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Abstract: This paper discusses different formulations for calculating earthquake-induced displace-
ment demands to be associated with nonlinear static analysis procedures for the assessment of
masonry structures. Focus is placed on systems with fundamental periods between 0.1 and 0.5 s,
for which the inelastic displacement amplification is usually more pronounced. The accuracy of the
predictive equations is assessed based on the results from nonlinear time-history analyses, carried
out on single-degree-of-freedom oscillators with hysteretic force–displacement relationships repre-
sentative of masonry structures. First, the study demonstrates some limitations of two established
approaches based on the equivalent linearization concept: the capacity spectrum method of the
Dutch guidelines NPR 9998-18, and its version outlined in FEMA 440, both of which overpredict
maximum displacements. Two codified formulations relying on inelastic displacement spectra are
also evaluated, namely the N2 method of Eurocode 8 and the displacement coefficient method of
ASCE 41-17: the former proves to be significantly unconservative, while the latter is affected by
excessive dispersion. A non-iterative procedure, using an equivalent linear system with calibrated
optimal stiffness and equivalent viscous damping, is then proposed to overcome some of the prob-
lems identified earlier. A recently developed modified N2 formulation is shown to improve accuracy
while limiting the dispersion of the predictions.

Keywords: capacity spectrum method; equivalent linear system; inelastic displacement spectra;
masonry structure assessment; nonlinear static analysis; seismic displacement demand; single-
degree-of-freedom oscillator

1. Introduction

Nonlinear static procedures (NSPs) have gained popularity in the professional practice
for the seismic performance assessment of existing masonry structures. In fact, they can
provide good predictions of local and global earthquake-induced deformations directly
related to structural and non-structural damage [1]. At the same time, NSPs are not affected
by some of the hurdles of nonlinear time-history analyses (NLTHA), namely the definition
of cyclic constitutive models, the adoption of viscous damping models, and the selection
of representative ground motions. Various NSPs require determining first the capacity
curve of a single-degree-of-freedom (SDOF) oscillator, equivalent to the multi-degree-
of-freedom (MDOF) structure, through pushover analyses [2–8]. It is then necessary to
determine the inelastic displacement demands on the SDOF system due to certain seismic
hazards and compare them with displacement thresholds identified on the capacity curve,
corresponding to meaningful limit states. Over recent decades, several methods have been
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developed for the evaluation of the displacement demands, which can be classified into
two main families and form the object of this study.

The first family includes methods based on the concept of an “equivalent linear sys-
tem”. The seismic demand on a nonlinear structure is estimated using overdamped elastic
spectra and a substitute linear-elastic SDOF system, with reduced effective stiffness and
equivalent viscous damping to account for the effects of period elongation and hysteretic
energy dissipation due to yielding [9–12]. With these techniques, one generally achieves a
solution through an iterative process. The “capacity spectrum method”, initially proposed
by Freeman et al. [13] and documented thoroughly in the American ATC-40 and FEMA
274 guidelines [14,15], is the most prominent example of these analysis procedures. The
method has been recently revamped in the Italian building code NTC-18 [16,17], in the
Dutch NPR 9998-18 [18] derived from the New Zealand code for the seismic assessment
of existing buildings [19], and in some displacement-based procedures [20,21]. Modified
versions of this approach have been proposed in the FEMA 440 guidelines [22] and other
seismic assessment procedures.

Methods that employ inelastic response spectra, referring to the initial elastic stiffness
and viscous damping of a first-mode-equivalent SDOF oscillator, belong to the second
family. Pioneer studies in the development of such approaches were conducted in the
1960s [23,24], illustrating the “equal displacement rule” for medium and long-period sys-
tems and the significant amplification of displacement demands for inelastic systems in
the short-period range. During the following decades, several researchers confirmed these
observations and addressed the influence of oscillators relative strength, hysteretic rules,
supplemental viscous damping, P-∆ effects, soil conditions, and ground motion character-
istics on constant-ductility or constant-relative-strength inelastic response spectra [1,25–30].
Some of these efforts led to the development of the so-called “N2 method” [31–34], included
in Eurocode 8 [35] and the Italian building code NTC-18 [16,17], and of the “displacement
coefficient method” of FEMA 273 and FEMA 274 guidelines [15,36], adopted by the ASCE
41-17 code [37].

Recently, criticism has been raised against the first family of methods because of
accuracy issues, convergence issues, and lack of mechanical correlation between viscous
damping and hysteretic energy dissipation [4,38–42]. Nevertheless, building codes world-
wide still include formulations based on the equivalent linear system concept. Moreover,
inelastic displacement demands depend on the oscillator hysteretic behavior, being gen-
erally larger for less dissipative systems with shorter elastic periods [26,38,42]. However,
current building codes propose NSP formulations that do not address this hysteresis de-
pendence but give only explicit consideration of structural period and ductility. Research
has been conducted in recent years to optimize methods belonging to the second fam-
ily [43–46]. Applications of NSP to probabilistic seismic assessment and urban-scale risk
evaluation have also been proposed [47–49]. Statistics-based, rather than mechanics-based
approaches, such as those relying on surrogate models, could also be employed to calibrate
these relationships, as has been done for other engineering applications [50].

