Energy Performances Assessment of Extruded and 3D Printed Polymers Integrated into Building Envelopes for a South Italian Case Study
Abstract
:1. Introduction
1.1. Plastic and Composite Polymers in Building Facades
1.2. Research Aims
- investigate the performances of extruded ABS panels as a second-skin layer for innovative building envelopes with experimental tests in-situ;
- calibrate and validate a simulation model to predict the energy performance of the plastic and composite polymer panels used as a second-skin layer in an OVF system;
- assess the potential energy saving achievable in office building refurbishment using the proposed materials (extruded and 3D printed polymers) through numerical simulation.
1.3. Structure of the Research
2. Methodology
2.1. Description of the Gemini Facilities, Experimental Results, and Discussion
2.2. Description of the Numerical Model
- the solar radiation, the longwave radiation, and the air convection on the external surface of the outside layer;
- the energy storage and the conduction in the outside layer;
- radiation exchange between the outside layer and the air cavity;
- the convective exchanges from all the surfaces facing in the air cavity;
- the conduction through the interface layer.
2.3. Validation of the Numerical Model
3. Materials and Numerical Modeling Implementation
- Case 1, with an OVF system made of a conventional second-skin material (Porcelain gres);
- Cases 2–5, where the OVF systems have been implemented by using the extrude plastic and polymer materials more used in architecture (polycarbonate multi-wall sheets, ABS, PETG, and PLA);
- Cases 3_3D–5_3D, where the second-skin materials used in the OVF are the most popular 3D printed polymers (ABS, PETG, and PLA);
3.1. Energy Analyses: Methods
3.2. Energy Analyses: Results
- all the proposed OVF systems return positive PES values in comparison to the reference case, which means a reduction of the non-renewable primary energy consumption ranging from 2.58% (Case 1) and 2.64% (Cases 2 and 5_3D); this is due to an average reduction of the thermal and cooling energy demands of about 6.9% and 3.0%, respectively;
- the retrofit actions where the plastic and composite polymers materials are used as a second-skin layer (Cases 2–5 and Cases 3_3D–5_5D, see Table 3) allow for a slight performance improvement with respect to those realized with a conventional second-skin material (Case 1), thanks to a reduction in the space cooling energy demand ranging from 31 kWh (Case 4) and 120 kWh (Case 5_3D);
- the results associated with the polycarbonate multi-wall sheets (Case 2) show a behavior similar to the Cases 3_3D–5_5D, mostly due to the fact that the polycarbonate panels have a structure assimilable to the 3D printing logic;
- considering the cases with the same polymers (Case 3 vs. Case 3_3D, Case 4 vs. Case 4_3D, and Case 5 vs. Case 5_3D), the 3D printed panels allow for a slight improvement in performances.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Latin letters | |
A | surface area (m2) |
a | filler radius (m) |
ABS | acrylonitrile-butadiene-styrene |
AM | additive manufacturing |
CAGR | compound annual growth rate |
COP | Coefficient of performance |
DSF | double-skin facade |
E | energy (kWh) |
EER | energy efficiency ratio (-) |
EHP | electric heat pump |
hc | interfacial boundary conductance (W/m2K) |
Ivert | vertical pyranometer on the south wall (W/m2) |
k3D | thermal conductivity of the 3D printed materials (W/mK) |
kd | thermal conductivity of the filler (W/mK) |
km | thermal conductivity of the selected 3D printable polymers (W/mK) |
MAE | Mean Absolute Error (°C) |
ME | Mean Error (°C) |
N | number of measurements (-) |
OVF | opaque ventilated facades |
PC | proposed case |
PES | non-renewable primary energy saving (%) |
PET | polyethylene terephthalate |
PETG | polyethylene terephthalate glycol-modified |
PLA | polylactic acid |
RC | reference case |
RMSE | Root Mean Square Error (°C) |
T | thermocouple/temperature (°C) |
U | transmittance value (m2K/W) |
Vd | volume fraction of the filler |
W | airspeed sensor |
Greeks | |
Δ | difference |
η | efficiency (%) |
Subscripts/Superscripts | |
cavity | air cavity of the second-skin system |
cool | cooling |
el | electricity |
exp,i | experimental value at time step i |
indoor | indoor air |
p | non-renewable primary energy |
PC | proposed case |
PP | power plant |
RC | reference case |
sim,i | simulated value at time step i |
th | thermal |
w | window |
References
- European Commission Energy Performance of Buildings Directive. Available online: https://ec.europa.eu/energy/topics/energy-efficiency/energy-efficient-buildings/energy-performance-buildings-directive_en (accessed on 4 August 2020).
