Simulation Study of a Novel Cylindrical Micro-Electrostatic Particulate Air Filter with High Filtration Efficiency and Low Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Flow Field and Electric Field Model
2.2. Particle Charge Model and Force Analysis
2.3. Boundary Conditions and Meshing
2.4. Simulation Verification
3. Results and Discussion
3.1. Analysis of Influencing Factors of Filtration Efficiency
3.1.1. Collection Voltages
3.1.2. Inlet Air Velocity
3.2. Shortest Trapping Length (STL)
3.3. Cylindrical Structure vs. Plate Structure
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rahman, M.A.; Zaman, N.; Asyhari, A.T.; Al-Turjman, F.; Alam Bhuiyan, M.Z.; Zolkipli, M.F. Data-Driven Dynamic Clustering Framework for Mitigating the Adverse Economic Impact of Covid-19 Lockdown Practices. Sustain. Cities Soc. 2020, 62, 102372. [Google Scholar] [CrossRef]
- Wang, J. Vision of China’s Future Urban Construction Reform: In the Perspective of Comprehensive Prevention and Control for Multi Disasters. Sustain. Cities Soc. 2021, 64, 102511. [Google Scholar] [CrossRef]
- Sung, M.; Kato, S.; Kim, M. Development of a Fungal Biosensor for Field Verifying the Surface Disinfection of Ultraviolet Germicidal Irradiation Systems for Air Handling Units. Indoor Built Environ. 2012, 21, 273–281. [Google Scholar] [CrossRef]
- Sung, M.; Kato, S.; Yanagi, U.; Kim, M.; Harada, M. Disinfection Performance of Ultraviolet Germicidal Irradiation Systems for the Microbial Contamination on an Evaporative Humidifier. HVACR Res. 2011, 17, 22–30. [Google Scholar] [CrossRef]
- Zaatari, M.; Novoselac, A.; Siegel, J. The Relationship between Filter Pressure Drop, Indoor Air Quality, and Energy Consumption in Rooftop HVAC Units. Build. Environ. 2014, 73, 151–161. [Google Scholar] [CrossRef]
- Che, W.W.; Tso, C.Y.; Sun, L.; Ip, D.Y.K.; Lee, H.; Chao, C.Y.H.; Lau, A.K.H. Energy Consumption, Indoor Thermal Comfort and Air Quality in a Commercial Office with Retrofitted Heat, Ventilation and Air Conditioning (HVAC) System. Energy Build. 2019, 201, 202–215. [Google Scholar] [CrossRef]
- EN 779:2002—New European Test Method for Air Filters. Filtr. Sep. 2003, 40, 22–26. [CrossRef]
- Möritz, M.; Peters, H.; Nipko, B.; Rüden, H. Capability of Air Filters to Retain Airborne Bacteria and Molds in Heating, Ventilating and Air-Conditioning (HVAC) Systems. Int. J. Hyg. Environ. Health 2001, 203, 401–409. [Google Scholar] [CrossRef]
- Agarwal, N.; Meena, C.S.; Raj, B.P.; Saini, L.; Kumar, A.; Gopalakrishnan, N.; Kumar, A.; Balam, N.B.; Alam, T.; Kapoor, N.R.; et al. Indoor Air Quality Improvement in COVID-19 Pandemic: Review. Sustain. Cities Soc. 2021, 70, 102942. [Google Scholar] [CrossRef]
- Clarenburg, L.A.; Werner, R.M. Aerosol Filters. Pressure Drop across Multicomponent Glass Fiber Filters. Ind. Eng. Chem. Process Des. Dev. 1965, 4, 293–299. [Google Scholar] [CrossRef]
- Weingartner, E.; Haller, P.; Burtscher, H.; Baltensperger, U. Pressure Drop across Fiber Filters. J. Aerosol Sci. 1996, 27, S639–S640. [Google Scholar] [CrossRef]