For these reasons, this paper first discusses the accuracy of two established methods
per family to calculate the inelastic seismic displacement demand on short-period masonry
buildings, highlighting their shortcomings. Then, it presents an improved formulation
for each family, the “optimal stiffness method” and the “modified N2 method” [44], re-
spectively, which account for the typical hysteretic dissipation of masonry structures. The
assessment and calibration of the predictive equations are based on the results from ex-
tensive NLTHA on nonlinear SDOF oscillators, with fundamental periods ranging from
0.05 to 0.5 s and hysteretic behavior representative of masonry structures, performed with
TREMURI [51,52]. Two independent databases of real earthquake records were used,
as well as two sets of oscillators. A total number of 3,434,900 analyses supported the
evaluation and calibration processes.
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2. Evaluation and Calibration with Nonlinear Time-History Analyses
2.1. Nonlinear SDOF Oscillators

A large number of NLTHA was performed on inelastic SDOF oscillators, covering
a comprehensive range of structural parameters representative of masonry buildings as
detailed in previous work by the authors [44,53,54]. The oscillators were analyzed in
TREMURI [51,52]: this software allows modeling structures through macroelements with
constitutive relationships compatible with masonry in-plane flexural and shear behavior.
The monotonic acceleration-displacement (AD) response of each oscillator, obtained from
the software, was idealized into a bilinear elastoplastic relationship (Figure 1a). The
idealized elastic stiffness, k, was first established as the slope of the secant line through
70% of the maximum base shear. Then, the idealized yield pseudo-acceleration, ay, and
displacement, dy, were calculated by equating the areas below the curves between the
origin and the ultimate displacement, du, identified at a base-shear drop equal to 20% of the
maximum strength [16,17]. The idealized elastic period was determined as T = 2π

√
m/k,

where m was the mass associated with each SDOF system.
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The displacement ductility demand, µ, the strength ratio, R (also termed force-
reduction factor, response-modification factor, or behavior factor), and the inelastic displace-
ment ratio C were defined on the elastoplastic backbone curve as follows Equations (1)–(3):

µ =
dmax

dy
(1)

R =
ae

ay
=

de

dy
(2)

C =
dmax

de
(3)

where dmax is the maximum inelastic displacement demand, de = ae·(2π/T)2 is the elastic
displacement demand, and ae(T) is the elastic pseudo-spectral acceleration for idealized
elastic period T and 5% viscous damping ratio. The following relationship between µ, R,
and C can be derived from Equation (1) through Equation (3):

µ = R·C (4)
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meaning that for a given R one can determine C by calculating µ or, conversely, for a given
µ, one can determine C by calculating R. In what follows, the symbols µR and CR will
denote the ductility demand and inelastic displacement ratio for a given R, as opposed to
Rµ and Cµ, which would indicate the strength ratio and inelastic displacement ratio for a
given µ.

Two sets of target SDOF oscillators were defined, starting from seven hysteretic refer-
ence models with Jacobsen’s equivalent viscous damping ratio, ξhyst, between 13.8% and
19.9%, and targeting ten different idealized elastic periods T between 0.05 and 0.5 s [44,54].
The first set of oscillators (Set 1) was then generated assuming ten values of the idealized
yield strength ay between 0.5 and 5.0 m/s2, resulting in 700 oscillators employed to eval-
uate current formulations and calibrate new equations. The second set of SDOF systems
(Set 2) was instead obtained considering five values of strength ratio R between 1.0 and
5.0, resulting in a group of 350 oscillators used to determine CR − R− T and µR − R− T
relationships.

2.2. Ground Motion Records and Response Spectra

Two databases of earthquake records were selected to conduct NLTHA. The first
group (Database A) included 467 pairs of accelerograms from the third release of the
SIMBAD database [55]. The second group (Database B) comprised 1753 pairs of records [56],
combining tectonic ground motions from the NGA1 [57] and the RESORCE [58] databases
with induced-seismicity motions from the Groningen gas field [59]. Both databases cover
wide ranges of site conditions and seismological parameters.

The actual elastic response spectra of the signals were approximated by Newmark-
Hall’s spectral shapes [25,44] (Figure 1b). The approximated spectra were anchored to
the actual peak ground acceleration (PGA) of the records. A least-square regression was
performed on each pseudo-acceleration spectrum within the period range between 0 and
4.0 s to select parameter F0, which quantifies the plateau acceleration as a multiple of PGA,
and corner period TC, which identifies the transition from the constant-acceleration to
the constant-velocity branch of the idealized spectrum. Elastic displacement spectra were
derived from the Newmark-Hall pseudo-acceleration spectra, multiplying each ordinate
by (2π/T)2. Figure 1b shows an example of actual and approximated elastic response
spectrum in AD format.