- Antonov, Y.I.; Heiselberg, P.; Flourentzou, F.; Pomianowski, M.Z. Methodology for evaluation and development of refurbishment scenarios for multi-story apartment buildings, applied to two buildings in Denmark and Switzerland. Buildings 2020, 10, 102. [Google Scholar] [CrossRef]
- Cortiços, N.D. Improving residential building efficiency with membranes over facades: The Mediterranean context. J. Build. Eng. 2020, 32, 101421. [Google Scholar] [CrossRef]
- Ascione, F.; Bianco, N.; Maria Mauro, G.; Napolitano, D.F. Building envelope design: Multi-objective optimization to minimize energy consumption, global cost and thermal discomfort. Application to different Italian climatic zones. Energy 2019, 174, 359–374. [Google Scholar] [CrossRef]
- Scorpio, M.; Ciampi, G.; Rosato, A.; Maffei, L.; Masullo, M.; Almeida, M.; Sibilio, S. Electric-driven windows for historical buildings retrofit: Energy and visual sensitivity analysis for different control logics. J. Build. Eng. 2020, 31, 101398. [Google Scholar] [CrossRef]
- Cattarin, G.; Causone, F.; Kindinis, A.; Pagliano, L. Outdoor test cells for building envelope experimental characterization—A literature review. Renew. Sustain. Energy Rev. 2016, 54, 606–625. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, S.; Ip, K. Perspectives of double skin facades for naturally ventilated buildings: A review. Renew. Sustain. Energy Rev. 2014, 40, 1019–1029. [Google Scholar] [CrossRef]
- Ballarini, I.; De Luca, G.; Paragamyan, A.; Pellegrino, A.; Corrado, V. Transformation of an office building into a nearly zero energy building (NZEB): Implications for thermal and visual comfort and energy performance. Energies 2019, 12, 895. [Google Scholar] [CrossRef] [Green Version]
- Sibilio, S.; Rosato, A.; Scorpio, M.; Iuliano, G.; Ciampi, G.; Vanoli, G.P.; de Rossi, F. A Review of Electrochromic Windows for Residential Applications. Int. J. Heat Technol. 2016, 34, S481–S488. [Google Scholar] [CrossRef]
- Ciampi, G.; Rosato, A.; Scorpio, M.; Sibilio, S. Energy and economic evaluation of retrofit actions on an existing historical building in the south of Italy by using a dynamic simulation software. Energy Procedia 2015, 78, 741–746. [Google Scholar] [CrossRef] [Green Version]
- Scorpio, M.; Ciampi, G.; Spanodimitriou, Y.; Rosato, A.; Laffi, R.; Almeida, M.; Sibilio, S. GEMINI: Test Cells for the Acoustic, Visual and Thermal Performances Evaluation of Double-Skin Facades. In Proceedings of the 14th Conference on Sustainable Development of Energy, Water and Environment Systems, Dubrovnik, Croatia, 1–6 October 2019; pp. 1–13. [Google Scholar]
- Ciampi, G.; Scorpio, M.; Spanodimitriou, Y.; Rosato, A.; Sibilio, S. Thermal model validation of an electric-driven smart window through experimental data and evaluation of the impact on a case study. Build. Environ. 2020, 181, 107134. [Google Scholar] [CrossRef]
- Krstić-Furundžić, A.; Vujošević, M.; Petrovski, A. Energy and environmental performance of the office building facade scenarios. Energy 2019, 183, 437–447. [Google Scholar] [CrossRef]
- Mejía, K.J.; Barbero-Barrera, M.D.M.; Pérez, M.R. Evaluation of the impact of the envelope system on thermal energy demand in hospital buildings. Buildings 2020, 10, 250. [Google Scholar] [CrossRef]
