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Abstract: The present paper reports an experimental study coupled with a numerical modelling
approach to simulate masonry walls strengthened with textile-reinforced mortar (TRM). This innovative
reinforcing technique is based on high-strength fibre grids embedded into inorganic matrices, and it has
recently been promoted for the seismic retrofitting of historical masonry buildings. In the experimental
campaign presented here, two different commercial TRM systems are applied to single-leaf clay
masonry panels. The specimens are then subjected to diagonal compression tests in order to evaluate
the effects of TRM on the structural performance. The proposed finite element (FE) model, based on an
original multiscale approach, is employed to simulate the diagonal compression tests. The numerical
results show a very good agreement with the experimental data, including in terms of failure mode.
In particular, the approach reproduces the macroscopic behaviour of the masonry panels as regards
the force-displacement response, and it allows for the possibility of simulating bed joint sliding and
TRM layer debonding.

Keywords: strengthening masonry; diagonal compression test; numerical analysis; interface
transmission conditions; cohesive law

1. Introduction

Historical structures made of solid brick or stone unreinforced masonry (UM) are widespread in
Southern Europe and around the Mediterranean area, where a high earthquake hazard is concentrated.
A majority of these UM buildings, located in regions of high seismic risk and mainly designed to resist
gravity loads without special regard for lateral seismic forces, are nowadays in need of structural
rehabilitation that takes into account their architectural and cultural value. A suitable procedure to
select buildings needing structural rehabilitation is out of the scope of the present paper. The authors
believe that the proposed numerical approach will be a useful tool for retrofit intervention design [1,2].
Jacketing historical masonry structures with steel-reinforced concrete is among the most conventional
techniques for seismic retrofitting. The most recent improvements regarding materials and methods
for structural reinforcement have highlighted the use of textile-reinforced mortar (TRM), also known
as fibre-reinforced cementitious matrix (FRCM). TRMs are recently developed composite materials
based on high-strength fibre (basalt, glass, steel) nets inserted into matrices made of natural mortars
or cements. Many experimental studies have been conducted over the last decade to investigate
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the effectiveness of TRMs in different load configurations. These works focus on TRM behaviour
under in-plane load [3–18] and out-of-plane load conditions [9,12,19] and on the characterisation of the
reinforcement–masonry bond for different typologies of fibres and mortars [10,20,21]. Experimental
evidence shows that a relevant increase in strength, a better post-peak response and an evident increase
in wall ductility can be achieved, especially when the TRM reinforcement is applied on both sides of the
masonry panels. The latter effect typically contributes to the overall structural ductility when a global
behaviour of the reinforced building is ensured [22]. However, some data indicate that failure may
occur prematurely after loss of adhesion between the strengthening layer and the masonry substrate [6].
Various approaches have been proposed to quantify the strength of masonry walls externally reinforced
with TRM techniques [6,10]. A review of TRM strengthening design and assessment procedures for
in-plane and out-of-plane loading is provided in [23]. The effectiveness of classical design methods
established for reinforced concrete beams and applied to TRM-reinforced masonry is discussed
in [24], in view of some experimental data. In [6], the proposal of Faella et al., sourced from the
scientific literature, juxtaposes documented shear strength relationships with experimental failure
loads. These comparisons show the risk of considerable overestimation of the shear strength in
models that are based on the reinforcement’s ultimate tensile strength but neglect the premature loss of
adhesion between the reinforcing layer and the masonry substrate. Finite element (FE) modelling of
TRM-strengthened masonry is very useful for evaluating the influence of material constants on the
reinforced structure’s behaviour. In the technical literature, applications of numerical analysis have been
mainly focused on simulations of the tensile response [25] and of bond behaviour [26–30]. However,
investigations into the structural performances of TRM-strengthened masonry have been proposed
with a limited number of numerical models [3,5,7,19,31–35]. In [3,31], an FE analysis is carried out using
the computer code MIDAS-FEA and is based on a macroscopic nonlinear material model of masonry.
The reinforcement is modelled using two layers of continuum isotropic materials, the textile and the
matrix, perfectly bonded to the masonry substrate. In [5,34], numerical simulations are conducted
in Ansys. In [5], masonry and mortar jackets are modelled separately, using three-dimensional
elements. The internal reinforcement grid is discretised through three-dimensional spar elements
embedded in the mortar mesh. Nonlinear constitutive laws are adopted for masonry and mortar
jackets. Moreover, full displacement compatibility between the mortar jacketing and the internal grid
prevents bond slippage. The approach proposed in [34] is based on similar assumptions; however,
the strengthening layer is modelled with two-dimensional shell elements. In [19,32,33,35], numerical
analyses are performed using the commercial FE package DIANA. The masonry wall is modelled
as an equivalent homogeneous material in which the mechanical characteristics of mortar joints and
masonry units are smeared. A perfect bond is adopted between the reinforcement and masonry panel
as well as at the matrix–fibre interface. Notably, in all the cited works, the masonry is treated as an
equivalent homogeneous material and the masonry substrate is put in perfect contact with the external
reinforcement. In this paper, we propose an original multiscale approach for simulating the failure of
TRM-reinforced masonry. The main feature of our approach is the introduction of cohesive contact
laws at a microscopic scale, i.e., between masonry bricks and mortar joints and between reinforcement
layers and wall substrate, through three-dimensional cohesive elements. These elements allow for the
possibility of mortar joint sliding and reinforcement debonding, two occurrences frequently reported
in the experimental literature. Bricks are modelled through continuum three-dimensional elements,
made of homogeneous, isotropic and infinitely elastic material. Strengthening layers are described as
homogenised laminates of equivalent material properties, discretised via two-dimensional elements.
This new methodology, implemented in Abaqus, is used to predict the behaviour of masonry walls
strengthened with two commercial TRM techniques in diagonal compression tests. Lastly, the proposed
numerical model is tested on the original experimental results (cf. [36]). The present paper contains a
complete description of the numerical model developed to simulate the TRM systems. A comparison
with the experimental curves is another original contribution of this work. The remainder of the
paper is structured as follows. An overview of the experimental campaign is presented in Section 2.