Each SDOF oscillator from Set 1 was subjected to the records of both databases,
resulting in 653,800 (Suite 1-A) and 2,454,200 (Suite 1-B) earthquake simulations using
Database A and Database B, respectively. Both suites of simulations were used to evaluate
current approaches, while Suite 1-A served for the calibration of new equations and Suite
1-B for their validation. Instead, the oscillators of Set 2 were analyzed only with the ground
motions of Database A, resulting in additional 326,900 simulations (Suite 2-A), which were
employed to produce constant-relative-strength inelastic response spectra. A total number
of 3,434,900 analyses formed the basis of this study.

2.3. Evaluation and Calibration Procedures

Statistical analysis was performed with MATLAB (MathWorks, version R2019a) con-
sidering pairs of equation-predicted and NLTHA ductility demands obtained from Suite
1-A or Suite 1-B analyses, represented by gray dots in Figure 2 [44]. The points were
assigned to diagonal bins, with boundaries orthogonal to the bisector of the first quadrant.
The median distance from the bisector dm,i, the 16th percentile distance d16,i, and the 84th
percentile distance d84,i were calculated for the data points within the ith bin; points for
these percentiles were determined for each bin, associating those distances with the bin
central value, as plotted in Figure 2. Similarly, the points corresponding to the 5th and 95th
percentile were also determined. Median, 5th, 16th, 84th, and 95th percentile lines were
then drawn by connecting these points.
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Parameters of the proposed equations were calibrated with the dynamic responses
from Suite 1-A, applying an orthogonal regression between the predictions and the results
of NLTHA to minimize the error on the median and the scatter (i.e., the 16th and 84th
percentiles) by diagonal bins [44]. The accuracy of the calibrated equations was then
evaluated following the same approach based on Suite 1-B analysis results.

The evaluation and calibration procedures by diagonal bins were limited to displace-
ment ductility demands up to 10, considered as a limit value for most structures to which
these methods would be applied. Ideally, an accurate and precise method would result
in the median line coinciding with the bisector, with upper and lower percentiles as close
as possible to it. Due to the high rate of divergence towards the infinity of the ductility
demand from both NLTHA and predictions, it was not possible to obtain meaningful
results for oscillators with periods of 0.05 s, which were consequently excluded from the
statistical analysis [44].

The NLTHA results from Suite 2-A were instead used to determine CR − R− T and
µR − R− T relationships, calculating for each idealized period T and strength ratio R the
median values of inelastic displacement ratio CR and ductility µR. In this case, also ductility
demands greater than 10 were included in the determination of the median values.

3. Established Formulations Based on Equivalent Linearization
3.1. Capacity Spectrum Method (NPR 9998-18)

The capacity spectrum method (CSM) was initially adopted by the ATC-40 guide-
lines [14] for the seismic evaluation of existing concrete buildings. The same version of the
method has been proposed by the 2018 edition of the Italian building code NTC-18 [16,17]
as one of the two available methods to estimate displacement demands. Recently, the CSM
has also been adopted as the preferred method for the nonlinear static analysis of masonry
buildings by the Dutch code NPR 9998-18 [18], derived from the New Zealand code [19].

For oscillators that remain elastic (i.e., with R ≤ 1), simply dmax = de. Based on the
equivalent linearization approach, the CSM approximates the response of an SDOF oscilla-
tor undergoing inelastic deformations (i.e., with R > 1) through a substitute linear-elastic
system, with reduced stiffness and increased viscous damping to account for nonlinear
effects. The procedure implies a relationship between the inelastic excursion, expressed in
terms of ductility µ, and an equivalent viscous damping ratio ξe f f , which is used to adjust
the initial elastic demand spectrum. In NPR 9998-18 [18], ξe f f is first related to µ; then, a
spectral reduction factor η is calculated, as follows Equations (5)–(7):

ξe f f = ξhyst + ξsoil + 0.05 ≤ 0.40 (5)
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ξhyst = 0.42
(

1− 0.9
√

µ
− 0.1

√
µ

)
≤ 0.15 (6)

η =

√
0.07

0.02 + ξe f f
≥ 0.55 (7)

In this study, the effect of soil–structure interaction (ξsoil) on the equivalent viscous
damping is ignored. In fact, NPR 9998-18 [18] allows ignoring ξsoil for buildings up to two
stories, which include most masonry structures. In any case, imposing η ≥ 0.55 limits
the effectiveness of additional damping sources for µ ≥ 4.3. The method assumes that
the period of the equivalent linear system Te f f corresponds to the secant stiffness at the
maximum displacement; for elastoplastic systems without hardening, this is Equation (8):

Te f f = T
√

µ (8)

Since µ is the unknown of the problem, the solution requires iterations that end when
the spectral displacement demand at Te f f (µ), obtained from the elastic spectrum reduced
by η(µ), is equal to µ·dy. Graphically, the seismic demand on the nonlinear oscillator
results from the intersection of its AD capacity curve with the elastic response spectrum
reduced by η(µ) to account for hysteretic energy dissipation.