- Saroglou, T.; Theodosiou, T.; Givoni, B.; Meir, I.A. Studies on the optimum double-skin curtain wall design for high-rise buildings in the Mediterranean climate. Energy Build. 2020, 208, 109641. [Google Scholar] [CrossRef]
- Ghaffarianhoseini, A.; Ghaffarianhoseini, A.; Berardi, U.; Tookey, J.; Li, D.H.W.; Kariminia, S. Exploring the advantages and challenges of double-skin facądes (DSFs). Renew. Sustain. Energy Rev. 2016, 60, 1052–1065. [Google Scholar] [CrossRef]
- Chen, X.; Yang, H.; Peng, J. Energy optimization of high-rise commercial buildings integrated with photovoltaic facades in urban context. Energy 2019, 172, 1–17. [Google Scholar] [CrossRef]
- Cerón, I.; Caamaño-Martín, E.; Neila, F.J. “State-of-the-art” of building integrated photovoltaic products. Renew. Energy 2013, 58, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Ibañez-Puy, M.; Vidaurre-Arbizu, M.; Sacristán-Fernández, J.A.; Martín-Gómez, C. Opaque Ventilated Façades: Thermal and energy performance review. Renew. Sustain. Energy Rev. 2017, 79, 180–191. [Google Scholar] [CrossRef]
- Stazi, F.; Ulpiani, G.; Pergolini, M.; Di Perna, C.; D’Orazio, M. The role of wall layers properties on the thermal performance of ventilated facades: Experimental investigation on narrow-cavity design. Energy Build. 2020, 209, 109622. [Google Scholar] [CrossRef]
- Poirazis, H. Division of Energy and Building Design. In Double Skin Façades for Office Buildings; Department of Construction and Architecture, Lund University: Lund, Sweden, 2004; ISBN 9185147028. [Google Scholar]
- Belleri, A.; Tarantino, S.; Lollini, R.; Arlati, E. Measurement and prediction of heat transfer and mass flow of a ventilated façade. In Proceedings of the AIRAH and IBPSA’s Australasian Building Simulation 2017 Conference, Melbourne, Australia, 15–16 November 2017; pp. 1–15. [Google Scholar]
- Alberto, A.; Ramos, N.M.M.; Almeida, R.M.S.F. Parametric study of double-skin facades performance in mild climate countries. J. Build. Eng. 2017, 12, 87–98. [Google Scholar] [CrossRef]
- Souza, L.C.O.; Souza, H.A.; Rodrigues, E.F. Experimental and numerical analysis of a naturally ventilated double-skin façade. Energy Build. 2018, 165, 328–339. [Google Scholar] [CrossRef]
- Kuznik, F.; Catalina, T.; Gauzere, L.; Woloszyn, M.; Roux, J. Numerical modelling of combined heat transfers in a double skin façade Full-scale laboratory experiment validation. Appl. Therm. Eng. 2011, 31, 3043–3054. [Google Scholar] [CrossRef] [Green Version]
- Aparicio-Fernández, C.; Vivancos, J.L.; Ferrer-Gisbert, P.; Royo-Pastor, R. Energy performance of a ventilated façade by simulation with experimental validation. Appl. Therm. Eng. 2014, 66, 563–570. [Google Scholar] [CrossRef]
- Diallo, T.M.O.; Zhao, X.; Dugue, A.; Bonnamy, P.; Javier Miguel, F.; Martinez, A.; Theodosiou, T.; Liu, J.S.; Brown, N. Numerical investigation of the energy performance of an Opaque Ventilated Façade system employing a smart modular heat recovery unit and a latent heat thermal energy system. Appl. Energy 2017, 205, 130–152. [Google Scholar] [CrossRef]
- E2VENT Energy Efficient Ventilated Facades for Optimal Adaptability and Heat Exchange. Available online: http://www.e2vent.eu/ (accessed on 12 May 2020).