Buildings 2020, 10, 196 3 of 21

Here, together with the description and the results of the diagonal compression tests, we report
on the mechanical characterisation of materials and mortar–brick interfaces. Section 3 presents an
original model of the triplet tests classically used to characterise mortar–brick interfaces; the latter
are simulated through FE analysis in order to derive the parameters of bond cohesion required to
implement the numerical model. Section 4 is devoted to the numerical model’s hypotheses in terms
of FE discretisation, constitutive behaviour of cohesive elements, and assumed material properties.
Section 5 describes the simulations of the diagonal compression tests and their comparison with the
experimentally observed load-displacement macroscopic responses and damage behaviour. Finally,
the conclusions are given in Section 6.

2. Experimental Campaign

The experimental investigation, fully conducted at LiFE S.r.l. (Ferrara, Italy), concerned
in-plane diagonal compression tests on TRM-reinforced masonry panels as well as the mechanical
characterisation of the materials (cf. [36]).

2.1. Building and Strengthening of Masonry Panels

The diagonal compression tests were conducted on 5 single-leaf masonry walls, 1030 mm3 high,
1000 mm3 wide and 120 mm3 thick, characterised by 14 rows of clay bricks (CB) of average size
250 × 55 × 120 mm3, as illustrated in Figure 1.
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cured outdoor for 28 days (cf. [37]). 

After this curing period, four of the five realised panels were strengthened using two commercial 
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was based on balanced basalt–stainless steel grids (BG) embedded in a matrix of natural mineral 
binder-added lime mortar (BM). Five helical anchors of stainless steel (BA), whose configuration is 
shown in Figure 2d, connected the two sides of the BTRM panels. 

 

Figure 1. (a) Masonry panel texture, (b) panel geometry.

A low-quality lime-based mortar (LM), made of sand (75%), lime (21%) and cement (4%), was used
to realise bed joints (17 mm thick) and head joints (10 mm thick). Specimens were built and cured
outdoor for 28 days (cf. [37]).

After this curing period, four of the five realised panels were strengthened using two commercial
TRM systems with double-sided configuration. The first TRM system, denoted GTRM (Figure 2a) and
applied to two specimens, consisted of preformed glass fiber-reinforced polymer (GFRP) grids (GG)
inserted into a matrix of natural hydraulic lime mortar (GM).
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Five GFRP anchors (GA), whose configuration is shown in Figure 2b, connected the two sides of
the GTRM panels. The second TRM system, denoted BTRM (Figure 2c) and applied to two specimens,
was based on balanced basalt–stainless steel grids (BG) embedded in a matrix of natural mineral
binder-added lime mortar (BM). Five helical anchors of stainless steel (BA), whose configuration is
shown in Figure 2d, connected the two sides of the BTRM panels.

Table 1 reports a description of the employed materials and the application methods provided by
the manufacturers and followed in the preparation of the TRM layers.

Table 1. Strengthening configurations of the specimens.

Sample ID Number of Samples Matrix Grid Anchors

UM 1 — — —

GTRM 2

Hydraulic lime
mortar (GM)

sprayed in a single
layer 30 mm thick

on each side

Preformed GFRP
square grid (GG),
average thickness

3 mm, spacing
33 × 33 mm2 each side

Coupled L-shaped
preformed GFRP
anchors (GA) of
70 mm2 section,

100 mm long each

BTRM 2

Mineral binder-added
lime mortar (BM)
sprayed in two

layers 10 mm thick
each side

Balanced basalt–stainless
steel AISI 304 square

grid (BG), average
thickness 0.064 mm,
spacing 8 × 8 mm2

each side

Helical stainless
steel AISI

316 anchors (BA) of
14.5 mm2 section,
200 mm long each

As specified by the manufacturers, the curing period of the TRM layers was 28 days. The last
unreinforced panel (UM) was employed as a control specimen.

2.2. Mechanical Characterisation of Materials

Experimental tests for the mechanical characterisation of materials were conducted after a curing
period of 28 days and followed standard approaches, even though numerous testing methodologies
are available in the masonry component literature [38,39]. The tests are described in Table 2 by type,
specimens, tested materials and derived mechanical properties.

Table 2. Description of the experimental tests for mechanical characterisation of materials.

Test Type Standard
Reference Specimen Description Materials ID Corresponding

Symbols

Compression UNI EN 772-1,
2015 [40] Cubes 40 × 40 × 40 mm3 CB, LM, GM, BM fc

Three-point
bending

UNI EN 1015-11,
2007 [41] Prisms 160 × 40 × 40 mm3 LM, GM, BM ft

Uniaxial
compression

EN 1052-1,
2001 [42]

Single-leaf wall
645 × 630 × 120 mm3 (bricks:

250 × 55 × 120 mm3)
CB + LM E, ν

The results of mean values and coefficients of variation (CV) are reported in Table 3.
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Table 3. Experimentally measured mechanical properties of materials.