Figure 3 compares the displacement ductility demands resulting from the CSM pro-
cedure by NPR 9998-18 [18] with the ones obtained from NLTHA of Suite 1-A and Suite
1-B. The NPR method results in a significant overestimation of the demand, as the median
line falls below the bisector, especially for large µ, while the percentiles are scattered away.
Similar trends are obtained using both ground motion databases.
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Figure 3. Comparison between ductility demands from the capacity spectrum method (CSM) by
NPR 9998-18 and from NLTHA: (a) Suite 1-A, and (b) Suite 1-B.

Figure 4 compares the median CR − R− T and µR − R− T spectra calculated with the
CSM by NPR 9998-18 [18] (solid lines) with those derived from NLTHA (dashed lines) for
analysis Suite 2-A. The curves are limited to periods T between 0.1 and 0.5 s and strength
ratios R between 1.0 and 5.0. One can observe that, generally, the inelastic displacement
ratios CR from NLTHA tend to infinity as T approaches zero, and approximate 1.0 as T
goes to infinity. Consistently, the ductility demand µR from NLTHA approaches the R
factor for long periods according to Equation (4).
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The CSM by NPR 9998-18 [18] overestimates systematically median CR and µR for
all R factors across all periods T, when compared to the NLTHA results. Specifically, for
periods approaching zero (i.e., very stiff structures), the estimated displacement demands
tend to infinity with a faster rate compared to the NLTHA results. Instead, for periods
T > 0.3 s (i.e., more flexible structures), predicted CR and µR become constant but higher
than 1.0 and R, respectively.

3.2. Modified Capacity Spectrum Method (FEMA-440)

An improved version of the CSM has been proposed in the FEMA-440 guidelines [22],
where the equivalent linear system is defined by an optimal effective period Te f f and
effective viscous damping ξe f f . Similar to the NPR 9998-18 [18] procedure, Te f f and ξe f f
depend on the unknown ductility µ: consequently, an iterative process is required to
calculate the displacement demand. For SDOF oscillators that remain elastic (i.e., with
R ≤ 1), simply dmax = de. For oscillators undergoing inelastic deformations (i.e., with
R > 1) with degrading stiffness and no hardening, compatible with masonry behavior, the
spectral reduction parameters are computed as Equations (9) and (10):

ξe f f =


5.1(µ− 1)2 − 1.1(µ− 1)3 + 5, 1.0 < µ < 4.0

12 + 1.4(µ− 1) + 5, 4.0 ≤ µ ≤ 6.5

20
{

0.62(µ−1)−1
[0.62(µ−1)]2

}( Te f f
T

)2
+ 5, µ > 6.5

(9)

η = 0.25
(

5.6− ln ξe f f

)
(10)

There is no lower bound limit applied to the reduction factor of Equation (10), as
opposed to Equation (7). Unlike the CSM by NPR 9998-18 [18], this method does not
require the intersection between the capacity curve and demand spectra. The resulting
effective period for stiffness-degrading, not hardening systems, is given by Equation (11):

Te f f =


[
0.17(µ− 1)2 − 0.032(µ− 1)3 + 1

]
T, 1.0 < µ < 4.0

[0.10 + 0.19(µ− 1) + 1]T, 4.0 ≤ µ ≤ 6.5{
0.85

[√
(µ− 1)− 1

]
+ 1
}

T, µ > 6.5

(11)

Figure 5 compares the ductility demands resulting from the CSM procedure of FEMA
440 [22] with the ones obtained from NLTHA of Suite 1-A and Suite 1-B. Despite some
accuracy improvements compared to the NPR 9998-18 [18] formulation, especially for
larger ductility, this approach is still affected by overestimation and high scatter issues.
Similar trends are observed for both earthquake record databases.
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spectrum methods is particularly evident (Figure 7a,b) considering only oscillators with a 
secant period 𝑇ே்ு, defined as the effective period at the displacement demand from 
NLTHA (stars on Figure 7e,f), shorter than the corner period 𝑇 of the demand spectrum. 
Three main causes may be responsible for the origin of the observed behavior. 

Figure 5. Comparison between ductility demands from the CSM by FEMA 440 and from NLTHA: (a)
Suite 1-A, and (b) Suite 1-B.