- Pergolini, M.; Ulpiani, G.; Shehi, O.; Di Perna, C.; Stazi, F. Controlled inlet airflow in ventilated facades: A numerical analysis. IOP Conf. Ser. Mater. Sci. Eng. 2019, 609, 032009. [Google Scholar] [CrossRef] [Green Version]
- EnergyPlus, Energy Simulation Software. Available online: https://energyplus.net/ (accessed on 29 March 2021).
- Transient System Simulation Tool TRNSYS 18. Available online: http://www.trnsys.com/demo/ (accessed on 12 May 2020).
- Trubiano, F. Performance based envelopes: A theory of spatialized skins and the emergence of the integrated design professional. Buildings 2013, 3, 689–712. [Google Scholar] [CrossRef] [Green Version]
- Krivoshapko, S.N. The perspectives of application of thin-walled plastic and composite polymer shells in civil and industrial architecture. J. Reinf. Plast. Compos. 2018, 37, 217–229. [Google Scholar] [CrossRef]
- Agarwal, S.; Gupta, R.K. Plastics in Buildings and Construction, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; ISBN 9780323390408. [Google Scholar]
- Moradibistouni, M.; Vale, B.; Isaacs, N. Evaluating the use of polymers in residential buildings: Case study of a single storey detached house in New Zealand. J. Build. Eng. 2020, 32, 101517. [Google Scholar] [CrossRef]
- Project DWG the Pet Pavilion, Public Space in a Changing Society. Available online: https://www.projectdwg.com/the-pet-pavilion-public-space-in-a-changing-society-in-enschede-by-projectdwg/ (accessed on 2 February 2021).
- Loos.Fm the Pet Pavilion, Public Space in a Changing Society. Available online: http://loos.fm/en/project-pet-pavilion.php (accessed on 2 February 2021).
- The Far Eastern Group EcoARK-World’s First PET Bottle Green Building. Available online: https://www.expopark.taipei/en/cp.aspx?n=175 (accessed on 2 February 2021).
- Moretti, E.; Zinzi, M.; Belloni, E. Polycarbonate panels for buildings: Experimental investigation of thermal and optical performance. Energy Build. 2014, 70, 23–35. [Google Scholar] [CrossRef]
- Čekon, M.; Šikula, O. Experimental and numerical study on the thermal performance of polycarbonate panels. J. Build. Eng. 2020, 32, 101715. [Google Scholar] [CrossRef]
- Construcciones Planificadas Hotel Grand Hyatt Bogotá. Available online: http://www.construccionesplanificadas.com/en/ (accessed on 2 February 2021).
- Hager, I.; Golonka, A.; Putanowicz, R. 3D Printing of Buildings and Building Components as the Future of Sustainable Construction? Procedia Eng. 2016, 151, 292–299. [Google Scholar] [CrossRef] [Green Version]
- Sakin, M.; Kiroglu, Y.C. 3D Printing of Buildings: Construction of the Sustainable Houses of the Future by BIM. Energy Procedia 2017, 134, 702–711. [Google Scholar] [CrossRef]
- 3Dprint 3D Printed Building Facades. Available online: https://3dprint.com/187220/3d-printed-building-facades/%0A (accessed on 2 February 2021).
- ARCHELLO 3D Printed Facade for Eu-Building. Available online: https://archello.com/en/project/3d-printed-facade-for-eu-building (accessed on 2 February 2021).
