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Abstract: Solar radiation provides the most significant natural energy in buildings for space heating
and daylighting. Due to atmospheric interference, solar radiation received at the Earth’s surface
consists of direct beam and diffuse radiation, where diffuse can be further broken down into longwave
and visible radiation. Although each of these components co-occurs, their influence on the indoor
visual and thermal conditions of a building differ. This study aims to analyze the influence of the
various components of solar radiation on the indoor thermal and daylighting of a passive solar
building. Thus, a pyrheliometer, pyranometer, shaded-pyranometer, and pyrgeometer mounted on
a SOLYS 2 (Kipp & Zonen, Delft, Netherlands) dual Axis sun tracker, were used to monitor direct,
global horizontal, diffuse and downward longwave radiation, respectively. The seasonal indoor air
temperature and relative humidity were measured using an HMP 60 temperature relative humidity
probe. A Li-210R photometric sensor was used to monitor the indoor illuminance. The summer and
winter indoor air temperature, as well as relative humidity, were found to be influenced by diffuse
horizontal and global horizontal irradiance, respectively. In summer, the indoor air temperature
response to diffuse horizontal irradiance was 0.7 ◦C/h̄W/m2 and 1.1 ◦C/h̄W/m2 to global horizontal
irradiance in winter, where h̄ is 99.9 W/m2. The indoor daylighting which was found to be above
the minimum office visual task recommendation in most countries, but within the useful daylight
illuminance range was dominated by direct normal irradiance. A response of 260 lux/h̄W/m2 was
observed. The findings of the study support the strategic locating of the windows in passive solar
design. However, the results show that north-facing clerestory windows without shading device
could lead to visual discomfort.

Keywords: passive solar design; daylighting; solar heating; indoor comfort; energy efficiency

1. Introduction

Globally, the building sector consumes over 30% of the total final energy, having
increased by more than 35% since 1990. The building sector is also responsible for 30% of
greenhouse gas (GHG) emission. Additionally, it accounts for half of the world electricity
demand, with some region electricity consumption increased by 500% [1–3]. Space heating
and lighting are the primary energy consumers in commercial buildings, with heating
accounting for 55 to 60% and lighting responsible for 27 to 40% [4]. Building designs have
been transformed to reduce the energy consumption in buildings and mitigate the resultant
GHG emission. They are designed to harness solar energy to enhance indoor thermal and
visible conditions [5]. On the other hand, uncontrollable admittance of solar radiation
to the inner space of a building can result in overheating and visual discomfort. Hence,
a selective admittance of solar radiation is required for the effective utilization of solar
energy in the built environment.

Alteration of atmospheric components such as gas molecules, water vapor, and aerosol
split the solar radiation at the Earth’s surface into various components [6]. These compo-
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nents are mainly direct and diffuse radiations, with both radiations, further divided into
global horizontal radiation, upward (albedo) and downward longwave radiations. Based
on the phenomena of occurrence, each of the components of solar radiation transmits to
the Earth’s surface possesses a different amount of thermal and visible energy.

The concept of selectively admitting solar energy for the indoor environment is as
known as passive solar design. Passive solar design adopts various heat movement and
strategic locating of the windows to utilize solar radiation for indoor thermal and visual
comfort. The positioning of the windows with appropriate shading device also allows
selective seasonal sun rays admission, as a means of avoiding overheating during the sum-
mer season. The operation of the building windows and the availability of solar radiation
play a significant role in achieving an effective design. Therefore, the findings of this study
are relevant to builders, glazing (glass) materials manufacturers, and householders. The
findings will provide insight into the thermal behaviour and daylighting indoors due to
various solar radiation components. At large, orientation, operations, and glazing mate-
rials that determine the components solar radiation transmitted indoors can be carefully
considered.

This study aims to analyze the influence of direct, global, diffuse, and downward
longwave radiations on the thermal condition and the daylight illuminance of a passive
solar building office space. In the context of this study, thermal condition is considered as
the indoor air temperature and relative humidity.

2. Components of Solar Radiation

Solar radiation reaching the Earth’s atmosphere is composed of 90% ultraviolet, 40%
visible, and 50% infrared; where ultraviolet constitute shortwave radiation and visible
and infrared are longwave radiations. Upon arrival, the radiation is subjected to reflection
by the outer layer of the Earth’s atmosphere; approximately 60% is transmitted, and the
remaining is lost back to space. As a result, the average solar radiation flux density at
the Earth’s surface, known as solar constant varies from 0 to 1000 W/m2 [7,8]. The solar
constant at any given location on the Earth’s surface depends on the latitude, season, time
of day, and sky formation [9].