Figure 6 illustrates the comparison of the median CR − R− T and µR − R− T curves.
Different from NPR 9998-18 [18], FEMA 440 [22] offers predictions that align with the
NLTHA results for short periods. Deviations are noticed only for oscillators with T ≤ 0.2 s
and R ≤ 2.5, for which the predicted median CR and µR remain constant instead of going
to infinity. Similar to the CSM of NPR 9998-18 [18], this method overpredicts demands for
systems with periods T > 0.3 s, even though to a lesser extent.
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3.3. Issues with Methods Based on Equivalent Linearization

The overestimation observed for both NPR 9998-18 [18] and FEMA 440 [22] capacity
spectrum methods is particularly evident (Figure 7a,b) considering only oscillators with a
secant period TNLTHA, defined as the effective period at the displacement demand from
NLTHA (stars on Figure 7e,f), shorter than the corner period TC of the demand spectrum.
Three main causes may be responsible for the origin of the observed behavior.

The first issue affects all capacity spectrum method formulations, which define an
effective period corresponding to the intersection between capacity and demand diagrams,
such as the original ATC–40 [14] and the approaches followed by the Italian NTC-18 [16,17],
the New Zealand guidelines [19], and the Dutch NPR 9998-18 [18]. The problem is due
to the dependence of the spectral reduction factor η on the ductility demand µ, which
tends to saturate as µ increases, and in some formulations is limited to a minimum value
(Figure 7c,d).
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Consequently, this formulation cannot be used to check limit states associated with 
displacement capacities corresponding to secant periods shorter than 𝑇: in fact, it would 
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does not affect the improved CSM by FEMA 440 [22] because it does not seek convergence 
through the direct intersection between capacity and demand diagrams (hollow dot in 
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Figure 7. Comparison between ductility demand predictions from CSM and NLTHA on systems
with TNLTHA < TC from Suite 1-A: (a) NPR 9998-18, and (b) FEMA 440. Relationships between
spectral reduction factor and ductility according to (c) NPR 9998-18 and (d) FEMA 440. Application
of the CSM to a system with TNLTHA < TC: (e) NPR 9998-18, and (f) FEMA 440.

In particular, the NPR 9998-18 [18] method limits ξhyst ≤ 0.15, then imposing η ≥ 0.56
(excluding soil–structure interaction damping). If a system is characterized by R > 1/
η = 1.77, the only possible intersection is with the constant-velocity or constant-displacement
branch of the demand spectrum (solid dot on Figure 7e), resulting necessarily in Te f f > TC
as opposed to the results of NLTHA.

Consequently, this formulation cannot be used to check limit states associated with
displacement capacities corresponding to secant periods shorter than TC: in fact, it would
automatically result in a violation of such displacement capacity thresholds. This problem
does not affect the improved CSM by FEMA 440 [22] because it does not seek convergence
through the direct intersection between capacity and demand diagrams (hollow dot in
Figure 7f).

The second source of inaccuracy is identified in the relationship between η and µ
for any value of TNLTHA. As η tends to level off for increasing µ, small variations in
η strongly affect the predicted µ, with a bias towards overestimation of µ when η is
slightly underestimated (Figure 7c,d) [60]. This problem affects both NPR 9998-18 [18] and
FEMA 440 [22] capacity spectrum methods, as they seek convergence on µ. However, it is
amplified in the Dutch formulation due to the lower bound imposed on η.
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The third issue depends on the statistical distribution of µ values associated with a
certain η, which is non-symmetrical with positive skewness for medium- and long-period
systems, as inferred from the data shown by Pennucci et al. [61]. This means that, for given
η, values of µ exceeding the median ductility will more likely result in larger errors than
values falling below it. This happens with both iterative formulations.

Differently from NPR 9998-18 [18], the CSM formulation by FEMA 440 [22] signifi-
cantly underestimates displacement demands in the low-ductility range (Figure 7b). This
problem can be explained by looking at the CR − R− T and µR − R− T curves of Figure
6: for any system with period T ≤ 0.2 s and strength ratio R ≤ 2.5 the method predicts
constant ductility demands, below the values obtained from NLTHA.

4. Established Formulations Based on Inelastic Response Spectra
4.1. N2 Method (Eurocode 8 and NTC-18)

The current NSP formulations by Eurocode 8 [35] and by the Italian building code
NTC-18 [16,17] descend from the N2 method [31–34], which relates maximum inelastic
and elastic displacement demands on an SDOF oscillator, when R > 1, with Equation (12):

dmax =
1
R

[
(R− 1)

(
TC

T

)
+ 1
]

de ≥ de (12)

while dmax = de when R ≤ 1. The lower-bound limit of Equation (12) is necessary because
for T ≥ TC the inelastic displacement demand should not be taken as less than the elastic
one (equal displacement rule).

Figure 8 compares the ductility demands predicted by the equation with the ones
obtained from the NLTHA of Suite 1-A and Suite 1-B. In both cases, the comparison
reveals that the current code formulation underestimates inelastic displacement demands
significantly when they exceed a ductility of 4, as indicated by the median line found above
the bisector. Nevertheless, the N2 approach results in limited dispersion compared to other
existing methods.
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1-A, and (b) Suite 1-B.