- Sarakinioti, M.V.; Turrin, M.; Konstantinou, T.; Tenpierik, M.; Knaack, U. Developing an integrated 3D-printed façade with complex geometries for active temperature control. Mater. Today Commun. 2018, 15, 275–279. [Google Scholar] [CrossRef] [Green Version]
- Vidakis, N.; Petousis, M.; Tzounis, L.; Maniadi, A.; Velidakis, E.; Mountakis, N.; Papageorgiou, D.; Liebscher, M.; Mechtcherine, V. Sustainable additive manufacturing: Mechanical response of polypropylene over multiple recycling processes. Sustainability 2021, 13, 159. [Google Scholar] [CrossRef]
- Shemelya, C.; De La Rosa, A.; Torrado, A.R.; Yu, K.; Domanowski, J.; Bonacuse, P.J.; Martin, R.E.; Juhasz, M.; Hurwitz, F.; Wicker, R.B.; et al. Anisotropy of thermal conductivity in 3D printed polymer matrix composites for space based cube satellites. Addit. Manuf. 2017, 16, 186–196. [Google Scholar] [CrossRef]
- Labonnote, N.; Rønnquist, A.; Manum, B.; Rüther, P. Additive construction: State-of-the-art, challenges and opportunities. Autom. Constr. 2016, 72, 347–366. [Google Scholar] [CrossRef]
- Yazdani Sarvestani, H.; Akbarzadeh, A.H.; Niknam, H.; Hermenean, K. 3D printed architected polymeric sandwich panels: Energy absorption and structural performance. Compos. Struct. 2018, 200, 886–909. [Google Scholar] [CrossRef]
- Hasselman, D.P.H.; Johnson, L.F. Effective Thermal Conductivity of Composites with Interfacial Thermal Barrier Resistance. J. Compos. Mater. 1987, 21, 508–515. [Google Scholar] [CrossRef]
- University of Campania Luigi Vanvitelli; Department of Architecture and Industrial Design Ri.A.S.-Built Environment Control Laboratory. Available online: https://www.architettura.unicampania.it/images/ricerca/laboratori/EN/0-Lab_RIAS_ENG_30042020.pdf (accessed on 4 September 2020).
- Batlles, F.J.; Olmo, F.J.; Alados-Arboledas, L. On shadowband correction methods for diffuse irradiance measurements. Sol. Energy 1995, 54, 105–114. [Google Scholar] [CrossRef]
- Ensinger TECARAN ABS Grey. Available online: https://www.ensingerplastics.com/en/shapes/products/tecaran-abs-grey (accessed on 10 February 2021).
- Dickinson, E.W. Solar Energy Technology Handbook; CRC Press: Boca Raton, FL, USA, 2017; ISBN 9781351076739. [Google Scholar]
- Al-Saadi, S.N.; Zhai, Z. A new validated TRNSYS module for simulating latent heat storage walls. Energy Build. 2015, 109, 274–290. [Google Scholar] [CrossRef] [Green Version]
- Vahidi Bidhendi, M.; Abbassi, Y. Exploring dynamic operation of a solar dish-stirling engine: Validation and implementation of a novel TRNSYS type. Sustain. Energy Technol. Assess. 2020, 40, 100765. [Google Scholar] [CrossRef]
- Yasin, M.; Scheidemantel, E.; Klinker, F.; Weinläder, H.; Weismann, S. Generation of a simulation model for chilled PCM ceilings in TRNSYS and validation with real scale building data. J. Build. Eng. 2019, 22, 372–382. [Google Scholar] [CrossRef]
- TRNSYS 18 TRNSYS Manual-Volume 3, Standard Component Library Overview. Available online: http://www.trnsys.com/assets/docs/03-ComponentLibraryOverview.pdf (accessed on 4 September 2020).
- Solar Energy Laboratory, University of Wisconsin-Madison and Thermal Energy System Specialists. Thermal Energy Systems Specialists TRNSYS Manual-Volume 4, Mathematical Reference; Solar Energy Laboratory, University of Wisconsin-Madison: Madison, WI, USA, 2018; pp. 1–705. [Google Scholar]
- TESS Component Library TESS Individual Components-TYPE 1230: Ventilated Air Cavity Wall (Ventilated Facade). Available online: http://www.trnsys.com/tess-libraries/individual-components.php.html (accessed on 14 March 2021).