The transmitted solar radiation is subjected to further attenuation in the form of
absorption. Atmospheric absorption occurs in the form of selective and nonselective ab-
sorption [10,11]; where the absorption of the solar radiation spectrum based on wavelength
is referred to as selective absorption. Due to such absorption, ultraviolet radiation, with
a wavelength lower than 0.3 µm, is often assumed not to reach the Earth’s surface [11].
Additionally, approximately 20% of near-infrared (shortwave radiation) is absorbed by
atmospheric HO2 and CO2 molecules. However, nonselective absorption affects the entire
spectrum of solar radiation. Atmospheric absorption is responsible for the higher and
less peaky extraterrestrial solar radiation spectrum compared to that at the Earth’s sur-
face [12]. Nonselective absorption is mainly as a result of aerosols at different altitude in
the atmosphere.

Another form of interference solar radiation undergoes before getting to the Earth’s
surface is atmospheric scattering. This phenomenon occurs when atmospheric molecules
prove unbreakable by the photons of solar radiation, thereby scattering the radiation in all
directions. The main components in the atmosphere that constitute scattering are aerosols,
H2O, N2, and O2 [13]. Scattering affects the visible and infrared spectra only of the solar
radiation and depends on their wavelength. Although, it did not influence the wavelength
nor energy but alters the direction of propagation.

Vis-à-vis solar radiation observation and measurements, direct or beam radiation is
the solar radiation that reaches the Earth’s surface without attenuation. Whereby, direct
radiation measured on a horizontal plane on the Earth’s surface is referred to as direct
normal irradiance. On the other hand, diffuse radiation is the scattered solar radiation
from the atmosphere to the Earth’s surface. The fraction reflected to the atmosphere or
space by the Earth’s surface (ground and structures) or the outer layers of the atmosphere,
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respectively, are referred to as albedo. The sum of direct and diffuse radiation reaching
the Earth’s surface, excluding albedo, is called global radiation. Global radiation can be
obtained on a vertical and horizontal surface. Measured global radiation on a horizontal
plane is called the global horizontal irradiance [14,15]. For clarity on the various solar radi-
ation terminology, irradiance is a term used for the instantaneous flux or radiative power
of measured solar radiation. Additionally, irradiation is the radiative energy integrated
over a specified period, an hour, day, month, or year.

3. Building and Site Description

A passive solar building in the SolarWatt Park at the University of Fort Hare, Alice
campus was used as a case study. Alice is in latitude 32.8◦ south and longitude 26.8◦ east at
an altitude of 540 m in the Eastern Cape of South Africa. The local climatic is characterized
by an average dry bulb temperature of 29 ◦C in summer and 15 ◦C in winter [16]. The
average solar radiation experienced in the summer is 606.06 W/m2 and 346.17 W/m2 in
winter [17]. A photo of the passive solar building used is shown in Figure 1.
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Figure 1. Passive solar building in SolarWatt Park at the University of Fort Hare in Alice.

The building is orientated approximately 15◦ east of north with a total floor area of
10 m × 8 m (80 m2). The floor arrangement of the building is made up of a conference
room at the east wing of the building, office space and indoor solar simulator laboratory
occupying the west wing. The conference room and office space stretch from the north
to the south elevation of the building. The two-sash glass sliding north-facing door in
the conference room admit the low angle sun’s rays to the north floor area, as well as the
three-sash glass folding-door in the office space. Likewise, the clerestory windows are used
to channel solar radiation to the southern floor area of the conference room and office space.
Hence, passive solar space heating can be achieved in the winter season and enhanced
daylighting. However, the 1 m eaves prevent the high angle sun rays in the summer season.
The results and discussions were based on the thermal and daylighting response of the
office space.

4. Methodology
4.1. Solar Monitoring System

A solar monitoring station in SolarWatt Park was used to measure the various solar
radiation components. As discussed in Section 2, the components of solar radiation mea-
sured include direct normal irradiance (DNI), diffuse horizontal irradiance (DHI), global
horizontal irradiance (GHI) and downward longwave irradiance (Ld). To simultaneously
monitor the aforesaid solar radiation components, SOLYS Gear Drive (SGD) sun tracker
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was used. A photo of the setup SGD sun tracker and various radiometers are shown in
Figure 2.
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Figure 2. SOLY Gear Drive dual-axis sun tracker measuring the selected components of solar
radiation in SolarWatt Park, Alice.