The tendency of the method to underestimate displacement demands is also visible
in the CR − R − T and µR − R − T relationships in Figure 9. Differences between the
predictions by the N2 equations and the results from NLTHA are more pronounced for
systems of short period and low relative strength (high R factors).
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4.2. Displacement Coefficient Method (ASCE 41-17)

The displacement coefficient method (DCM) is presented in the ASCE 41-17 code [37].
When R > 1, the method calculates the maximum displacement demand on nonlinear
SDOF system as in Equation (13):

dmax = C1C2de (13)

while dmax = de when R ≤ 1. Coefficients C1 and C2 are empirical modification factors
given by the following Equations (14) and (15):

C1 =


1 + R−1

0.04a , T ≤ 0.2 s

1 + R−1
aT2 , 0.2 s < T ≤ 1.0 s

1.0, T > 1.0 s

(14)

C2 =

 1 + 1
800

(
R−1

T

)2
, T ≤ 0.7 s

1.0, T > 0.7 s
(15)

where a is a site-dependent parameter associated with the known site class [62] of each
recording station: a = 130 for site classes A and B, a = 90 for site class C, and a = 60 for site
classes D, E, and F. Figure 10 shows that, despite good accuracy in the median prediction,
these equations result in large scatter, as indicated by the distance of the lower and upper
percentile lines from the median.
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Figure 11 illustrates the comparison between the CR−R−T and µR−R−T spectra by
the DCM and those obtained from NLTHA results. One can notice that the method provides
considerably lower median values of CR and µR for systems with periods T < 0.15 s
regardless of the strength ratio R. Instead, the method overpredicts demands for longer
periods and for all strength ratios R. This confirms the overall large scatter affecting the
DCM predictions, as pointed out by FEMA 440 [22] and Ruiz-García and Miranda [1].
The transition of Equation (14) at T = 0.2 s explains the change of slope of the curves in
Figure 11: this happens because for periods T ≤ 0.2 s coefficient C1 remains constant with
the period.
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4.3. Issues with Methods Based on Inelastic Response Spectra

Figure 8 through Figure 11 show that both the N2 method of Eurocode 8 and NTC-
18 [16,17,35] and the DCM of ASCE 41-17 [37] can result in significant errors when applied
to short-period masonry-type oscillators. Both formulations were originally derived for
steel and concrete frame structures, characterized by longer fundamental periods and
higher hysteretic dissipation capacity. In fact, Guerrini et al. [44] demonstrated that the
inefficiency of the N2 equation is more evident for oscillators with T < 0.5 s, and that
errors are more pronounced for systems with low hysteretic dissipation. They suggested
that the accuracy of the method would benefit from explicit consideration of the hysteretic
behavior, especially at short periods, where inelastic displacement demand amplification is
more sensitive to this parameter.

Another source of inaccuracy for the N2 formulation [16,17,35] lies in the fact that it
belongs to the so-called “indirect methods” [63], where the µR − R− T relationship (i.e.,
for given R) results from the inversion of the calibrated Rµ − µ− T equation (i.e., for a
given µ) by Vidic et al. [25]. This process can introduce systematic errors that tend to
underestimate the maximum inelastic displacement demands, with a greater error for
increasing ductility [1].

The N2 method and the DCM correctly predict ductility demands that tend towards
infinity for very short periods and approach the R value for long periods. Nevertheless,
both methods display problems with the rate of convergence to these two limits. In particu-
lar, the DCM approaches the two boundaries with a lower rate than the one obtained from
NLTHA, while the N2 method significantly underestimates the displacement amplification
at short periods.

5. Proposed Formulations
5.1. Optimal Stiffness Method

This section presents an improved equivalent linearization procedure, named optimal
stiffness method (OSM), as it defines an optimal stiffness Topt and the corresponding
equivalent viscous damping ratio ξopt in terms of the idealized elastic period T and the
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strength ratio R of the oscillator. Adapting the equation form discussed by Lin and
Miranda [64], the following relationships were calibrated based on the results from NLTHA
on masonry-type oscillators. For oscillators that remain elastic (i.e., with R ≤ 1), simply
dmax = de. The optimal linear parameters for SDOF oscillators with R > 1 are given by
Equations (16) and (17):

ξopt = 0.05 + nhyst(R− 1)2 (16)

Topt = T + mhyst(R− 1)2 (17)

The coefficients mhyst and nhyst in these equations were calibrated with dynamic
responses of SDOF oscillators from Suite 1-A by the orthogonal regression algorithm men-
tioned earlier. The calibration of the parameters was performed separately for systems of
low (13% ≤ ξhyst < 15%), intermediate (15% ≤ ξhyst ≤ 18%), and high (18% < ξhyst ≤ 20%)
hysteretic dissipation. The resulting values are summarized in Table 1.