- Mo, J.; Tian, E.; Pan, J. New Electrostatic Precipitator with Dielectric Coatings to Efficiently and Safely Remove Sub-Micro Particles in the Building Environment. Sustain. Cities Soc. 2020, 55, 102063. [Google Scholar] [CrossRef]
- Li, S.; Zhang, S.; Pan, W.; Long, Z.; Yu, T. Experimental and Theoretical Study of the Collection Efficiency of the Two-Stage Electrostatic Precipitator. Powder Technol. 2019, 356, 1–10. [Google Scholar] [CrossRef]
- Ren, J.; Liu, J. Fine Particulate Matter Control Performance of a New Kind of Suspended Fan Filter Unit for Use in Office Buildings. Build. Environ. 2019, 149, 468–476. [Google Scholar] [CrossRef]
- Jaworek, A.; Marchewicz, A.; Sobczyk, A.T.; Krupa, A.; Czech, T. Two-Stage Electrostatic Precipitator with Dual-Corona Particle Precharger for PM 2.5 Particles Removal. J. Clean. Prod. 2017, 164, 1645–1664. [Google Scholar] [CrossRef]
- Jaworek, A.; Marchewicz, A.; Sobczyk, A.T.; Krupa, A.; Czech, T. Two-Stage Electrostatic Precipitators for the Reduction of PM2.5 Particle Emission. Prog. Energy Combust. Sci. 2018, 67, 206–233. [Google Scholar] [CrossRef]
- Tian, E.; Gao, Y.; Mo, J. Electrostatically Assisted Air Coarse Filtration for Energy Efficient Ambient Particles Removal: Long-Term Performance in Real Environment and Influencing Factors. Build. Environ. 2019, 164, 106348. [Google Scholar] [CrossRef]
- Pushpawela, B.; Jayaratne, R.; Nguy, A.; Morawska, L. Efficiency of Ionizers in Removing Airborne Particles in Indoor Environments. J. Electrost. 2017, 90, 79–84. [Google Scholar] [CrossRef]
- Zhou, P.; Yang, Y.; Huang, G.; Lai, A.C.K. Numerical and Experimental Study on Airborne Disinfection by Negative Ions in Air Duct Flow. Build. Environ. 2018, 127, 204–210. [Google Scholar] [CrossRef]
- Xiong, W.; Lin, Z.; Zhang, W.; Chen, T.; Zhao, C. Experimental and Simulation Studies on Dust Loading Performance of a Novel Electrostatic Precipitator with Dielectric Barrier Electrodes. Build. Environ. 2018, 144, 119–128. [Google Scholar] [CrossRef]
- Nunayon, S.S.; Zhang, H.H.; Jin, X.; Lai, A.C. Experimental Evaluation of Positive and Negative Air Ions Disinfection Efficacy under Different Ventilation Duct Conditions. Build. Environ. 2019, 158, 295–301. [Google Scholar] [CrossRef]
- Zhou, P.; Yang, Y.; Lai, A.C.K.; Huang, G. Inactivation of Airborne Bacteria by Cold Plasma in Air Duct Flow. Build. Environ. 2016, 106, 120–130. [Google Scholar] [CrossRef]
- Park, C.W.; Hwang, J. Susceptibility Constants of Airborne Bacteria to Dielectric Barrier Discharge for Antibacterial Performance Evaluation. J. Hazard. Mater. 2013, 244–245, 421–428. [Google Scholar] [CrossRef]
- Liang, J.L.; Zheng, S.H.; Ye, S.Y. Inactivation of Penicillium Aerosols by Atmospheric Positive Corona Discharge Processing. J. Aerosol Sci. 2012, 54, 103–112. [Google Scholar] [CrossRef]
- Chiu, C.M.; Ke, Y.Y.; Chou, T.M.; Lin, Y.J.; Yang, P.K.; Wu, C.C.; Lin, Z.H. Self-Powered Active Antibacterial Clothing through Hybrid Effects of Nanowire-Enhanced Electric Field Electroporation and Controllable Hydrogen Peroxide Generation. Nano Energy 2018, 53, 1–10. [Google Scholar] [CrossRef]