In Figure 2, the SGD sun tracker comprises of a CHP 1 pyrheliometer, CGR4 pyrgeome-
ter and two sets of CMP10 pyranometers. The SGD sun tracker was designed to offset the
diurnal and seasonal movement of the Earth [18]; thereby, continually pointing the payload
toward the sun. The motion of the payload is aided by a sun sensor installed in the system.
The sun sensor identifies the area in the sky with maximum solar intensity and directs the
payload to that region. Besides the sun sensors, the tracker uses the geographic coordinate
and local time obtained by the integrated GPS antenna to track the daily movement of the
sun. Thus, the pyrheliometer which measures the DNI is continually pointed towards the
sun’s disc during the day.

On the other hand, the pyrgeometer and two pyranometers located on the platform
of the sun tracker, move about their axis. The pyrgeometer is used to measure the down-
ward reemitted (infrared) radiation of the atmosphere, which is referred to as downward
longwave (Ld) radiation. The pyranometer at the extreme right of the platform, monitors
diffused solar radiation. Hence, the shading assembly uses the shading balls to shield the
shaded pyrgeometer and pyranometer from direct solar radiation. The pyrgeometer was
shaded to avoid the build-up of heat by shortwave radiation. The unshaded pyranometer
in the middle of the platform measures the combine direct and diffuse radiation also known
as GHI.

Like most Kipp Zonen CMP series, the abovementioned radiometers use a passive
thermal sensing element called a thermopile to detect irradiance. The thermopile consists of
thermocouple junction pairs connected in series. The measurement (hot) junction of one of
the thermocouples absorbed thermal radiation, increasing its temperature. The difference
between the measurement and a fixed temperature reference (cold) junction produces a
voltage directly proportional to the differential temperature created. This concept is known
as the thermoelectric effect [19]. Although thermopiles’ construction differs and varies
with the model, the principle of operation is the same. However, the sensitivity of a given
radiometer thermopile depends on its physical properties [20]. The specification of the
radiometers used in the study are summarised in Table 1.
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Table 1. Specification of the radiometers.

Radiometer
Specification

Spectral Range (µm) Sensitivity
(µV/W/m2) Response Time (s)

Pyheliometer 0.2 to 4 7 to 14 <5
Pyrgeometer 4.5 to 42 5 to 10 <18
Pyranometer 0.3 to 2.8 7 to 14 <5

The response time in Table 1 refers to the delay taken by the individual radiometer
to respond to incident radiation. Additionally, the said response time is the time taken
for a particular radiometer to deliver 95% of its measurement following a step-change
in irradiance.

4.2. Thermal Monitoring

The indoor air temperature and relative humidity of the office space were measured
using HMP 60 temperature relative humidity probes. Figure 3 shows the inner space of the
office and a setup outdoor weather station. As shown in Figure 3a, the HMP60 probe was
suspended at a height of 1.8 m. This is to ensure that the temperature felt by the occupants
is measured. Additionally, at that height, the probe was not interfering with the occupant’s
activities. The ambient air temperature and relative humidity of the building were also
monitored with a similar HMP 60 probe. Although, the ambient HMP 60 temperature
relative humidity probe was housed in a 6-plate natural aspirated radiation shield, as
shown in Figure 3b.
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The white painted radiation shield reflects solar radiation from the HMP60 probe.
Meanwhile, the louvre allows natural free flow of air through the shield, keeping the
probe close as possible to the ambient air temperature (eliminating solar effect) and water
vapor [21]. The HMP60 probe uses a platinum resistance temperature (PRT) detector
to measure air temperature. The PRT detector sensed temperature by measuring the
electrical resistance of a noble metal such as platinum. The resistance of the platinum
wire is measured, passing DC through it, and obtaining its voltage. The measured voltage
is converted into temperature using a calibrated equation [22,23]. The measurement
specifications of HMP 60 probe temperature and relative humidity sensor are given in
Table 2 [24].
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Table 2. HPM 60 temperature and relative humidity sensors specification.

