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Abstract: This paper develops a new type of shear connection for steel-concrete composite bridges
using Ultra-High Performance Concrete (UHPC) as the connection grout. The UHPC-grout strip
shear connection is fabricated by preforming a roughened slot in the concrete deck slab, welding an
embossed steel rib longitudinally to the upper flange of the steel girder, and casting the strip void
between the slot and the steel rib with UHPC grout. The structural performance of the new connection
was validated by two sets of experimental tests, including push-out testing of shear connectors and
static and fatigue testing of composite beams. The results of push-out testing indicate that the
UHPC-grout strip shear connection exhibits a significant improvement of ductility, ultimate capacity,
and fatigue performance. The interface shear strength of the UHPC-grout strip connection is beyond
15 MPa, which is about three times that of the strip connection using traditional cementitious grouts.
The ultimate capacity of the connection is dominated by the interface failure between the embossed
steel and the UHPC grout. The results of composite-beam testing indicate that full composite action
is developed between the precast decks and the steel beams, and the composite action remained
intact after testing for two million load cycles. Finally, the trail design of a prototype bridge shows
that this new connection has the potential to meet the requirements for horizontal shear.

Keywords: composite bridge; precast deck; shear connection; strip connection; UHPC

1. Introduction

In recent years, a prefabricated steel–concrete composite bridge system has been used
increasingly in new constructions. A typical system is the full-depth deck panel system
shown in Figure 1. Shear stud clusters embedded in shear pockets are applied to create
composite action between precast decks and steel girders. The shear pockets are filled with
field-cast cementitious grouts to generate the composite action. This innovative solution al-
lows shorter time for the construction, while extending the service life of bridge decks [1,2].
Significant advances have been made to study the composite action between steel girders
and precast decks when large clusters of studs are utilized [3–7]. Meanwhile, there are
some potential problems with the use of clustered studs such as the shear connection [3,8],
which include deck uplift, nonuniform distribution of horizontal shear along the interface,
and local bearing failure of concrete in the shear pockets. Potential solutions to these
problems would be the use of innovative detailing and/or advanced materials.

Buildings 2021, 11, 182. https://doi.org/10.3390/buildings11050182 https://www.mdpi.com/journal/buildings

https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://orcid.org/0000-0002-2194-4794
https://doi.org/10.3390/buildings11050182
https://doi.org/10.3390/buildings11050182
https://doi.org/10.3390/buildings11050182
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/buildings11050182
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings11050182?type=check_update&version=1


Buildings 2021, 11, 182 2 of 19Buildings 2021, 11, x FOR PEER REVIEW 2 of 19 
 

 
Figure 1. Schematic of full-depth precast concrete deck panel system. 

One potential solution is the use of strip or distributed connections, rather than point 
connections. They offer the advantage of minimizing the risk of local failures. Among var-
ious types of strip connections, one promising detailing is the “connection by adhesion, 
interlocking and friction,” which is first presented and studied by EPFL in Switzerland 
[9]. This innovative connection (Figure 2a) consists of a precast deck fabricated with a 
roughened slot in the lower part and an embossed steel rib welded longitudinally to the 
upper flange of the steel girder. The channel void under the precast panel is injected with 
cement grout. As shown in Figure 2b, the horizontal shear resistance of the connection is 
controlled by two interfaces: the grout-concrete interface (interface 1), and the steel-grout 
interface (interface 2). Papastergiou and Lebet [10] conducted several improvements to 
this type of connection, including the absence of a bonding layer on the upper flange to 
improve the brittle behavior of the connection, the presence of circular holes in the steel 
rib to generate a “dowel effect” [11], and the use of high-performance mortar as the injec-
tion [12]. The connection by adhesion, interlocking, and friction offers an alternative solu-
tion for the accelerated construction of steel–concrete composite bridges. However, pre-
vious studies conducted by Thomann and Lebet [13] and Papastergiou [14] pointed out 
that this connection usually exhibits less ductile behavior in comparison with the shear 
studs. 
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Figure 2. Schematic of strip shear connection: (a) general view; (b) interface details. 
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Figure 1. Schematic of full-depth precast concrete deck panel system.