- Trimble Inc. SketchUp Pro 2014. Available online: https://3dwarehouse.sketchup.com/model/ua1d8251e-be08-4735-89c3-008b8e79ff3d/sketchUp-pro-2014?hl=it (accessed on 4 September 2020).
- Italian Government DM 26 Giugno 2015. Available online: https://www.mise.gov.it/index.php/it/normativa/decreti-interministeriali/2032966-decreto-interministeriale-26-giugno-2015-applicazione-delle-metodologie-di-calcolo-delle-prestazioni-energetiche-e-definizione-delle-prescrizioni-e-dei-requisiti-minimi-degli-edifici (accessed on 4 September 2020).
- G.I. Industrial Holding Technical Brochure-CRA/K 15÷131. Available online: https://clint.it/en/products/aircooled-liquid-chillers-and-heat-pumps-for-commercial-industrial-application-2/aircooled-liquid-chillers-and-heat-pumps/crak-15131/ (accessed on 4 September 2020).
- García, E.; De Pablos, A.; Bengoechea, M.A.; Guaita, L.; Osendi, M.I.; Miranzo, P. Thermal conductivity studies on ceramic floor tiles. Ceram. Int. 2011, 37, 369–375. [Google Scholar] [CrossRef]
- MakeItFrom.com. Glycol-Modified Polyethylene Terephthalate (PETG). Available online: https://www.makeitfrom.com/material-properties/Glycol-Modified-Polyethylene-Terephthalate-PETG-PET-G (accessed on 2 February 2020).
- MakeItFrom.com. Polylactic Acid (PLA, Polylactide). Available online: https://www.makeitfrom.com/material-properties/Polylactic-Acid-PLA-Polylactide (accessed on 2 February 2020).
- SD3D ABS Technical Data Sheet. Available online: https://www.sd3d.com/wp-content/uploads/2015/10/MaterialTDS-ABS-Web.pdf (accessed on 10 February 2021).
- SD3D PETG Technical Data Sheet. Available online: https://www.sd3d.com/wp-content/uploads/2017/06/MaterialTDS-PETG_01.pdf (accessed on 10 February 2021).
- SD3D PLA Technical Data Sheet. Available online: https://www.sd3d.com/wp-content/uploads/2017/06/MaterialTDS-PLA_01.pdf (accessed on 10 February 2021).
- Stephan, K.; Laesecke, A. The Thermal Conductivity of Fluid Air. J. Phys. Chem. Ref. Data 1985, 14, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Ente Nazionale Italiano di Unificazione. Energy Performance of Buildings Part 1: Evaluation of Energy Need for Space Heating and Cooling; UNI/TS 11300-1; Ente Nazionale Italiano di Unificazione (UNI): Room, Italy, 2014. [Google Scholar]
- Euporpean Committee for Standardzation. Heating Systems in Buildings–Method for Calculation of the Design Heat Load; EN 12831:2003 E; Euporpean Committee for Standardzation: Brussels, Belgium, 2003. [Google Scholar]
- Rosato, A.; Ciervo, A.; Ciampi, G.; Scorpio, M.; Guarino, F.; Sibilio, S. Impact of solar field design and back-up technology on dynamic performance of a solar hybrid heating network integrated with a seasonal borehole thermal energy storage serving a small-scale residential district including plug-in electric vehicles. Renew. Energy 2020, 154, 684–703. [Google Scholar] [CrossRef]
- Angrisani, G.; Canelli, M.; Roselli, C.; Russo, A.; Sasso, M.; Tariello, F. A small scale polygeneration system based on compression/absorption heat pump. Appl. Therm. Eng. 2017, 114, 1393–1402. [Google Scholar] [CrossRef]
- SIA 2024:2015-Dati D’utilizzo di Locali per L’energia e L’impiantistica Degli Edifici. Available online: https://www.sia.ch/en/the-sia/ (accessed on 4 September 2020).