Parameters Measurement Range Accuracy (±)

Temperature (◦C) −40–60 0.6

Relative humidity (%)
at 0–40 ◦C

0–90 3
90–100 5

at 0–40 ◦C
and +40–60 ◦C

0–90 5
90–100 7

Also, air relative humidity is measured by a capacitive relative humidity sensor. This
sensor is a capacitor of hygroscopic dielectric material between a pair of the electrode.
At equilibrium conditions, the amount of moisture present in the hygroscopic material
depends on both ambient air temperature and water vapor pressure. Given that relative
humidity is also a function of air temperature and water vapor pressure, a relationship
exists between relative humidity, the moisture present in the sensor, and sensor capacitance.
This relationship is the principle of operation of the capacitive humidity instrument [25,26].

4.3. Illuminance Measurement

The illuminance level of the office space was measured by two sets of LI-210R cosine
correction photometric sensors. The LI-210R photometric sensor (Li-Cor, Lincoln, Nebraska,
United States of America) uses a precision filtered silicon photodiode (blue enhanced)
that is sensitive to visible light to measure the illuminance level of a given space. The
silicon photodiode is mounted on a cosine-corrected head. In measuring radiation, cosine-
corrected sensors operate base on the principle of Lambert’s cosine law. The law states that
the radiation observed from an ideal diffusely reflecting surface is directly proportional to
the cosine of the angle θ between an observer’s line of sight and the surface normal. The
correction (Lambert surface) provide a uniform diffusion of the incident radiation. Thus,
irradiance is the same in all direction from which it can be measured. The LI-210R sensor
has a sensitivity of 30 µA per 100 klux and a response time of <1 µs [27].

The light perceived by an occupant sitting at the desk was the target of the measure-
ment. To this effect, one photometric sensor was placed on the left (east side) and right
(west side) desk array, as shown in Figure 3a. The sensors were located in an open space,
free of light rays’ obstacle to avoid shading. Additionally, the occupants (students and
technicians), were requested not to tamper with the sensor and obstruct light rays around
the measurement area.

5. Results and Discussions

During the period of this research, the building was a working place for five students
and two technical staff members, while other students and staff members visited peri-
odically. Hence, the office space entrance (north facing) door was always open during
operation hours, which was observed to be 8:00 to 17:00 weekdays. The conference room
was closed, as it was occasionally used. The students often used the east side of the office
space for their research activities while the west side served as a working area for the
technicians. It should be mentioned that during the research period, no mechanical cooling
or heating system was used in the building.

5.1. Analysis of Solar Radiation Components

The solar radiation components were measured concurrently with the indoor thermal
conditions and illuminance level of the building from April to December 2017. Figure 4
shows the measured solar irradiance components during the entire monitoring period.
Due to the clustering appearance of the measured solar irradiance, which impedes the dis-
tribution pattern visibility, the 125 period moving average of the parameters was presented
in Figure 4.
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As stated earlier, the reemitted solar radiation from atmospheric to the Earth’s surface
is known as downward longwave (Ld) radiation. This radiation is essential in regulating
the temperature (warming) of the Earth [28]. Research studies show that the average
Ld radiation at the Earth’s surface ranges from 343.5 to 420 W/m2 [29–31]. The mea-
sured Ld radiation in Figure 3 was not far from literature findings with a range of 235.8
to 443.2 W/m2. Assuming GHI ≥ 1 W/m2 to be periods that the sun is present, and
Ld ≥ 400 W/m2 are maximum Ld irradiance. In the presence of the sun, 78% of maximum
Ld irradiance was observed in the period with minimum DNI (< 10 W/m2) and the average
DHI was 222.9 W/m2. The above scenario tends to agree with theory [32,33], an increase
in the atmosphere content such as water vapor, dust particles, and gas molecules increase
the absorption of DNI and the re-emission of Ld radiation. This behaviour results in a
minimal DNI and higher DHI at the Earth’s surface. From Figure 3, it was also observed
that between June and August, as well as in May; the beginning of the winter season, GHI
was lower than DNI. Over the four months, an average GHI of 139 W/m2 and 215.9 W/m2

DNI was obtained. An opposite pattern was observed as the summer season approaches,
moving from September to December. In the summer season, the average GHI and DNI
were 245.2 and 208.8 W/m2, respectively. The DHI was observed to follow the same trend
with an average of 37.3 W/m2 in summer and 87.6 W/m2 in winter. It is often assumed
that the winter season presents a more transparent atmosphere as compared to the summer
season [34,35], the findings obtained from Figure 4 tend to support the assumption. To
further analyze the seasonal distribution of the solar radiation components concerning
atmospheric conditions, selected clear sky and overcast days in summer and winter season
are given in Figure 5.