One potential solution is the use of strip or distributed connections, rather than
point connections. They offer the advantage of minimizing the risk of local failures.
Among various types of strip connections, one promising detailing is the “connection
by adhesion, interlocking and friction,” which is first presented and studied by EPFL in
Switzerland [9]. This innovative connection (Figure 2a) consists of a precast deck fabricated
with a roughened slot in the lower part and an embossed steel rib welded longitudinally to
the upper flange of the steel girder. The channel void under the precast panel is injected
with cement grout. As shown in Figure 2b, the horizontal shear resistance of the connection
is controlled by two interfaces: the grout-concrete interface (interface 1), and the steel-grout
interface (interface 2). Papastergiou and Lebet [10] conducted several improvements to
this type of connection, including the absence of a bonding layer on the upper flange
to improve the brittle behavior of the connection, the presence of circular holes in the
steel rib to generate a “dowel effect” [11], and the use of high-performance mortar as the
injection [12]. The connection by adhesion, interlocking, and friction offers an alternative
solution for the accelerated construction of steel–concrete composite bridges. However,
previous studies conducted by Thomann and Lebet [13] and Papastergiou [14] pointed
out that this connection usually exhibits less ductile behavior in comparison with the
shear studs.
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Figure 2. Schematic of strip shear connection: (a) general view; (b) interface details.

Another potential solution would be the utilization of high-performance materials
such as Ultra-High Performance Concrete (UHPC) to ensure improved performance in the
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shear connections. UHPC-class materials typically exhibit compressive strengths beyond
120 MPa and tensile strengths above 5 MPa [15]. UHPC has been successfully applied in
composite connections between precast concrete slabs and steel girders [16–19]. Recently,
Haber et al. [20] proposed two new deck-to-girder composite connections employing
UHPC, referred to as the UHPC shear lug connection and the rebar dowel connection. Both
connection details exhibited good ultimate capacity and excellent ductility.

The objective of this paper is to develop an enhanced strip connection using UHPC
as the connection grout. UHPC has better durability and mechanical properties over
traditional cementitious grouts. Compared with existing strip connections using cement
grout, the UHPC-grout strip shear connection allows for a significant improvement of
ductility, ultimate capacity, and durability.

2. Experimental Program

Three sets of experiments were conducted to study the structural performance and
constructability of UHPC-grout strip shear connections: (1) push-out tests of shear con-
nectors; (2) static tests of composite beams; and (3) fatigue tests of composite beams. The
experimental work is described in the following sections.

2.1. UHPC-Class Grout

The UHPC-class grout applied in this study is a commercially available product in
China, which is composed of Portland cement, fine sand, silica fume, high active admixture,
superplasticizer, steel fibers, and water. Table 1 shows the composition of this material.
With regard to the steel fibers, the volumetric percentage is 1.5%, and the nominal length
and diameter are13 mm and 0.2 mm, respectively. The average compressive strength of this
UHPC-class grout is 125.6 MPa after 28 days of curing. Specimens were cured at ambient
laboratory temperatures (25 ◦C ± 2 ◦C). The compressive strength is obtained from uniaxial
compression tests on 150 × 150 × 150 mm cubic specimens. More details about the mix
and properties of this UHPC-grout material are available in the report by He et al. [21].

Table 1. Relative weight ratios to cement in the mix design.

Cement Fine Sand Silica
Fume

High Active
Admixture Superplasticizer Steel Fiber Water

1.0 1.1 0.25 0.28 0.05 0.22 0.2

2.2. Push-Out Testing of Shear Connectors

Three identical push-out test specimens were fabricated, as shown in Figure 3. Each
specimen is assembled by two precast concrete blocks and a steel connector. The void in the
connection is filled with UHPC-class grout. The concrete blocks are made of C50 concrete.
The steel connector consists of a steel plate in which two embossed steel plates are welded.
The surface of the inner rib of the concrete block was roughened by sand-blasting with
at least 3 mm roughness at about 40 mm spacing. The embossed steel plate was roughed
by 45◦ oriented grooves. These grooves are 2 mm deep and 10 mm wide. Circular holes
(d = 50 mm) spaced at 150 mm were drilled in the embossed steel plate to generate a “dowel
effect” that improves the shear strength of the connector. The above roughness treatments
are the same as the specimens tested by Diógenes et al. [11].
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Figure 3. General details of push-out specimens (dimensions in mm): (a) elevation view; (b) plane view; (c) roughness treatment.