Table 1. Calibrated parameters for the proposed OSM equations.

Hysteresis Case mhyst (s) nhyst (-)

13% ≤ ξhyst < 15% 0.067 0.040
15% ≤ ξhyst ≤ 18% 0.065 0.059
18% < ξhyst ≤ 20% 0.061 0.077

The relationship between spectral reduction factor η and equivalent viscous damp-
ing ratio ξopt was taken by Eurocode 8, without lower-bound limitations, according to
Equation (18):

η =

√
0.10

0.05 + ξopt
(18)

Owing to the dependence of the equivalent system properties on the known strength
ratio R, rather than on the unknown ductility µ, the method offers the advantage of a direct
non-iterative solution. In this way, the method overcomes the problems associated with
the relationship between η and µ of NPR 9998-18 [18] and FEMA 440 [22]. The proposed
equation generally provides an accurate estimate of the ductility demand, as demonstrated
by the median line approaching the bisector in Figure 12. Moreover, predictions are
characterized by low dispersion for both Suite 1-A and 1-B analyses.
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Good agreement was also observed between the predicted and the NLTHA-derived
median CR − R− T and µR − R− T spectra, as shown in Figure 13. It is noteworthy that,
for periods T > 0.3 s, the predicted curves approach those obtained by NLTHA, as opposed
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to the equivalent linearization procedures by NPR 9998-18 [18] and FEMA 440 [22], which
deviate significantly.
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5.2. Modified-N2 Method

Motivated by the limitations of the N2 method of Eurocode 8 and NTC-18 [16,17,35],
when applied to masonry-like systems, a modified-N2 (MN2) method has been formulated
and calibrated against NLTHA results to relate inelastic and elastic seismic displacement
demands for this kind of oscillators [44]. For SDOF systems with R > 1, the formulation
results in Equation (19):

dmax =
1
R

 (R− 1)2.1(
T

Thyst
+ ahyst

)(
T

TC

)2.3 + R

de (19)

while dmax = de when R ≤ 1. Unlike the original N2 formulation, this equation tends
asymptotically to the elastic displacement demand as T approaches infinity, without the
need for a lower-bound limit. The coefficients Thyst and ahyst were calibrated with the
results from NLTHA on SDOF oscillators (Suite 1-A) using the same orthogonal regression
algorithm discussed above [44]. Similar to the OSM equations, Equation (19) was calibrated
separately for three ranges of hysteretic dissipation capacity; the resulting values for the
parameters are listed in Table 2.

Table 2. Calibrated parameters for the proposed modified-N2 (MN2) equation [44].

Hysteresis Case ahyst (-) Thyst (s)

13% ≤ ξhyst < 15% 0.7 0.055
15% ≤ ξhyst ≤ 18% 0.2 0.030
18% < ξhyst ≤ 20% 0.0 0.022

The ductility demands predicted by the MN2 method are shown in Figure 14. The
equation exhibits significantly improved accuracy and reduced dispersion compared to
the original N2 method, considering both Site 1-A and 1-B analysis results. The improved
performance of this method for periods ranging between 0.1 and 0.5 s is also reflected
in the predicted CR − R− T and µR − R− T spectra, which accurately approximate the
NLTHA-derived spectra (Figure 15).
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5.3. Accuracy and Scatter of OSM and MN2 Methods

Figures 12 and 14 show that median and percentile distances from the bisector can be
approximated well by straight lines on the plane of ductility demands predicted by the
proposed equations versus the NLTHA. This means that the ratio of the percentile to the
central ductility value of each bin remains nearly constant over the considered ductility
range (up to 10). Percentile factors γp were evaluated for different percentiles p over
the entire set of oscillators and for individual periods T, and were taken to be equal to
the slope of the corresponding percentile line. The inelastic displacement demand dmax,p,
corresponding to percentile p, can be expressed as Equation (20):

dmax,p = γpdmax (20)

Tables 3 and 4 summarize the values of γp for the 50th (median), 70th, 84th and 95th
percentiles for both proposed methods, showing that they provide accurate estimates of the
median inelastic displacement demand (γ50 ≈ 1.0). It can also be observed that the OSM is
somehow less precise than the MN2 method in its predictions because it is characterized
by a larger scatter: this is reflected by larger values of γp for higher percentiles.

Table 3. Percentile factors of displacement predicted by the proposed OSM for various percentiles.

Percentile
Idealized Elastic Period (s)

Overall
0.1 0.2 0.3 0.4 0.5

50th 1.1 1.0 1.0 1.0 1.1 1.0
70th 1.5 1.2 1.2 1.2 1.4 1.2
84th 2.3 1.5 1.4 1.5 1.7 1.5
95th 6.4 2.1 1.7 1.9 2.4 2.3
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Table 4. Percentile factors of displacement demands predicted by the MN2 method for various
percentiles.