- Veglas. Veglas s.r.l. Available online: http://www.veglas.it (accessed on 20 March 2021).
- Plasting. Plasting s.r.l. Available online: https://www.plasting.biz/en/ (accessed on 20 March 2021).
- SD3D. SD3D Printing. Available online: https://www.sd3d.com (accessed on 20 March 2021).
Number of Sensors | Measured Quantity | Type | Range | Accuracy |
---|---|---|---|---|
1 | Wind speed | ‘Pro First Class’ anemometer | 0–50 m/s | ±0.01 m/s |
1 | Wind direction | ‘Pro First Class’ anemometer | 0–356.9° ± 3° | ±1° |
3 | Air Temperature and Relative humidity | Thermo-hygrometer with precision transducer | Temperature: −40–+60 °C Rel. Humidity: 0–100% | Temperature: ±0.2 °C Rel. Humidity: ±2% |
1 | Atmospheric pressure | Barometer with piezo-resistive transducer | 800–1100 hPa | ±0.3 hPa at 20 °C |
3 | Solar radiation | II class thermopile pyranometer | 0–2000 W/m2 | ±10 μV/(W/m2) |
2 | Air cavity speed | Hot wire air speed transmitter | 0.2–40.0 m/s | ±0.2 m/s +3% f.s. |
10 | Temperature | T-Type thermocouple | −200–+350 °C | ±1.5 °C |
Tindoor (°C) | Tcavity (°C) | ||||
---|---|---|---|---|---|
ME | MAE | RMSE | ME | MAE | RMSE |
−0.3 | 0.5 | 0.4 | 0.3 | 0.3 | 0.2 |
Case Study | Second-Skin Material | Insulation Thickness (m) | Air Gap (m) |
---|---|---|---|
Case 0 | - | - | - |
Case 1 | Porcelain gres | 0.072 | 0.10 |
Case 2 | Polycarbonate multi-wall sheets | 0.063 | |
Case 3 | Extruded ABS panels | 0.070 | |
Case 4 | Extruded PETG panels | 0.071 | |
Case 5 | Extruded PLA panels | 0.069 | |
Case 3_3D | 3D printed ABS panels | 0.065 | |
Case 4_3D | 3D printed PETG panels | 0.067 | |
Case 5_3D | 3D printed PLA panels | 0.063 |
Surface | Material | Thickness (m) | Density (kg/m3) | Thermal Conductivity (W/mK) | Thermal Capacity (kJ/kgK) |
---|---|---|---|---|---|
Vertical Walls | Plaster | 0.015 | 1400 | 0.70 | 1.01 |
Bricks | 0.238 | 600 | 0.36 | 0.84 | |
Mortar | 0.015 | 1800 | 0.90 | 0.91 | |
Roof | Plaster | 0.015 | 1400 | 0.70 | 1.01 |
Lighter concrete | 0.027 | 500 | 0.17 | 0.88 | |
Bricks | 0.150 | 600 | 0.36 | 0.84 | |
Concrete | 0.020 | 600 | 0.18 | 0.88 | |
Bitumen | 0.005 | 1200 | 0.17 | 1.47 | |
Floor | Tiles | 0.020 | 2000 | 1.00 | 1.00 |
Concrete | 0.050 | 600 | 0.18 | 0.88 | |
Bricks | 0.150 | 600 | 0.36 | 0.84 | |
Lighter concrete | 0.030 | 500 | 0.17 | 0.88 |
Parameter | Detail | Value |
---|---|---|
Thermal Transmittance | Walls and South wall without insulation (Case 0) | U = 1.15 W/m2K |
Roof | U = 1.10 W/m2K | |
Floor | U = 0.94 W/m2K | |
Windows (frame ratio of 15%) | U = 2.95 W/m2K | |
South wall with insulation (Cases 1, 2, 3, 4, 5, 3_3D, 4_3D and 5_3D) | U = 0.36 W/m2K | |
Infiltration [72,73] | Air changes per hour | 0.6 h−1 |
Heating and Cooling systems | Heating system | Set point = 20 °C [74] |
Operation period = 16 November/30 March [74] | ||
COP = 2.67 [64] | ||