Bending Tests Compression Tests

Material
ID

Number of
Samples

ft
(N/mm2) CV (%) Number of

Samples
fc

(N/mm2) CV (%) E
(N/mm2) ν

CB — — — 20 19.37 12 20176 0.23
LM 18 0.84 25 36 4.64 15 2499 —
GM 3 1.14 10 6 4.58 5 — —
BM 3 2.05 17 6 8.16 3 — —

The grids’ and anchors’ mechanical properties were provided by the manufacturers (Table 4).

Table 4. Geometrical and mechanical properties of grids and anchors as provided by manufacturers.

Material ID Tensile Strength (N/mm2) Elastic Modulus (N/mm2) Ultimate Strain (%)

GG ≥350 ≥27 ≥1.5
BG ≥1700 ≥70 ≥1.9
GA ≥440 ≥26 ≥1.7
BA ≥700 (ε = 0.2%) ≥150 ≥3.0

As seen from Tables 2 and 3, GM and BM elastic constants were not investigated during the
materials’ characterisation. However, these parameters were required for implementing our numerical
model. For GM, the manufacturer’s dataset only provided an upper limit of 8000 N/mm2 for the
compression modulus. For the purpose of our numerical analysis, the GM elastic modulus was
estimated using the following relationship (cf. [43]), Equation (1):

Ec = kc

( fc

10

)0.3
(1)

which is used to link the compression modulus Ec to the compression strength fc. Equation (1) can also
be empirically applied to mortars, as suggested in [44]. For the mortars used in our TRM application,
the coefficient kc can be estimated as equal to 3146, by using Ec and fc measured for LM (cf. Table 3).
Substituting this value and the fc of GM into Equation (1), the compression elastic modulus Ec of GM
was estimated as equal to 2489 N/mm2. Poisson’s ratios for LM, GM and BM were assumed to be the
same and all equal to 0.15. The assumed values of E and ν for LM, GM and BM are summarised in
Table 5.

Table 5. Assumed elastic constants of the used mortars.

Material ID kc E (N/mm2) N

LM — 2499 0.15
GM 3146 2489 0.15
BM — 9000 0.15

2.3. Characterisation of Mortar–Brick Interfaces

The initial shear strength of the mortar–brick interfaces, fv0, was estimated by using triplet tests,
according to the standard UNI EN 1052-3 (2007) [45]. The main results are summarised in Table 6 in
terms of mean values and coefficients of variation (CV).
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Table 6. Bond strength of mortar–brick and matrix–brick interfaces.

Interface ID Number of Samples fv0 (N/mm2) CV (%)

CB-LM 8 0.29 23
CB-GM 3 0.36 36
CB-BM 3 0.37 68

The CB-BM system is characterised by a high CV (cf. Table 6). A similar dispersion of values was
found in [46]. The standard UNI EN 1052-3 (2007) [45] provides a list of possible failure modes: triplet
crush, mortar joint shear cracking, brick shear cracking and debonding at the mortar–brick interface.
However, the most observed failure mode was debonding. The observed fracture modes are shown in
Figure 3.
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Figure 3. Observed triplet failure modes: (a) CB-LM 7/8; (b) CB-LM 1/8; (c) CB-GM 3/3; (d) CB-BM 3/3.

For the CB-LM system, seven of the eight tested specimens debonded at the inteface between
mortar and exterior bricks (Figure 3a), while just one triplet exhibited a crack along the mortar joint
(Figure 3b). All CB-GM specimens failed for debonding at the interface between mortar and interior
brick (Figure 3c). Finally, all CB-BM triplets (Figure 3d) showed the same fracture mode as that observed
for CB-LM specimens in Figure 3a. Since interface debonding was the predominant fracture mode,
the measured shear strength fv0 can be assumed as the mortar–brick interface bond shear strength.

2.4. In-Plane Diagonal Compression Tests

Diagonal compression tests were conducted on UM, GTRM and BTRM panels, conforming to the
standard ASTM E519 (2007) [47]. According to the test set-up schematisation in Figure 4a, a servo
hydraulic system with an electrical pump applied the diagonal compression load.
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The load was transmitted to the specimen corners through two steel shoes (upper shoe and lower
shoe, Figure 4a). A thin layer of shrinkage-free mortar was interposed between the steel shoes and
the masonry panel to prevent local brittle fractures at the contact surface. The tests were carried out
under displacement control, with a deformation rate of 0.08 mm/s. The vertical in-plane displacement
was monitored by a displacement transducer interposed between jack head and upper shoe, as shown
in Figure 4b,c for the specimens GTRM-1 and BTRM-1, respectively. The monitored displacement
corresponds to the relative displacement between upper and lower corners on the vertical diagonal.

The main experimental results in terms of peak loads (Pp), vertical peak displacements (δp),
their relative average values and failure modes are summarised in Table 7.

Table 7. Experimental results: peak loads, peak deformations and failure modes.

Specimen
ID

Pp
(kN)

Pp, av
(kN)

∆Pp, TRM/UM
(%)

δp
(mm)

δp, av
(mm)

∆δp, TRM/UM
(%) Failure Mode

UM 71 71 — 0.28 0.28 — Bed joint sliding

GTRM-1 146
154 +117

0.65
0.72 +157 TRM debondingGTRM-2 162 0.78

BTRM-1 198
183 +158

0.35
0.33 +18 Diagonal traction

BTRM-2 167 0.31

According to these results, both strengthening solutions exhibited an important increase in
the average load carrying capacity: +117% for GTRM and +158% for BTRM. Nevertheless, GTRM
presented a meaningful gain in the average peak displacement (+157%), unlike BTRM for which δp,av

increased only slightly (+18%).
The relationships between vertical displacement (δ) and vertical load (P) obtained from the tests
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The UM specimen presented an essentially linear elastic behaviour and a brittle fracture caused
by bond sliding at the upper 5th bed joint (Figure 6a). A similar behaviour was observed by Wang et al.
in [15]. Following the schematisation proposed in [15], GTRM curves can be divided into two parts: an
initial linear part, followed by a knee and a subsequent nonlinear part. The knee point (Figure 5) is
defined by Pk and δk (cf. Table 8).