- Skowron, K.; Grudlewska, K.; Kwiecińska-Piróg, J.; Gryń, G.; Śrutek, M.; Gospodarek-Komkowska, E. Efficacy of Radiant Catalytic Ionization to Reduce Bacterial Populations in Air and on Different Surfaces. Sci. Total Environ. 2018, 610–611, 111–120. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, Z.; Zhang, W. Comparison of Effects of Particle Charging, Media Characteristics, Humidity and Aerosols on Loading Performance of Electret Media. Build. Environ. 2020, 179, 106962. [Google Scholar] [CrossRef]
- Sung, J.-H.; Kim, M.; Kim, Y.-J.; Han, B.; Hong, K.-J.; Kim, H.-J. Ultrafine Particle Cleaning Performance of an Ion Spray Electrostatic Air Cleaner Emitting Zero Ozone with Diffusion Charging by Carbon Fiber. Build. Environ. 2019, 166, 106422. [Google Scholar] [CrossRef]
- Tu, G.; Song, Q.; Yao, Q. Relationship between Particle Charge and Electrostatic Enhancement of Filter Performance. Powder Technol. 2016, 301, 665–673. [Google Scholar] [CrossRef]
- Sobczyk, A.T.; Marchewicz, A.; Krupa, A.; Jaworek, A.; Czech, T.; Śliwiński; Kluk, D.; Ottawa, A.; Charchalis, A. Enhancement of Collection Efficiency for Fly Ash Particles (PM2.5) by Unipolar Agglomerator in Two-Stage Electrostatic Precipitator. Sep. Purif. Technol. 2017, 187, 91–101. [Google Scholar] [CrossRef]
- Miyashita, H.; Ehara, Y.; Inui, T.; Aoki, Y. Particle Behavior Analysis in a Hole-Type Electrostatic Precipitator Using PIV. IEEE Trans. Ind. Appl. 2018, 54, 4857–4863. [Google Scholar] [CrossRef]
- Eom, Y.S.; Kang, D.H.; Choi, D.H. Numerical Analysis of PM2.5 Particle Collection Efficiency of an Electrostatic Precipitator Integrated with Double Skin Façade in a Residential Home. Build. Environ. 2019, 162, 106245. [Google Scholar] [CrossRef]
- Zuraimi, M.S.; Vuotari, M.; Nilsson, G.; Magee, R.; Kemery, B.; Alliston, C. Impact of Dust Loading on Long Term Portable Air Cleaner Performance. Build. Environ. 2017, 112, 261–269. [Google Scholar] [CrossRef]
- Guo, C.; Gao, Z.; Shen, J. Emission Rates of Indoor Ozone Emission Devices: A Literature Review. Build. Environ. 2019, 158, 302–318. [Google Scholar] [CrossRef]
- Yun, S.J.; Min, B.R.; Seo, Y. A Novel Polymer-Arrayed Electrostatic Precipitator with Electrical Resistance Material for the Removal of Fine Particles. J. Aerosol Sci. 2013, 57, 88–95. [Google Scholar] [CrossRef]
- Han, T.T.; Thomas, N.M.; Mainelis, G. Performance of Personal Electrostatic Bioaerosol Sampler (PEBS) When Collecting Airborne Microorganisms. J. Aerosol Sci. 2018, 124, 54–67. [Google Scholar] [CrossRef]
- Kim, H.J.; Han, B.; Kim, Y.J.; Yoa, S.J. Characteristics of an Electrostatic Precipitator for Submicron Particles Using Non-Metallic Electrodes and Collection Plates. J. Aerosol Sci. 2010, 41, 987–997. [Google Scholar] [CrossRef]
- Kang, G.; Li, L.; Wang, W.; Yu, D. Study of a Polyaniline/Polypropylene Collecting Electrode and Its Particle Removal Efficiency. RSC Adv. 2016, 6, 75038–75044. [Google Scholar] [CrossRef]
- Elsaid, A.M.; Ahmed, M.S. Indoor Air Quality Strategies for Air-Conditioning and Ventilation Systems with the Spread of the Global Coronavirus (COVID-19) Epidemic: Improvements and Recommendations. Environ. Res. 2021, 199, 111314. [Google Scholar] [CrossRef]