2.3. Static and Fatigue Testing of Composite Beams
2.3.1. Specimen Design

Three identical specimens were fabricated to investigate the static and fatigue behavior
of composite girders with UHPC-grout strip shear connections. Beam 1 and Beam 2 were
loaded statically to failure, and Beam 3 was exposed to two million cycles of fatigue loads.

Figure 4 shows the general details of the composite beam specimens. Each specimen
has a length of 4000 mm and a height of 400 mm. The precast deck slab is 4 m long × 0.5 m
wide × 0.15 m thick. The steel girder is welded by three 12-mm-thick plates of Grade Q235
steel. The size of the longitudinal grouting channel in the concrete slab is 90 mm × 120 mm,
and the grouting pockets have a size of 100 × 100 mm and a spacing of 1000 mm. The
roughness treatments to the embossed steel plates and the grouting channel are the same
as the push-out tests. The material properties of the concrete slab and the UHPC-grout are
also the same as the push-out tests, as listed in Table 2.
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Table 2. Material properties for composite beam specimens.

Component Material Grade Material Properties

Steel plate Q235B fy = 250 MPa
Concrete slab C50 fc’ = 57.8 MPa (28 days)

Grout UHPC fc’ = 125.6 MPa (28 days)
Mild steel rebar HRB400 fy = 415 MPa

Note: fy is the yield strength of steel; fc’ is the cylinder compressive strength of concrete.

Figure 5 shows the fabrication process of the composite beam specimens. After the
precast concrete slab was installed on the steel girder, the interface between them was filled
with the UHPC-grout through the pockets preformed in the precast slab.
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2.3.2. Test Set-Up and Instrumentation

Figure 6 shows the experimental set-up used for both the static and fatigue tests of
the composite beam models. The tests were performed with a four-point flexural loading
configuration. During the static tests for Beam 1 and Beam 2, loading was applied in
increments of approximately 20 kN prior to the yielding of the steel girder. After that,
loading was continued in displacement control at a speed of 2 mm per stage. Beam 3
was exposed to 2,000,000 cycles of cyclic loads at 3 Hz. The maximum and minimum
cyclic loads were respectively 0.3Pu and 0.5Pu, where Pu is the ultimate failure load of the
composite beam.

As shown in Figure 6, strain gauges were used to monitor the normal strains on critical
sections and linear variable displacement transducers (LVDTs) were installed to measure
the vertical deflections of the composite beam models. Mechanical dial indicators were
installed along the beam for monitoring the steel-concrete interlayer load-slip relationship.
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3. Results and Discussions
3.1. Push-Out Testing of Shear Connectors

According to the previous study of Papastergiou and Lebet [10], there are two primary
types of failure for the embossed steel-cement grout interface: bearing failure and shear
failure. In the current push-out tests, three specimens all failed along the embossed steel-
UHPC-grout interface (Interface 2). Obvious relative slip occurred between the embossed
steel plate and the UHPC-grout (Figure 7), while no obvious cracks appeared in the
specimens.
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Figure 8 shows the shear stress–slip curves of the push-out tests. All specimens
exhibited similar load-slip behavior. The slip was primarily from the interface between
the embossed steel rib and the UHPC grout. The ultimate shear resistance of the UHPC-
grout strip shear connection (τu) is 15 MPa, and the residual frictional resistance (τfr) is
roughly 9 MPa. Figure 8 also shows the typical load-slip behavior of the specimens tested
by Diógenes et al. [11], which were grouted by High-Performance Mortar (HPM) with
an average compressive strength of 80 MPa. As can be seen, the use of UHPC as the
connection grout exhibited a significant increase in ultimate shear resistance compared
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to HPM, mainly attributing to the better mechanical properties of UHPC over traditional
cementitious grouts.
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3.2. Static Testing of Composite Beam 1 and Beam 2
3.2.1. Load-Deflection Relationship and Failure Mode

Figure 9 shows the load-deflection curves at the midspan obtained from the static tests.
Both composite beams behaved in a linear elastic manner until the supporting steel beam
started to yield at a strain of 1250 µε. Simultaneously, cracks began to appear on the precast
concrete slab at the locations of loading plates. The final collapse of the composite beams
was caused by the failure of the shear connection, where vertical cracks were observed
at the beam ends. The ultimate loads of Beam 1 and Beam 2 are 845 kN and 810 kN,
respectively. The ultimate midspan deflection is above 20 mm (i.e., l0/180, where l0 is the
span length), indicating that the structural performance of the beam is ductile (Figure 10).
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Figure 10. Deformation capacity of Beam 2 at failure.