Table 8. Experimental results: knee loads, knee displacements and estimated stiffness results.

Sample ID Pk
(kN)

Pk, av
(kN)

δk
(mm)

δk, av
(mm)

K
(kN/mm)

Kav
(kN/mm)

∆KTRM/UM
(%)

UM — — — 0.28 243 243 —

GTRM-1 136
142

0.41
0.39

332
365 +50GTRM-2 147 0.37 397

BTRM-1 — — — — 566 553 +128

This point is classically associated with the initiation of a crack in the bare wall [15], followed by
an abrupt decrease in stiffness. In the nonlinear part, the load keeps increasing while the reinforcement
debonds from the wall surface (Figure 6b). When the peak load is reached, bed joint sliding causes
the ultimate failure (Figure 6c). Moreover, it can be noticed that the GTRM-1 specimen exhibited a
smoother post-peak behaviour than GTRM-2. Finally, BTRM specimens presented a pre-peak linear
elastic behaviour and exhibited a typical diagonal failure immediately after the peak force, due to
traction in the horizontal direction. Due to these observed trends (Figure 5), Pk and δk have not been
defined for BTRM specimens (cf. Table 8). As shown in Figure 6d, diagonal cracks were observed both
in bricks and in the TRM layer matrix, demonstrating the reinforcement’s high efficiency.

Table 8 reports the estimated pre-peak stiffnesses (K) and their relative average values. For UM
and BTRM, the stiffness K is calculated using Pp and δp (Table 7), while for GTRM it is estimated using
Pk and δk. An important increase in average stiffness can be noticed for both strengthening systems,
especially for BTRM (+128%).

3. Numerical Investigation of Interface Properties

Interface bond cohesion (cb), defined as the interface bond shear strength at zero normal stress, is
an important requested parameter for the implementation of the numerical model. According to the
standard UNI EN 1052-3 (2007) [45], the average shear stress measured in triplet tests to estimate the
interface bond strength of a single specimen is calculated using Equation (2):

fv0,i =
Fmax,i

2Ai
(2)

where Fmax,i is the maximum shear load and Ai the specimen’s transversal area parallel to the mortar
joint. The average bond strengths for the three tested brick–mortar interfaces are listed in Table 6. It is
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believed that fv0 is affected by non-zero normal stress distribution and thus cannot be considered as
providing a realistic estimate of the interface bond cohesion. To provide a more realistic estimation of
cb, we adopted the following original strategy. The triplet shear test was modelled in Abaqus for each
of the three used mortars (LM, GM and BM), according to the standardised configuration, cf. UNI
EN 1052-3 (2007) [45]. All materials are considered isotropic and infinitely elastic, and perfect contact
was assumed between bricks and mortar. A thin layer of mortar elements, hereafter denoted as IL
(interface layer), was used to represent the mortar–brick interface where debonding was experimentally
observed, i.e., the fracture surface (Figure 3a,c,d). During the simulation, we monitored the numerical
average shear stress in the IL. The simulation was stopped when the monitored shear stress equalled
the measured bond strength fv0 of the studied mortar (cf. Table 6). This allows an analysis of the
numerical normal stress and shear stress distributions in the IL at the instant of debonding. Finally,
a new cb estimate is obtained with an iterative analytical procedure based on the Mohr–Coulomb
failure criterion [48,49], as a function of the numerical normal and shear stresses in the IL.

3.1. Triplet Numerical Model and Shear Test Simulation

Figure 7a shows the model set-up and the boundary conditions for the CB-LM triplet. Clay bricks
(CB) were discretised through continuum three-dimensional elements (C3D8R), with a side average
size of 10 mm.
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The same element type was used to model LM. Moreover, LM was divided into 20 layers,
each 1 mm thick (20 mm of total thickness), in which the one bonded to the exterior brick in Figure 7a
(red layer) represents the CB-LM IL. At exactly this last layer, a fracture surface was observed in
most (seven out of eight) of the CB-LM triplets tested during the experimental campaign (Figure 3a).
The elastic constants of CB and LM are reported in Tables 3 and 5, respectively. Finally, the steel plate
(Figure 7a), required in [45], was modelled with 5 mm thick shell elements (S4R), assumed to be in
perfect contact with the lower surface of the exterior brick. To reproduce the shear test, a vertical
displacement was imposed on the top nodes of the central brick (Figure 7a) in static conditions.
A preliminary mesh sensitivity analysis suggested that, during the simulation, there was no occurrence
of distorsion problems due to the high side-to-thickness ratio of mortar elements.
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Figure 7b,c shows normal stress σyy and shear stress τyz distributions in the CB-LM IL,
where positive values of σyy denote tensile stress. As stated above, these stress distributions are
observed when τyz (i.e., the average τyz in the IL) is equal to fv0 (0.29 N/mm2 for the interface CB-LM,
cf. Table 6). It can be seen that the distribution of τyz (Figure 7c) is not uniform and there is also a
non-zero normal stress contribution (σyy, Figure 7b).