Cooling system | Set point = 26 °C [74] | |
Operation period = 1 April/15 November [74] | ||
EER = 2.41 [64] | ||
Occupancy schedule [75] | Workweek | Weekdays (8:00–18:00) |
Completely off on the weekends | ||
Internal gains [76] | Lighting systems | Operation = Occupancy schedule |
Radiative = 11.13 W/m2 | ||
Convective = 4.77 W/m2 | ||
Equipment | Operation = Occupancy schedule | |
Radiative = 1.4 W/m2 | ||
Convective = 5.6 W/m2 | ||
Occupants | Operation = Occupancy schedule | |
Radiative/Convective = 2.5 W/m2 | ||
Absolute humidity = 0.0055 kg/hm2 |
Parameters | Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 3_3D | Case 4_3D | Case 5_3D |
---|---|---|---|---|---|---|---|---|
Material | Porcelain gres | Polycarbonate multi-wall sheets | Extruded ABS | Extruded PETG | Extruded PLA | 3D printed ABS | 3D printed PETG | 3D printed PLA |
Thickness (m) | 0.010 | |||||||
Density (kg/m3) | 2000 | 300 | 1040 | 1300 | 1300 | 331 | 411 | 395 |
Thermal capacity (kJ/kgK) | 0.840 | 1.05 | 1.40 | 1.20 | 1.80 | 1.21 | 1.07 | 1.25 |
Thermal conductivity (W/mK) | 1.20 | 0.0453 | 0.17 | 0.29 | 0.13 | 0.0548 | 0.0818 | 0.0448 |
Resistance of interface layer (hm2K/kJ) | 0.486 | 0.427 | 0.472 | 0.479 | 0.467 | 0.438 | 0.455 | 0.427 |
Convective heat transfer coefficient of interface layer (kJ/hm2K) | 2.06 | 2.34 | 2.12 | 2.09 | 2.14 | 2.28 | 2.20 | 2.35 |
Polycarbonate Multi-Wall Sheets | Extruded ABS | Extruded PETG | Extruded PLA | 3D Printed ABS * | 3D Printed PETG * | 3D Printed PLA * | |
---|---|---|---|---|---|---|---|
Cost (€/m2) | 10–25 | 70–175 | 75–150 | 75–130 | 188–225 | 190–220 | 190–207 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciampi, G.; Spanodimitriou, Y.; Scorpio, M.; Rosato, A.; Sibilio, S. Energy Performances Assessment of Extruded and 3D Printed Polymers Integrated into Building Envelopes for a South Italian Case Study. Buildings 2021, 11, 141. https://doi.org/10.3390/buildings11040141
Ciampi G, Spanodimitriou Y, Scorpio M, Rosato A, Sibilio S. Energy Performances Assessment of Extruded and 3D Printed Polymers Integrated into Building Envelopes for a South Italian Case Study. Buildings. 2021; 11(4):141. https://doi.org/10.3390/buildings11040141
Chicago/Turabian StyleCiampi, Giovanni, Yorgos Spanodimitriou, Michelangelo Scorpio, Antonio Rosato, and Sergio Sibilio. 2021. "Energy Performances Assessment of Extruded and 3D Printed Polymers Integrated into Building Envelopes for a South Italian Case Study" Buildings 11, no. 4: 141. https://doi.org/10.3390/buildings11040141
APA StyleCiampi, G., Spanodimitriou, Y., Scorpio, M., Rosato, A., & Sibilio, S. (2021). Energy Performances Assessment of Extruded and 3D Printed Polymers Integrated into Building Envelopes for a South Italian Case Study. Buildings, 11(4), 141. https://doi.org/10.3390/buildings11040141