3.2.2. Composite Action

Figure 11 shows the longitudinal strain distributions over the beam depth at mid-span
for Beam 1. As expected, the plane-section assumption is well satisfied in the elastic stage.
Although inconsistencies can be seen in the plastic stage, it can be observed that effective
composite action was developed between the deck slab and the steel girder up to failure.
As can be seen from Figure 11, the theoretical location of the neutral axis is close to that
identified from the test results. Once again, it can be concluded that an effective composite
action was developed between the precast slab and the steel girder. When the load is
increased to 800 kN, the longitudinal strain distribution over the mid-span section is not
linear. This indicates that interface slippage occurred between the precast slab and the
supporting steel girder.
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3.2.3. Load–Slip Relationship

Figure 12 shows the load–slip relationships obtained for the test specimens. The slip
between the concrete and steel was measured by mechanical dial indicators along the beam.
At failure, a maximum slip of 0.5 mm was observed, which is identical to the result of the
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push-out specimens shown in Figure 8. The steel–concrete interfaces with the maximum
slip were in the middle of the shear spans. As the applied load increased, the maximum
slip increased nonlinearly.
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3.3. Fatigue Testing of Composite Beam 3

Beam 3 was tested with a cyclic loading followed by a static test to failure. The cyclic
loading corresponds to a variation of 0.3Pu to 0.5Pu, where Pu is the ultimate load capacity
of composite Beams 1 and 2.

Figure 13 shows the distributions of longitudinal strain over the beam depth at the
mid-span after a specified number of load cycles. As can be seen, the composite action
remained intact after testing for 2 million load cycles. After the cyclic load tests, Beam 3
was loaded to failure. Figure 14 shows the load-defection curve of Beam 3, together with
the curves of Beam 1 and Beam 2. As can be seen, the fatigue loading has no damage effect
on the structural performance of the composite beam.
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4. Theoretical Analysis and Comparison
4.1. Evaluation of the Degree of Shear Connection

Composite beams are classified as fully composite and partially composite based on
the degree of shear connection [22]. In the plastic approach adopted by the AASHTO and
AISC specifications, it is assumed that the horizontal shear is distributed evenly along the
interface (Figure 15). To develop a full interaction, the required horizontal shear (Vh

*) along
the interface between the concrete slab and the steel beam shall be:

Vh
* = min {Asfy, 0.85Acfc’}, (1)

where As is the area of the steel beam; fy is the yield strength of the steel beam; fc’ is the
compressive strength of the concrete; and Ac is the effective area of the concrete slab.
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Meanwhile, the actual shear force (Vh) provided by the UHPC-grout strip shear
connection along the shear span is given as:

Vh = 2hp·av·τu, (2)

where τu is the interface shear strength of the UHPC-grout strip shear connection, which
can be taken as 15 MPa according to the pull-out tests; hp is the height of the embossed
steel plate; and av is the length of the shear span.

The degree of shear connection is defined as:

η = Vh/Vh
*. (3)

If η is greater than or equal to 1, the beam is said to be a “full composite beam.”
Otherwise, the beam is said to be a “partially composite beam.” For the composite beams
tested in this study, Vh

* is calculated as min{7512 × 250 × 10−3, 0.85 × 66,000 × 57.8 ×
10−3} = min{1878, 3243} = 1878 kN, and Vh is calculated as 2 × 0.06 × 1.2 × 15 × 103 =
2160 kN. Therefore, the degree of shear connection is η = 2160/1878 = 1.15, which indicates
that the tested beams are “full composite.”