- Farvaresh, E.; Golbabaei, F.; Ghiyaseddin, M.; Behdashti, A.; Nouri-Jaliani, K.; Karimi, M.; Tohidi, S. Investigation of Gas Turbine Intake Air Cooling Via Evaporative Media and Its Effects on Cartridge Filters Pressures Drop. Int. J. Occup. Hyg. 2015, 6, 75–80. [Google Scholar]
- Berk, Z. Food Process Engineering and Technology, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2013; ISBN 9780124159235. [Google Scholar]
- Kanaoka, C. Fine Particle Filtration Technology Using Fiber as Dust Collection Medium. KONA Powder Part J. 2019, 36, 88–113. [Google Scholar] [CrossRef] [Green Version]
- Dziubak, T.; Borchet, M. Study of Properties of Nonwoven Filter Cartridges for the Intake Air of a Car Engine. Bull. Mil. Univ. Technol. 2017, 66, 147–148. [Google Scholar] [CrossRef]
- Perkowski, C.A. Fermentation Process Air Filtration via Cartridge Filters. Biotechnol. Bioeng. 1983, 25, 1215–1221. [Google Scholar] [CrossRef]
- Xu, Y.; Zheng, C.; Liu, Z.; Yan, K. Electrostatic Precipitation of Airborne Bio-Aerosols. J. Electrost. 2013, 71, 204–207. [Google Scholar] [CrossRef]
- Lai, A.C.K.; Wong, L.T.; Mui, K.W.; Chan, W.Y.; Yu, H.C. An Experimental Study of Bioaerosol (1–10 µm) Deposition in a Ventilated Chamber. Build. Environ. 2012, 56, 118–126. [Google Scholar] [CrossRef]
- Tseng, C.H.; Wang, H.C.; Xiao, N.Y.; Chang, Y.M. Examining the Feasibility of Prediction Models by Monitoring Data and Management Data for Bioaerosols inside Office Buildings. Build. Environ. 2011, 46, 2578–2589. [Google Scholar] [CrossRef]
- Li, Y.; Hao, L.; Wang, S.; Hou, L.; Zhang, J.; Qi, J. An Experimental Study on Removal Efficiency of Bio-Particles in an Airtight Decontamination Chamber. Build. Environ. 2009, 44, 2270–2275. [Google Scholar] [CrossRef]
- Mui, K.W.; Wong, L.T.; Wu, C.L.; Lai, A.C.K. Numerical Modeling of Exhaled Droplet Nuclei Dispersion and Mixing in Indoor Environments. J. Hazard. Mater. 2009, 167, 736–744. [Google Scholar] [CrossRef]
- Gao, N.; Niu, J.; Morawska, L. Distribution of Respiratory Droplets in Enclosed Environments under Different Air Distribution Methods. Build. Simul. 2008, 1, 326–335. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Gil, T.; Acuña, J.J.; Fujiyoshi, S.; Tanaka, D.; Noda, J.; Maruyama, F.; Jorquera, M.A. Airborne Bacterial Communities of Outdoor Environments and Their Associated Influencing Factors. Environ. Int. 2020, 145, 106156. [Google Scholar] [CrossRef]
- Dong, M.; Zhou, F.; Zhang, Y.; Shang, Y.; Li, S. Numerical Study on Fine-Particle Charging and Transport Behaviour in Electrostatic Precipitators. Powder Technol. 2018, 330, 210–218. [Google Scholar] [CrossRef]
- Atten, P. Collection of Submicron Particles in Electrostatic Precipitators: Influence of EHD Agitation and of Particles Disintegration. Rev. Roum. Sci. Tech. Série Electrotech. Energétique 2010, 55, 161–170. [Google Scholar]
- Biskos, G.; Reavell, K.; Collings, N. Electrostatic Characterisation of Corona-Wire Aerosol Chargers. J. Electrost. 2005, 63, 69–82. [Google Scholar] [CrossRef]