3.2. Analytical Procedure to Estimate cb

Given the brittle nature of the materials used, it can be assumed that the crack, after initiation,
propagates instantaneously on the overall fracture surface. In our model, the fracture surface is
modelled by the IL. We suppose that there are some elements of the IL, denoted as CEs (critical
elements), that correspond to the real crack initiation areas, and we approximate cb as the bond
cohesion estimated for these areas. The following procedure applies the Mohr–Coulomb failure
criterion to locate the CEs in order to obtain an estimation for cb. Before illustrating the procedure,
some assumptions must be made. According to the Mohr–Coulomb failure criterion [48,49], the bond
strength τc

yz (the superscript c indicates damage initiation) generally depends on normal stress σyy as
follows, Equations (3) and (4):

τc
yz = cb − µσyy (3)

µ =
cb

σc
yy

=
cb

ft
(4)

where µ is the Coulomb friction coefficient. The critical normal stress in traction σc
yy in Equation (4) is

assumed to be equal to the average mortar bending strength ft (Table 3). The friction contribution was not
investigated during the experimental campaign because the triplet bending tests were not conducted with
increasing pressures. The procedure to estimate cb is as follows. A critical ratio (CR) is introduced to
locate the CEs of the CB-LM IL. Equation (5) expresses the critical ratio CRi where the subscript i indicates
the ith generic element of the CB-LM IL (Figure 7a), characterised by its σyy, i and τyz, i.

CRi =
τyz, i +

c′b
ft
σyy, i

c′b
(5)

Equation (5) is obtained by replacing Equation (4) in Equation (3) and inverting Equation (3).
Here, the superscript ′ indicates an attempted value, since the effective cb is still unknown.

The higher the value of CRi, the more critical the ith element is. Moreover:

• If CRi < 1, the area corresponding to the ith element is not a crack initiation site.
• If CRi = 1, the ith element is a CE, i.e., cracking initiates in the corresponding area.
• If CRi > 1, the corresponding area is assumed to be already fractured.

Since a crack propagates instantaneously after its initiation, c′b corresponds to the effective cb

when the maximum CRi is equal to 1. Figure 8 illustrates the iterative process to estimate cb through
Equation (5).

Buildings 2020, 10, x 10 of 20 

 
Figure 8. Iterative process to estimate bond cohesion. 

For the first iteration (“Start” case in Figure 8), cୠᇱ  can be taken as equal to fv0 (Table 6). The 
increment ∆cୠᇱ  can be positive or negative, depending if the maximum CR୧ is higher or lower than 
1, respectively. Figure 7b,c shows the location of the CEs for CB-LM IL with their σ୷୷ and τ୷. The 
corresponding cb (0.53 N/mm2) is reported in Table 9. 

Table 9. Estimated interface bond cohesion. 

Interface ID cb (N/mm2) 
CB-LM 0.53 
CB-GM 0.64 
CB-BM 0.88 

The same procedure, based on FE simulation and cb estimation, can be repeated for CB-GM and 
CB-BM triplets, according to the following important points: 

• As done for CB-LM (Figure 7b,c) to analyse the IL in the instant of debonding, σ୷୷ and τ୷ 
distributions must be observed when τ୷ തതതത is equal to fv0 of the corresponding triplet (Table 6).  

• For the CB-GM system, the IL was assumed to be located between the interior brick and the 
mortar joint because of the experimental evidence (cf. Figure 3c). 

For CB-GM IL and CB-BM IL, the CEs are approximately located in the same positions as for 
CB-LM IL. For the sake of brevity, we have not reported normal and shear stress distributions in the 
IL for the CB-GM and CB-BM systems. The estimated values of cb are reported in Table 9. It can be 
noticed that each one is greater than the corresponding measured fv0 given in Table 6. 

4. Numerical Model for the Diagonal Compression Test 

The developed FE model was imported in Abaqus following a simplifying micro-model 
methodology [48,49]. The bare masonry wall is made of expanded units, each one embedding a brick 
plus the half thickness of the adjacent bed and head joints (Figure 9a, cf. Section 2.1 for mortar joint 
thickness). 

 
Figure 9. Modelling of (a) masonry wall and (b) wall–reinforcement interaction. 

The wall units are modelled with continuum three-dimensional elements (C3D8), under the 
assumption of homogeneous, isotropic and infinitely elastic materials, whose brick elastic constants 

Figure 8. Iterative process to estimate bond cohesion.



Buildings 2020, 10, 196 11 of 21

For the first iteration (“Start” case in Figure 8), c′b can be taken as equal to fv0 (Table 6). The increment
∆c′b can be positive or negative, depending if the maximum CRi is higher or lower than 1, respectively.
Figure 7b,c shows the location of the CEs for CB-LM IL with their σyy and τyz. The corresponding cb

(0.53 N/mm2) is reported in Table 9.

Table 9. Estimated interface bond cohesion.

Interface ID cb (N/mm2)

CB-LM 0.53
CB-GM 0.64
CB-BM 0.88

The same procedure, based on FE simulation and cb estimation, can be repeated for CB-GM and
CB-BM triplets, according to the following important points:

• As done for CB-LM (Figure 7b,c) to analyse the IL in the instant of debonding, σyy and τyz

distributions must be observed when τyz is equal to fv0 of the corresponding triplet (Table 6).

• For the CB-GM system, the IL was assumed to be located between the interior brick and the
mortar joint because of the experimental evidence (cf. Figure 3c).

For CB-GM IL and CB-BM IL, the CEs are approximately located in the same positions as for
CB-LM IL. For the sake of brevity, we have not reported normal and shear stress distributions in the
IL for the CB-GM and CB-BM systems. The estimated values of cb are reported in Table 9. It can be
noticed that each one is greater than the corresponding measured fv0 given in Table 6.