In the context of this study, the sky classifications were based on the shape of the
measured solar radiation (GHI) distribution. A regularly distributed irradiance profile
serves as a clear sky day while an irregular irradiance distribution was used as an overcast
sky day. Thus, 12 and 13 November 2017, respectively, represents the typical summer clear
sky and overcast days. Typical winter clear sky day was represented by 29 July 2017, and
30 July 2017 serves as an overcast winter day. Theoretically, a clear sky is characterized by
high atmosphere transparency (clearness index; KT ~ 0.80) induced by reduced air mass,
aerosols, water vapor, and gas molecules in the atmosphere. Alternatively, a dense sky with
KT ≤ 0.17 is a distinctive property of an overcast sky. In both sky formations, a higher KT
value implies a more transparent atmosphere [36–39]. The former sky condition delivers
maximum DNI and minimum DHI, a reverse scenario is a case for the latter. As seen in
Figure 5, the measured components of solar radiation agree with theory. On a clear sky
day, the peak GHI was higher than that of the DNI by 59 W/m2 in summer and lesser by
179.5 W/m2 in winter. In both seasons, in the absence of DNI due to overcast sky condition,
the DHI was equal to the GHI. Irrespective of the seasons, a relatively equal Ld irradiance
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was observed. Moreover, the maximum Ld irradiance was seen in overcast summer day;
higher by an average of 33.0 W/m2. Winter clear sky day had the least Ld irradiance, lower
by an average of 30.9 W/m2.
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5.2. Thermal Response Analysis

The outdoor air temperature and relative humidity of the building during the research
period as well as their corresponding indoor air temperature and relative humidity are
given in Figure 6. Additionally, to enhance the visibility of the temperature and relative
humidity distribution, the 125 moving average of both parameters were obtained. For
the entire period, the average outdoor air temperature and relative humidity were 15 ◦C
and 66%, respectively. The corresponding average indoor air temperature was found to
be 7 ◦C higher, and the relative humidity was 26% lower. The outdoor air temperature as
indicated in Section 4, does not include the effect of solar radiation, as well as the indoor
air temperature. The chilling effect of the wind, therefore, result in relatively lower outdoor
air temperature. According to the South Africa Bureau of Standards [40], the average
indoor air temperature and relative humidity were within the thermal comfort zone; given
a range of 20 to 24 ◦C and 30 to 60% for recommended indoor air temperature and relative
humidity, respectively.
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A total of 8609 data entries was obtained for summer and 4365 in winter. The measured
components of solar radiation were further divided into 16 classes of h̄ width, where h̄ is
99.99 W/m2. The average air temperature and relative humidity of the indoor and ambient
air of the building in each of the solar radiation component classes were also obtained. The
seasonal response of the indoor and outdoor air temperature and relative humidity to the
various components of solar radiation are given in Figures 7 and 8.

In both Figures 7 and 8, class 0 to 99.99 W/m2 was the most occurrence with an
average of 72%: excluding downward longwave radiation. In the class of 0 to 99.99 W/m2,
approximately 80% of the data were measured during the absence of the sun, i.e., GHI < 1.
The average resultant indoor air temperature and relative humidity during the specified
period were, respectively, 23 ◦C and 44% in summer, and 18 ◦C and 33% in winter. Addi-
tionally, an increase in occurrence was observed as the DNI increases. However, a relatively
constant indoor and outdoor temperature with a swing of 3 ◦C and 8 ◦C, respectively, in
both seasons were observed. A different behaviour was seen in the GHI and DHI distribu-
tion, the occurrence of the radiation decreases as the irradiance increase in both seasons.
Compare to DNI distribution; GHI distribution resulted in a vigorous temperature swing
of 5 ◦C indoors and 10 ◦C outdoors in summer and winter. The indoor and outdoor air
temperature swing due to the DHI distribution in summer was 5 ◦C and 9 ◦C, respectively.
In winter, the air temperature in both environments this were reduced by 3 ◦C. Ld occurred
in only three classes and was never observed in the class of 0 to 99.99 W/m2.
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However, the Ld irradiance distribution resulted in the maximum indoor air tempera-
ture swing of 8 and 6 ◦C outdoors. The response of the indoor and outdoor air temperature
and relative humidity to the components of solar radiation is summarised in Table 3.

Table 3. Thermal response of the passive solar building to solar radiation components.