In the tests, all three beams exhibited a sudden loss of load capacity due to the failure
of the shear connection. As shown in Figure 15, the actual distribution of horizontal shear
stresses along the interface slightly deviates from the uniform-distribution assumption in
the plastic analysis. The maximum shear stress is roughly 15% larger than the average
value. This provides a reasonable explanation for the failure mode of the tested beams.

4.2. Evaluation of Plastic Resistance Moment

For a full composite beam, the plastic resistance moment of the composite cross-section
can be calculated based on the sectional analysis by CEN [23]. The calculation result in
Figure 16 shows that the plastic neutral axis of the cross-section lies in the concrete slab.
The depth of the neutral axis is given as:

x = Asfy/0.85bfc’ = 83.9 mm, (4)

where As is the area of the steel beam and the embossed steel plate and b is the effective
width of the concrete slab.
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Figure 16. Sectional analysis for plastic resistance moment.

Therefore, the plastic resistance moment of the composite cross-section is obtained as:

Mu = Asfy(h − hs/2 − x/2) = 480 kN·m, (5)

where h is the overall height of the composite beam and hs is the height of the steel beam.
In the tests of Beam 1 and Beam 2, the experimental moment strengths are 507 kN·m

and 489 kN·m, which are slightly higher than the above prediction (i.e., 480 kN·m).

5. Finite Element Modelling
5.1. Finite Element Model

Three-dimensional stress analysis was conducted using the software ANSYS (Release
10.0). Figure 17 shows the finite element (FE) model, in which the concrete was modelled by
eight-node solid elements (SOLID 65); steel girder and steel rib were modelled by four-node
shell elements (SHELL 43); and UHPC grouting shear connections were modelled by spring
elements (COMBIN 39). The constitutive relationship of concrete and steel were adopt as
shown in Figure 18a,b. The shear stress–slip constitutive relationship of UHPC grouting
material (Figure 18c) was adopted from the direct shear tests by Thomann et al. [13] and
Papastergiou [14].
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Figure 18. Constitutive relationship: (a) concrete; (b) steel; (c) UHPC grouted shear connection.

5.2. Comparisons between FEA and Test Results

Figure 19a shows the load-deflection relationship curves of test beams and FE simu-
lation and Figure 19b gives the distribution of interface slip at the load of 800 kN. In the
elastic and plastic stage, the load-deflection curve of the finite element simulation is in
good agreement with that of test results, which shows that the shear behavior of composite
beams with UHPC grouting material can be well simulated. The maximum relative slip of
Beam 1, Beam 2 and FE modelling are 0.53 mm, 0.44 mm, and 0.46 mm respectively, with a
high degree of coincidence. The maximum slip occurs at approximate 800 mm away from
the bearing instead of at loading points or at the bearing. This could possibly be because
the complex stress condition makes the slip stiffness of loading points or at the bearing
increase.
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Figure 19. Comparison of test and FE results: (a) load-deflection relationship; (b) interface slip of steel and concrete at a
load of 800 kN.

Figure 20 shows the comparison of strain distribution of FE simulation and test results.
During the loading process, the experimental and theoretical variation of strain agree well
with each other at both the top of the concrete slab and the bottom of the steel girder.
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Figure 20. Comparison of strain: (a) strain at the bottom of the steel beam; (b) strain at the top of the concrete slab; (c) strain
distribution on sections at the load of 200 kN; (d) strain distribution on sections at the load of 800 kN.

6. Design of a Prototype Bridge

To facilitate future applications in bridge engineering, a trial design of a steel-concrete
composite bridge using the UHPC-grout strip shear connection is presented here. The
prototype bridge is designed in accordance with AASHTO [24].

6.1. Details of the Prototype Bridge

As illustrated in Figure 21, the prototype bridge has a simply-supported span of 35 m
with a 12.4 m wide deck. The bridge carries two standard 3.75 m traffic lanes and a 3.4 m
wide urgency parking strip. Precast panels 2–3 m wide are transversely connected by
preformed shear key joints. The structural steel used for the main beams, stiffeners and
cross bracing conforms to ASTM A709 Grade 345. The deck concrete has a minimum 28 day
compressive strength of 40 MPa. The UHPC-grout has a minimum 28 day compressive
strength of 120 MPa, and 1.5% high-strength steel fibers by volume.
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Figure 21. Schematic of the prototype bridge.