4. Numerical Model for the Diagonal Compression Test

The developed FE model was imported in Abaqus following a simplifying micro-model
methodology [48,49]. The bare masonry wall is made of expanded units, each one embedding
a brick plus the half thickness of the adjacent bed and head joints (Figure 9a, cf. Section 2.1 for mortar
joint thickness).
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The wall units are modelled with continuum three-dimensional elements (C3D8), under the
assumption of homogeneous, isotropic and infinitely elastic materials, whose brick elastic constants are
given in Table 3. The units were bonded together by 1 mm thick interface joints (Figure 9a) discretised
with three-dimensional cohesive elements (COH3D8), which were used to introduce damage in the
masonry wall, and in particular the possibility of joint sliding and joint separation. With respect
to reinforcement, TRM layers were implemented as composite laminates with homogenised elastic
properties. They were discretised with two-dimensional shell elements (S4), positioned on the
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reinforcement plane (rp) and with normal rn (Figure 9b). Section 4.1 provides more details about
TRM layer modelling and properties. Once again, three-dimensional cohesive elements (COH3D8)
were used in the 1 mm thick interface joints, which bonded TRM layers to the wall substrate
(Figure 9b). These cohesive elements were employed to introduce damage at the TRM–wall interface
and, in particular, to allow for TRM debonding. The constitutive behaviour of the cohesive elements is
described in Section 4.2.

Finally, one-dimensional elements discretise the anchors of the strengthening system (Figure 9b).
More details are reported in Section 4.3.

4.1. Reinforcement Layer Modelling

Composite stacking for glass-based and basalt-based TRMs (Figure 10) was assumed according to
their respective construction techniques (Table 1).
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Summing the thicknesses of the laminate (Figure 10) and of the wall–TRM interface joint (1 mm,
Figure 10), the real total TRM thickness was obtained.

All materials employed in composite laminates were assumed to be homogeneous and infinitely
elastic. The matrices GM and BM are isotropic (Table 5). The grid/matrix plies (GG + GM, Figure 10a
and BG + BM, Figure 10b) are assumed to have orthotropic symmetry with two orthotropic axes
parallel to the fibres’ directions, and equivalent thickness heq

gm = 1 mm. Equation (6) is used to obtain
the equivalent fibre thickness heq

f , as a function of grid weight per surface unit γg, provided by the
constructors, and fibre mass density ρf (Table 10):

heq
f =

γg

ρf
(6)

Table 10. Grid mass and fibre density.

Material ID γg

(
g/m2

)
ρf

(
kg/m3

)
ρm

(
kg/m3

)
GG 1000 2600 —
BG 400 2750 —
GM — — 1400
BM — — 1580

The fibre volume ratio Veq
f of grid/mortar plies, Equation (7), enables the calculation of the

homogenised density ρgm with the rule of mixtures expressed in Equation (8) (cf. [50]), as a function of
fibre and mortar densities (ρf and ρm respectively, Table 10).

Veq
f =

heq
f

heq
gm

(7)

ρgm = Veq
f ρf +

(
1−Veq

f

)
ρm (8)
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Grid/mortar plies are treated as bidirectional symmetric composite laminates [0◦, 90◦, 90◦, 0◦],
in which each sub-ply is 0.25 mm thick. The rule of mixtures, similarly to Equation (8) for ρgm,
and composite laminate theory are used to calculate their associated ABBD matrices [50] and to obtain
grid/matrix plies’ homogenised elastic constants on the rp plane (Figure 10) (cf. Table 11).

Table 11. Homogenised properties of the grid mortar/plies.

Ply heq
f (mm) Veq

f ρgm

(
kg/m3

)
Erp

(
N/mm2

)
νrp Grp

(
N/mm2

)
GG + GM 0.384 0.384 1862 8464 0.12 2072
BG + BM 0.145 0.145 1750 14507 0.13 4863

The approximation of the symmetric laminate allows the deletion of coupling terms in ABBD
matrices [50]. The homogenised elastic constants out of the rp plane are taken as equal to the
corresponding mortar ones.

4.2. Constitutive Behaviour of Interface Joints

The constitutive model of the cohesive elements employed in the interface joints (Figure 9) assumes
a traction-separation (t-δ) law, with t the traction vector and δ the relative opening. This contact
law exhibits an initial linear elastic response, followed by damage softening [48,49], as depicted in
Figure 11.
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Here, the subscripts s, t and n are taken to denote in-plane shear components and the out-of-plane
normal component, respectively. Superscripts c and 0 are taken to denote damage initiation, while f
denotes failure.

The cohesive behaviour takes into account two different failure modes at the contact surface:
tensile cracking and shear sliding. According to the recent literature [48,51], Equation (9) [52] is used
to describe the initial linear elastic part as a function of traction t, stiffness K and separation δ:

t =


tn

ts

tt

 =


Knn 0 0
0 Kss 0
0 0 Ktt



δn

δs

δt

 = Kδ (9)

The diagonal components (Knn, Kss, Ktt) depend on the elastic and shear moduli of the
mortar (Em and Gm, respectively). Many equations have been proposed in the literature for this



Buildings 2020, 10, 196 14 of 21

purpose [48,49,53,54]. In this study, the stiffness components are obtained through Equations (10) and
(11) proposed in [54]:

Knn =
Gm(Em − 4Gm)

hm(Em − 3Gm)
(10)

Kss = Ktt =
Gm

hm
(11)

This interface model, appropriate for very thin layers, was adopted for its simplicity. For thicker
layers, more complicated models should be used, considering higher order terms (cf. [55]). For bed
and head joints, hm represents the effective thickness; for the contact surface between TRM and the
wall, hm is the thickness of the cohesive element (1 mm, Figure 9), thus allowing an analysis of the
two studied TRM techniques adopting the same mesh. Table 12 reports the elastic properties of the
different interface joints.