Season
Solar

Radiation
Component

Indoor Thermal Response Outdoor Thermal Response

Temperature
(◦C/h̄W/m2)

Relative
Humidity

(%/h̄W/m2)

Temperature
(◦C/h̄W/m2)

Relative
Humidity

(%/h̄W/m2)

Summer

DNI 0.5 1.0 1.0 3.9
DHI 0.7 1.6 1.3 4.5
GHI 0.6 1.0 1.1 4.3
Ld 0.6 0.3 0.9 1.1

Winter

DNI 0.4 0.9 1.3 4.5
DHI 0.3 0.5 0.6 1.5
GHI 0.6 1.1 1.0 3.7
Ld 0.4 0.4 1.1 2.5

The findings in Table 3 is attributed to the method adopted in measuring the air
temperature and relative humidity. As stated earlier, the effect of solar radiation was
excluded from both parameters. Hence, DNI had the least influence on the indoor air
temperature and relative humidity irrespective of the seasons. The DHI and GHI were
however found to be the most influential in the summer and winter seasons, respectively.
As per the design of the building discussed in Section 3, the overhanging roof used as a
shading device prevents summer high angle direct sun rays from entering the inner space
of the building. Therefore, DHI due to scattered sun rays dominates the inner space in
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summer. The relatively higher transparent atmosphere, which is typically experienced
in winter, results in the lower influence of the DHI on the air temperature and relative
humidity in the season. Additionally, in summer, the design of the building was meant to
admit direct sun rays. It should be noted that the GHI class of 1500–1599.99 W/m2 with a
resultant indoor air temperature of 34 ◦C and 37 ◦C outdoor, as well as an occurrence of
0.01% was not included in the computed thermal response in Table 3. Due to the limited
occurrence frequency and wide temperature and relative humidity margin obtain from the
specified GHI class, the class was considered as an outliner.

Furthermore, the influence of sky formation on the thermal behaviour of the building
was also analyzed. Hence, the corresponding indoor and outdoor air temperature and
relative humidity of the selected seasonal sky formation days were used for the said
analysis. Figure 9 shows the seasonal indoor and outdoor air temperature and relative
humidity distribution under various sky formation.
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In Figure 9, overcast days resulted in a relatively constant indoor and outdoor air
temperature. In both seasons, the average indoor and outdoor air temperature change rate
was approximately 0.1 ◦C/h. Regarding the indoor and outdoor relative humidity, the
change rates were 0.4 and 0.6%/h, respectively, in summer. The same trend was observed
in the winter season; the outdoor relative humidity change rate was higher by 0.6%/h
than the indoor relative humidity. Clear sky days, however, generated a more dynamic
air temperature distribution, resulting in an average change rate of 0.2 ◦C/h indoors and
0.4 ◦C/h outdoors in both seasons. The corresponding average indoor relative humidity
change rate was 0.4%/h and 1.4%/h. Nonetheless, the seasons were observed to be the
most influencing factor of the indoor air temperature and relative humidity distribution
within the thermal comfort zone rather than the sky formation. In the summer overcast
day, the average indoor air temperature and relative humidity were in the thermal comfort
zone by 2 ◦C and 25%, respectively. The indoor air temperature in winter was however
in the thermal comfort zone by an average of 3 ◦C on the clear sky day. Although, the
corresponding indoor air relative humidity was below the thermal comfort zone by an
average of 6%.

5.3. Indoor Illuminance Response

The indoor illuminance, which comprises artificial (electric) and natural (daylighting)
lighting was monitored from April to May 2017. As indicated earlier, the illuminance
measurement focuses on the light perceived by an occupant at the left (east side) and right
(west side) desk array in the office space. The office space (indoor) illuminance is, therefore,
the average illuminance measured at both desk array. The illuminance at both desk array
and the average indoor illuminance is given in Figure 10.
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Figure 10. Indoor illuminance distribution of the passive solar building.

A set of four cool white, fluorescent fixtures are the electric lighting used to illuminate
the office space alongside the daylighting. Each of the fixtures consists of two 58 W lamp.
Thus, in Figure 10, region (a) indicates the period with all lamps on, and region (b) is the
period with all lamps off. In the absence of the sun, the average indoor illuminance with
all lamps switched off was 31 lux, and 460 lux with all lamp switched on. The indoor
daylight illuminance which takes into consideration only the period that the sun was
present (07:00–17:00) and all lamps switched off was 850 lux. As indicated in Figure 10,
a combination of daylighting and electrical lights are used in most instances, during such
period, the average illuminance of the office space was found to be 1300 lux.