Percentile
Idealized Elastic Period (s)

Overall
0.1 0.2 0.3 0.4 0.5

50th 0.9 1.1 1.0 0.9 0.8 1.0
70th 1.2 1.3 1.2 1.1 1.0 1.2
84th 1.4 1.5 1.4 1.2 1.1 1.4
95th 1.8 1.9 1.7 1.5 1.4 1.7

Lacking detailed information on the amount of hysteretic dissipation for a specific
masonry structure, the parameters of the intermediate case (15% ≤ ξhyst ≤ 18%) could be
generally adopted with both methods. This simplification would have a minimal effect on
the accuracy of the results. In most cases, only the second decimal figure would change in
factors γp for higher percentiles. No appreciable effect of the focal distance was observed
on the accuracy and dispersion of the predictions, when the ground motion records were
treated in two groups considering distance thresholds of 5, 10, 15 or 20 km.

Finally, it has been observed that for oscillators with a secant period TNLTHA from
NLTHA shorter than the corner period TC of the demand spectrum, both methods pro-
vide improved estimations of the median inelastic displacement demand compared to
established formulations. The MN2 method appears more accurate than the OSM in these
situations, despite a slight tendency towards overestimations. On the other hand, the OSM
results in a more pronounced underestimation of the median displacement demand with
somewhat larger dispersion for these oscillators.

6. Discussion and Conclusions

This paper discussed the implementation of six methods for estimating inelastic
seismic displacement demands to be used in nonlinear static analysis procedures for the
assessment of existing masonry structures. The predictive accuracy of the methods was
assessed based on the results from nonlinear time-history analyses (NLTHA) on single-
degree-of-freedom (SDOF) oscillators with hysteretic relationships typical of masonry
buildings and periods between 0.05 and 0.5 s. Two independent ground motion databases,
as well as two sets of oscillators, were used for this scope, resulting in a total number of
3,434,900 analyses.

The study first demonstrated some limitations of two established iterative methods
based on the equivalent linearization concept: the capacity spectrum method recommended
by the Dutch code NPR 9998-18, and its modified version outlined in the American guide-
lines FEMA 440. Both methods provide general overprediction of inelastic displacement
demands because of issues in the relationships between ductility demand, effective vis-
cous damping, and spectral reduction factors. Overestimations are more pronounced for
methods seeking convergence through direct intersection between capacity and demand
diagrams, like in NPR 9998-18, especially if the NLTHA results in a maximum displace-
ment corresponding to an effective period shorter than the corner period of the demand
spectrum. This problem can be found in all similar methods, such as the ones of the Italian
NTC-18 and of the New Zealand guidelines.

Two established formulations based on inelastic displacement spectra, oscillator ideal-
ized elastic period, and strength ratio were also evaluated. The N2 method of Eurocode 8
and Italian building code NTC-18 proved to underestimate the displacement demand in
spite of a limited scatter. In contrast, the displacement coefficient method of ASCE 41-17
was shown to better predict the median ductility but with excessively high dispersion. Both
methods have problems with the rate of convergence to infinite and elastic displacement
demands as the elastic period approaches zero and infinity, respectively. These issues are
mainly due to lack of calibration with the dynamic responses of masonry structures.
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An alternative approach based on the equivalent linearization concept, termed optimal
stiffness method (OSM), was then proposed. This procedure defines an optimal stiffness
and equivalent viscous damping in terms of idealized elastic period and strength ratio,
which are both known in the assessment of an existing building. This formulation does not
need iterations on the ductility demand and overcomes the problems with the relationships
between ductility demand, effective viscous damping, and spectral reduction factors. A
modified version of the N2 method (MN2), directly calibrated with the dynamic response
of short-period oscillators, was finally presented.

Both proposed formulations predict the median ductility demand accurately while
limiting the dispersion of the results. However, the MN2 method is somehow more
precise than the OSM because it is characterized by a smaller scatter. The MN2 method
appears more accurate than the OSM when the NLTHA results in a maximum displacement
corresponding to an effective period shorter than the corner period of the demand spectrum,
despite a slight tendency towards overestimations. On the other hand, in these cases,
the OSM results in a more pronounced underestimation of the median displacement
demand with somewhat larger dispersion for these oscillators. Neither of the proposed
methods appeared sensitive to the focal distance of the earthquake records. Due to the
high rate of divergence towards the infinity of the ductility demand from both NLTHA and
predictions, it was not possible to obtain meaningful results for oscillators with periods
shorter than 0.1 s.

The general equations of the OSM and MN2 methods can be calibrated with the
NLTHA responses of SDOF oscillators with other hysteretic rules. Different sets of pa-
rameters can then be derived, allowing the application of these formulations to other
structural systems.
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