Table 12. Parameters of interface joint materials.

Interface Joint Mortar hm (mm) Knn
(
N/mm3

)
Kss (Ktt)

(
N/mm3

)
tc
n

(
N/mm2

)
Bed joint in UM LM 17 149 61 0.84

Head joint in UM LM 10 264 108 0.84
TRM–wall GM 1 2640 1087 1.14
TRM–wall BM 1 9503 3913 2.05

Damage propagation in the cohesive joints is taken into account in the post-peak phase.
The maximum stress criterion (MAXS, Abaqus) was used to identify local damage initiation [52].
The damage initiation criterion is met when one of the three components of t reaches its critical value,
Equation (12):

max
{
〈tn〉

tc
n

,
ts

tc
s

,
tt

tc
t

}
= 1 (12)

where Macaulay brackets 〈 〉 in Equation (12) indicate the positive part and imply that only tensile
stresses participate in damage initiation to the joint’s normal direction. The critical normal stress tc

n
is fixed and is assumed to be equal to the mortar bending strength ft (Table 3). The values of tc

n are
also reported in Table 12 for the different cohesive joints. According to the Mohr–Coulomb failure
criterion [48,49], critical shear stresses in Equation (12) (tc

s and tc
t ) will depend on the normal stress tn

similarly to Equation (3), as expressed in Equation (13):

tc
s = tc

t = cb − µtn (13)

where µ represents the Coulomb friction coefficient, already defined in Equation (4) as a function of cb

and ft. The values of cb and ft are reported in Tables 3 and 9, respectively. A user subroutine USDFLD
was developed to implement Equation (13) (cf. [52]). Damage propagation in the post-peak phase is
taken into account as follows, Equation (14):

t = (1−D)Kδ (14)

where D is a scalar damage variable increasing from 0 (damage initiation) to 1 (joint completely
damaged) during damage softening (Figure 11). As suggested in [48,52], an effective opening δeff

should be introduced, defined as follows, Equation (15):

δeff =

√
〈δn〉

2 + δs2 + δt2 (15)

Because the goal is modelling the elastic response before damage initiation, the damaged
response depends linearly on the effective separation δeff. Therefore, the only input for Abaqus
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is δf
eff − δ

0
eff

= 0.1 mm in the material description [52]. This value was chosen for all interface
joints, according to [49]. The evolution of the damage variable D during damage is described in
Equation (16) [56]:

D =
δf

eff

(
δmax

eff − δ0
eff

)
δmax

eff

(
δf

eff − δ
0
eff

) (16)

where δmax
eff is the maximum effective separation attained during the loading history, δ0

eff
the relative

effective separation at joint damage initiation and δf
eff the final effective separation, when the joint is

completely damaged.

4.3. Modelling of Anchors

Anchors were modelled through linear beam elements (B31), characterised by displacement
compatibility with masonry wall nodes. Numerical anchors, made of isotropic, homogeneous and
infinitely elastic material, are connected to the reinforcement layer in the rp plane by a node (Figure 9b).
According to the manufacturer’s specifications (Table 1), numerical GA represents a rectangular
cross-section of 7 × 10 mm2, while numerical BA is characterised by an equivalent circular cross-section
of area 14.5 mm2. Material properties, as provided by manufacturers, are listed in Table 4.

5. Results and Discussion

Figure 12a shows the bare wall surface of the realised numerical model, characterised by an
average mesh size of 30 mm, as suggested by mesh sensitivity analysis.
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Numerical anchors (round ticks, Figure 12a) are located according to the experimental configuration
(Figure 2b,d). Figure 12a also shows the upper (in red) and lower (in blue) imposed boundary conditions,
with a detail of the constrained nodes. The conditions applied to upper and lower vertices prevent
displacement in the Y direction. The vertical displacement imposed on the upper nodes allows the
transmission of the vertical load to the masonry panel during the simulation. In the lower part,
the mobile pins allow the constrained nodes to move along the panel edges. For GTRM and BTRM,
the same boundary conditions are also applied to the nodes of the TRM layers. The main general
features of the simulation approach are as follows:

• symmetry plane YZ;
• FE analyses performed in a dynamic regime, in order to better deal with the nonlinearity of the

constitutive cohesive law;
• imposed vertical displacements at the boundary (Figure 12a) in quasi-static conditions to simulate

the low jack displacement rate of the experimental tests (0.08 mm/s).
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A representation of wall–TRM laminate interactions is given in Figure 12b,c, for the GTRM and
BTRM systems, respectively. Experimental and numerical results are further compared in terms of
vertical load (P) and vertical displacement (δ).

Figure 13 shows the experimental and numerical P-δ curves.Buildings 2020, 10, x 15 of 20 
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The experimental and numerical trends are in fairly good agreement, despite the absence of a
post-peak softening phase for the GTRM and BTRM numerical curves. In particular, the numerical
model is able to catch the two-fold trend of GTRM experimental curves, characterised by the knee
point (Pk and δk) and also observed in [15]. The BTRM numerical curve (“num BTRM” in Figure 13)
was obtained by assuming that no damage occurs in the bed and head interface joints (Figure 9a).
Indeed, it was found that the numerical model omitted to reproduce the BTRM damage behaviour,
showing an absence of bed joint sliding. With the assumption of neglecting bed and head joint
sliding, the numerical BTRM linear elastic trend shown in Figure 13 predicts the experimental curve
more accurately.

Table 13 summarises the numerical results in terms of peak loads, peak displacements, relative
average values and failure modes, providing a comparison with the corresponding experimental values.

