealing. J. Alloy. Compd. 2016, 673, 182–194. [Google Scholar] [CrossRef]
Element | Mg | Fe | Si |
---|---|---|---|
Al–10 Mg | 9.64 | 0.117 | 0.067 |
Annealing Temperatures | 200 °C | 250 °C | 300 °C | 350 °C |
---|---|---|---|---|
Calculated Mg content | 5.16 | 5.56 | 7.22 | 9.33 |
Annealing Temperature | 200 °C | 300 °C | 350 °C |
---|---|---|---|
Calculated dislocation density | 1.47 × 1013 | 5.23 × 1012 | 4.11 × 1011 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, L.; Li, J.; Huang, C.; Huang, J. Annealing Response of a Cold-Rolled Binary Al–10Mg Alloy. Metals 2019, 9, 759. https://doi.org/10.3390/met9070759
Feng L, Li J, Huang C, Huang J. Annealing Response of a Cold-Rolled Binary Al–10Mg Alloy. Metals. 2019; 9(7):759. https://doi.org/10.3390/met9070759
Chicago/Turabian StyleFeng, Lei, Jianguo Li, Chunfa Huang, and Jinxian Huang. 2019. "Annealing Response of a Cold-Rolled Binary Al–10Mg Alloy" Metals 9, no. 7: 759. https://doi.org/10.3390/met9070759
APA StyleFeng, L., Li, J., Huang, C., & Huang, J. (2019). Annealing Response of a Cold-Rolled Binary Al–10Mg Alloy. Metals, 9(7), 759. https://doi.org/10.3390/met9070759