Also, the influence of sky formation on the indoor daylighting was analyzed taking
29 April and 4 May as a clear sky and overcast day, respectively. The identified clear sky
day had a regular GHI distribution with a maximum irradiance of 696.0 W/m2. Contrarily,
an irregular GHI distribution with a maximum below 300 W/m2, was observed in the
overcast day. Figure 11 shows the GHI and indoor illuminance of the building on the
selected clear sky and overcast days.
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In Figure 11, the average indoor daylight illuminance was obtained by subtracting
the illuminance of the lamp (460 lux) from the illuminance with all lamp switched on. On
a clear sky day, the average indoor daylight illuminance was 870 lux and a maximum
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1740 lux. The average and maximum illuminance observed in the overcast day were 710
and 1340 lesser than those on a clear sky day. In both days, the average combined lamplight
and daylight illuminance was approximately double that of the daylight.

A brief overview of lighting performance evaluation is presented to elaborate on
the practical implication of the findings of Figure 11. Over the years, various standards,
guidelines, and research metrics have set illuminance requirement for a series of visual
task. The standard illuminance recommendation for visual task varies from one country to
the other. For example, 500 lux is recommended for general office work by the Brazilian
NBR 5413 [41], while the European EN 12464-1 standard, requires a minimum of 1500 lux,
in electronic workshops, 300 lux in classrooms, and 300–500 lux in office space [42–44]. The
IESNA in the United States recommend 300 lux in office space [45], and the CIBSE in the
United Kingdom find 500 lux favorable in the same environment [46].

Meanwhile, Daylighting Autonomy (DA) and Useful Daylight illuminance (UDI) are
the most commonly used metrics for evaluating daylighting performance in an interior
space among researchers [47]. In this regard, DA is the percentage of annual daytime
(occupied) hours that a given point is within a specified minimum daylight illuminance
level. Although, no specific threshold illuminance is given for DA, recommended stan-
dards for a given visual task is often used; since most standards are based on minimum
illuminance [48–51].

On the other hand, UDI is defined as the percentage of annual occupied time that
a given point is within a specified range of daylight illuminance [52]. In most research
studies, the range of daylight illuminance is given as 100–2000 lux [53–55]. Hence, UDI can
be classified into three matric bins; daylighting below 100 lux is considered inadequate and
requires electric lighting for visual comfort. Daylighting between 100 and 500 lux produces
adequate light level but can be supplemented by electric lighting, while 500–2000 lux is
desirable, tolerable and can result in discomfort with direct sun rays present [56].

The indoor daylight illuminance response to the various components of solar radiation
was also analyzed. Similarly, the measured solar radiation during the indoor illuminance
monitoring period was divided into 11 classes of h̄ width. The corresponding indoor
illuminance distribution in each of the classes was also obtained. Figure 12 shows the
response of the office space illuminance to the various components of solar radiation.

Class 0 to 99.99 in Figure 12 represent combined electric light and daylight illuminance,
while the other classes indicate daylight (sun present) illuminance of office space. Like
Figures 7 and 8, class 0 to 99.99 W/m2 had the maximum occurrence considering DNI, DHI,
and GHI distributions. In the above mentioned class, approximately 25% of the measured
illuminance was observed in the presence of the sun. The daylighting found in the presence
of the sun with all the lamps switched off, was higher than the combined illuminance by
an average of 260 lux. Nevertheless, with all the lamps switched on and the sun present,
the obtained daylight illuminance due to the variation of the DHI, was lesser than that
of the combined illuminance by 618 lux. In the same scenario, the variation of DNI and
GHI, however, led to a higher daylight illuminance by 230 and 100 lux, respectively. In
the other classes, the indoor illuminance tends to increase as the various components of
solar radiation increases, excluding the Ld irradiance. Notwithstanding, a smaller DHI
(100–599.99 W/m2) range was observed to influence the daylight illuminance. It was also
noted that as the DHI increases the frequency of occurrence decrease. The variation of DHI
was found to result in a maximum indoor illuminance of 1420 lux, occurring 0.1% of the
entire observation.