Table 13. Numerical results (peak load, peak displacement, failure mode) and comparison with the
experimental values.

Specimen
ID

Pp, num
(kN)

Pp, exp,av
(kN)

∆Pp, num/exp
(%)

δp, num
(mm)

δp, exp,av
(mm)

∆δp, num/exp
(%)

Numerical
Failure Mode

UM 78 71 +9 0.24 0.28 −14 Bed joint sliding
GTRM 161 154 +5 0.65 0.72 −10 TRM debonding
BTRM 206 183 +13 0.49 0.33 +48 TRM debonding

The average experimental peak loads are slightly overestimated by numerical predictions, with a
maximum error of 13% for BTRM. A good numerical correlation can also be noticed for UM and GTRM
average peak displacements, while a lower accuracy characterises the prediction of BTRM.

The numerical results for knee load, knee displacement, stiffness and relative average values are
compared with the corresponding experimental values in Table 14.
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Table 14. Numerical results (knee load, knee displacement, stiffness) and comparison with the
experimental values.

Specimen
ID

Pk, num
(kN)

Pk,exp, av
(kN)

∆Pk, num/exp
(%)

δk, num
(mm)

δk, exp,av
(mm)

∆δk, num/exp
(%)

Knum
(kN/mm)

Kexp, av
(kN/mm)

∆K num/exp
(%)

UM — — — — — — 325 243 +34
GTRM 116 142 −18 0.28 0.39 −28 414 365 +13
BTRM — — — — — — 420 553 −24

As for the experimental results, numerical stiffness Knum is calculated with Pp and δp for UM
and BTRM, and with Pk and δk for GTRM. The numerical model slightly underestimates both Pk

(–18%) and δk (–28%). GTRM stiffness is predicted with a good accuracy (error of +13%), although
more important deviations are observed for UM and BTRM. However, the values of ∆K provided in
Table 14 are compatible with the high dispersion of experimental results that typically characterises
these materials (cf. [8]).

Figure 14 shows the numerical load-displacement curves, with a focus on the critical points of
damage propagation. UM and GTRM exhibit bed joint sliding between 0.24 and 0.28 mm of vertical
displacement (points 1, Figure 14a).
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The reinforcement layer allows GTRM to achieve higher values of D than UM (part 1 of Figure 14b),
before the occurrence of sliding. Moreover, as schematised in [15], bed joint sliding is found to produce
an abrupt stiffness decrease (knee) in the GTRM curve. Points 2 in Figure 14a identify the initiation of
a quick crack propagation in the TRM–wall interface joint due to a critical TRM debonding. Crack
position and associated damage D (part 2 of Figure 14b) are approximately the same for GTRM and
BTRM. However, BTRM presents higher values of damage than GTRM in the TRM–wall interface
joints adjacent to boundary conditions. This is probably the consequence of neglecting damage in
the BTRM bed and head joints. For GTRM, the critical bond slippage of the bed joint underneath the
propagating crack leads to ultimate failure (point 3, Figure 14a). A critical bed joint sliding at peak
load was also observed for the experimental GTRM specimens, as shown in Figure 6c. For BTRM,
the ultimate failure (point 3, Figure 14a) is caused by the abrupt propagation of the crack indicated in
Figure 14b (part 2, BTRM).
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Finally, the proposed simplified micro-model approach allows us to reproduce UM and GTRM
experimental damage behaviour quite accurately (cf. Table 7). However, the numerical model is not
able to simulate the crack pattern characterising the diagonal traction failure mode of the experimental
BTRM. Moreover, the absence of a post-peak softening for the GTRM and BTRM numerical curves
is probably due to both the constitutive model and related parameters adopted to describe damage
softening in the cohesive elements. In the future, further work is required to explore these latter features.

6. Conclusions

This work proposed the experimental and numerical investigation of masonry panels strengthened
with two different commercial TRM techniques. The experimental campaign highlighted how both
strengthening systems produce considerable increases in load carrying capacity and stiffness with
respect to an unreinforced wall. These results are of crucial importance and make both reinforcing
techniques highly suitable for seismic retrofitting of historical masonry in earthquake-prone areas.
The different materials and construction methods employed in TRM layer application also affect
the damage behaviour and failure modes of the TRM-strengthened masonry. Despite the limited
number of tested samples, the experimental results are in agreement with the typical behaviour
of single-leaf masonry panels subjected to diagonal compression tests [8,14,15]. GTRM specimens
exhibited an initial linear behaviour followed by an abrupt decrease in stiffness (cf. Figure 5) and a
subsequent nonlinear response, characterised by TRM debonding. BTRM specimens failed due to
diagonal traction without showing intermediate damage. This latter failure mode ensures a more
efficient increase and exploitation of the original wall’s structural performance. The numerical model
was implemented following a simplified micro-model approach. Traditional traction-separation laws
were used to describe the constitutive behaviour of interface joints [48,49]. FE simulations showed
a good ability to predict experimental results, mostly in terms of macroscopic load-displacement
trend (Figure 13), peak loads and stiffness (Tables 13 and 14). The deviations of the numerical results
from the experimental ones are compatible with the experimental dispersion typically found in
the literature for these materials [8]. Moreover, the numerical model was found to be accurate in
reproducing the experimental damage behaviour and failure modes of UM and GTRM with good
accuracy. This feature also determines a good prediction capacity for estimating UM and GTRM
experimental peak displacements. A theoretical basis for the simulated crack pattern can be found in
the experimental literature [15]. For these reasons, the numerical model can be used to explore optimal
TRM design options in the future.
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