Figure 22 shows typical cross-sections for the composite bridge at midspan and
support. The superstructure consists of four steel I-girders with a full-depth precast
concrete deck. The deck is 380 mm thick above the main beams and 220 mm thick at its
center. The steel girders are 1.6 m deep and are spaced at 3.2 m center to center.
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Figure 23 shows the details of the UHPC-grout strip shear connection. The grouting
channel pre-formed in the slab has a trapezoidal-shaped cross-section. The depth of
the grouting channel is 120 mm. The embossed steel plate for the shear connection has
a thickness of 12 mm and a depth of 115 mm. It is roughed by 45◦ oriented grooves
(2 mm deep and 40 mm wide) and is drilled with circular holes (40 mm diameter and
150 mm spacing).
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Figure 23. Details of the UHPC grout strip shear connection (dimensions in mm): (a) plane view
of precast deck panel; (b) details of grouting channel; (c) details of grouting pocket; (d) details of
embossed steel plate.

6.2. Demand for Interface Shear

According to AASHTO [24], the nominal horizontal shear (Vh
*) between the mid-span

and the support shall be taken as:

Vh
* = min {Asfy, 0.85Acfc’} = 24,807 kN, (6)

where As is the area of the steel beam (71,904 mm2); fy is the yield strength of the steel beam
(345 MPa); fc’ is the compressive strength of the concrete (40 MPa); and Ac is the effective
area of the concrete slab (0.832 m2).

The nominal shear resistance (Vh
*) provided by the UHPC-grout strip shear connection

along the shear span is given as:

Vh = Vn·l0/2 = 31,500 kN, (7)

where Vn is the nominal shear resistance of the UHPC grout strip shear connection, which
can be taken as 1800 kN/m according to composite beam tests; and l0 is the span length.

Therefore, the degree of shear connection is:

η = Vh/Vh
* = 1.27. (8)

The above result shows that the UHPC grout strip shear connection has the potential
to meet the requirements for horizontal shear in the design of a real bridge.

6.3. Construction Process

Figure 24 shows the major construction stages of the prototype bridge, including
(1) erection of steel girders and cross frames; (2) erection of precast deck panels; (3) field
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casting of panel-to-panel joints; (4) grouting of UHPC to the connection channel; and (5)
casting of deck surfacing layer.
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6.4. Discussions

The trail design of the prototype bridge shows that the UHPC-grout strip shear
connection has the potential to be used in accelerated bridge construction. It is believed
that the UHPC-grout strip shear connection is a promising option for the design of steel–
concrete composite bridges. However, more research should be carried out, especially in
relation to fatigue behavior under vehicular loading and the response under long-term
loading.

7. Conclusions

An enhanced strip shear connection using UHPC as the grout has been developed
for the prefabricated steel–concrete composite bridge system. Push-out tests of shear
connectors and static and fatigue tests of composite beams were conducted to validate the
performance of the new connection. The following conclusions can be drawn:

1. Based on the push-out testing, the ultimate capacity of the shear connection was
dominated by the interface failure between the embossed steel and the UHPC grout.
The interface shear strength of the UHPC grout strip shear connection could be as
high as 15 MPa. The use of UHPC as the connection grout exhibited a significant
increase in capacity compared to HPM.

2. Based on the static testing of composite beams, the UHPC-grout strip shear connection
exhibited good interface shear performance. Full composite action was developed
between the precast panels and steel beams in the composite beams.

3. Based on the fatigue testing of a composite beam, the composite action remained intact
after testing for two million load cycles, and the fatigue loading had no damaging
effect on the structural performance of the composite beam.

4. Both the experimental tests and theoretical calculations showed that a full interaction
could be developed between the precast panels and steel beams. The ultimate capacity
of the composite beam using the UHPC grout strip shear connection could be well
predicted by the plastic approach. In the tests of Beam 1 and Beam 2, the experimental
moment strengths are 507 kN·m and 489 kN·m, respectively, which are close to the
theoretical moment strength of 480 kN·m predicted by the plastic approach.

5. The trail design of the prototype bridge shows that the UHPC grout strip shear
connection has the potential to be used in accelerated bridge construction. Calculation
results indicate that this novel connection has the potential to meet the requirements
for horizontal shear in the design of a real bridge.
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