Contrarily, the maximum daylighting observed due to the variation of the DNI was
1540 lux with an occurrence frequency of 4%. Meanwhile, 10% was the maximum oc-
currence frequency obtained in DNI distribution of the class of 800–899.99 W/m2, and a
resultant daylight illuminance of 1440 lux. In Figure 12, the combination of the DNI and
DHI distribution was evidenced in the GHI profile. The GHI distribution maintained a rea-
sonably constant occurrence frequency and broader irradiance (100–899.99 W/m2). Among
all the solar radiation components considered, a variation of the GHI of class 700 to 799.99



Buildings 2021, 11, 34 14 of 18

resulted in the highest daylighting of 1650 lux; occurring 2% of the entire observation. The
passive attribute of the Ld irradiance was expected, given that Ld radiation is a factor of the
infrared spectra of solar radiation rather than the visible spectra. The daylighting response
of the office space to the various solar radiation components is summarised in Table 4.
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Table 4. Daylight illuminance response of a passive solar building office space to solar radiation
components.

Solar Radiation Component Illuminance Response (lux/h̄W/m2)

DNI 260
DHI 100
GHI 170
Ld 25

The findings in Figure 12 and Table 4 agrees with the energy balance of the earth to the
atmosphere system given in Section 2. DNI which was said to be non-attenuated radiation
from the sun, was found to have the maximum influence on daylight illuminance. The vast
impact of the DNI on the daylighting was not surprising given that before atmospheric
interference, solar radiation is primarily in the visible region [12]. The absorbed solar
radiation by the atmosphere is converted mainly into thermal energy. The proportion
of thermal energy is represented by the Ld irradiance, which had little or no influence
on daylighting. In addition to absorption, visible radiation reaching the earth surface
experiences scattering, and both atmospheric attenuations constitute DHI. Since scattering
does not affect the energy or wavelength of solar radiation, a variation of DHI resulted
in a significant daylight illuminance in Figure 12. However, DHI was found to have the
least influence on daylighting among the DNI, DHI, and GHI as indicated in Table 4. The
minimal daylighting response to DHI is due to the distance travelled (air mass) by the
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changing direction of the solar radiation. Moreover, the office space daylighting responded
significantly to GHI, as the radiation possesses the attributes of DNI and DHI.

6. Conclusions

In this study, the thermal and daylight illuminance response of a passive solar build-
ing to selected components of solar radiation were observed and analyzed. Hence, direct
normal irradiance (DNI), diffuse horizontal irradiance (DHI), global horizontal irradiance
(GHI), and downward longwave (Ld) irradiance were the selected solar radiation compo-
nents considered and measured. Concurrently, the indoor air temperature and relative
humidity which served as the thermal parameters of the office space were monitor. The
thermal monitoring of the passive solar building also includes the outdoor air temperature
and relative humidity. The office space illuminance comprises electric light and daylight;
both parameters were monitored over a month. Although, the study was focused on the
illuminance of the office space with all the lamp switched off and the sun present, which
was referred to as daylighting in the study.

Thermally, DNI was found to have the least influence on the indoor thermal condition.
The method adopted in measuring the thermal parameters, which assumed a practical
scenario plays a significant role in the impact of the solar radiation component on the
air temperature and relative humidity. However, DHI and GHI had the most influence
on the indoor air temperature and relative humidity in the summer and winter seasons,
respectively. Regarding daylight response, DNI was most dominant.

The findings of this study support the strategic locating of windows in a typical
passive solar design. For optimum passive heating, larger north (south hemisphere) and
south (north hemisphere) facing windows accompanied with proper shading device are
recommended. By so doing, and as indicated by the results of this study, global horizontal
radiation is admitted during the winter season, while diffuse horizontal radiation is experi-
enced indoor in summer as direct sun rays are shaded by the shading devices. Admission
of direct sun rays into the inner space of a building, in the case, through the north-facing
clerestory windows can lead to significant about of daylighting within the UDI range. For
a commercial building, energy consumed for electric lighting can be reduced by adopting
passive solar design. On the downside, direct sun rays may result in visual discomfort
associated with glare. Hence, south-facing windows are instead recommended for design
to enhance indoor daylighting.
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Abbreviations

CO2 Carbon dioxide
DA Daylighting Autonomy
DHI Direct horizontal irradiance
DNI Direct normal irradiance
GHG Greenhouse gas
GHI Global horizontal irradiance
h̄ 99.99 W/m2

H2O Water vapor
HO2 Hydroperoxyl
KT Clearness index
Ld Downward longwave irradiance
N2 Nitrogen
O2 Oxygen
SGD SOLYS Gear Drive
UDI Useful Daylight illuminance
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