- Biskos, G.; Reavell, K.; Collings, N. Unipolar Diffusion Charging of Aerosol Particles in the Transition Regime. J. Aerosol Sci. 2005, 36, 247–265. [Google Scholar] [CrossRef]
- Cochet, R. Lois: Charge Des Fines Particules (Submicroniques) Etudes Théoriques—Controlesrécentsspectre de Particules. Cent. Nat. Rech. Sci. 1961, 102, 331–338. [Google Scholar]
- Moshfegh, A.; Shams, M.; Ahmadi, G.; Ebrahimi, R. A New Expression for Spherical Aerosol Drag in Slip Flow Regime. J. Aerosol Sci. 2010, 41, 384–400. [Google Scholar] [CrossRef]
- Leung, W.W.-F.; Hung, C.-H.; Yuen, P.-T. Effect of Face Velocity, Nanofiber Packing Density and Thickness on Filtration Performance of Filters with Nanofibers Coated on a Substrate. Sep. Purif. Technol. 2010, 71, 30–37. [Google Scholar] [CrossRef]
- Fisk, W.J.; Faulkner, D.; Palonen, J.; Seppanen, O. Performance and Costs of Particle Air Filtration Technologies. Indoor Air 2002, 12, 223–234. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.-H.; Chen, C.-W.; Kuo, Y.-M.; Lai, C.-Y.; McKay, R.; Chen, C.-C. Factors Affecting Filter Penetration and Quality Factor of Particulate Respirators. Aerosol Air Qual. Res. 2013, 13, 162–171. [Google Scholar] [CrossRef]
- Deutsch, W. Bewegung Und Ladung Der Elektrizitätsträger Im Zylinderkondensator. Ann. Phys. 1922, 373, 335–344. [Google Scholar] [CrossRef] [Green Version]
Parameters | Value |
---|---|
Polypropylene resistivity | 1 × 1019 Ω·m |
Relative permittivity of polypropylene | 2.2 |
Aerodynamic viscosity | 18 × 10−6 Pa·s |
Particle density | 2200 kg/m3 |
Air density | 1.29 kg/m3 |
Elementary charge | 1.6 × 10−19 C |
Parameters | Value |
---|---|
Length of collecting plate | 55 mm |
Inlet and outlet of the single channel | 2 mm × 4 mm |
Voltage of collecting plate | 10.0 kV |
Particle density | 3000 kg/m3 |
Air velocity | 1.0 m/s |
Particle Size | 0.4 μm | 0.6 μm | 0.8 μm |
Filtration Efficiency | 99.8% | 99.9% | 100.0% |
Air Velocity (m/s) | 1.0 | 1.5 | 2.0 | 2.5 | |
Cylindrical Structure | ∞ | 5.17 | 1.31 | 0.57 | |
Plate Structure | 5.37 | 0.86 | 0.33 | 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Liu, J.; Kong, L.; Wang, P.; Zhang, X. Simulation Study of a Novel Cylindrical Micro-Electrostatic Particulate Air Filter with High Filtration Efficiency and Low Resistance. Buildings 2021, 11, 465. https://doi.org/10.3390/buildings11100465
He J, Liu J, Kong L, Wang P, Zhang X. Simulation Study of a Novel Cylindrical Micro-Electrostatic Particulate Air Filter with High Filtration Efficiency and Low Resistance. Buildings. 2021; 11(10):465. https://doi.org/10.3390/buildings11100465
Chicago/Turabian StyleHe, Junyi, Junjie Liu, Lingchang Kong, Pan Wang, and Xin Zhang. 2021. "Simulation Study of a Novel Cylindrical Micro-Electrostatic Particulate Air Filter with High Filtration Efficiency and Low Resistance" Buildings 11, no. 10: 465. https://doi.org/10.3390/buildings11100465
APA StyleHe, J., Liu, J., Kong, L., Wang, P., & Zhang, X. (2021). Simulation Study of a Novel Cylindrical Micro-Electrostatic Particulate Air Filter with High Filtration Efficiency and Low Resistance. Buildings, 11(10), 465. https://doi.org/10.3390/buildings11100465