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Abstract: In seismic risk estimation, among the different types of fragility curves used (judgement-
based, mechanical, empirical/observational, hybrid), the mechanical ones have the twofold advan-
tage of allowing a better control over the basic parameters and of representing a validation test of
the consistency of empirical/observational ones. In this study, fragility curves of RC frames with
column-driven failures are obtained from a simplified analytical pushover method implemented in a
simple spreadsheet, thus allowing the user to perform a large number of analyses. More importantly,
the proposed method introduces the concept that Limit States at the structural level are obtained
consequent to the attainment of the same Limit States at the local level, in the columns’ sections. This
avoids using additional criteria, such as interstorey drift thresholds. This simple analytical model
allows for rapid development of fragility curves, for any Limit State, of different building typologies
identified by a set of global quantities (number of storeys, story heights, number of spans and span
lengths) and by a set of local quantities (element sizes, reinforcement, and material properties). It
also allows for a straightforward treatment of the influence of the soil class on the fragility curves
parameters, which is another critical issue addressed in this work that helps when interpreting some
literature results using empirical/observational methods.

Keywords: mechanical fragility curves; analytical pushover analysis; typological seismic vulnerabil-
ity; soil influence on fragility curves

1. Introduction

In the recent past, the topic of seismic risk analysis and mitigation has attracted the
research community worldwide. Large-scale territorial studies have emphasized the need
for developing risk analysis tools to be utilized by both civil protection agencies and insur-
ance companies [1,2]. One of the main components of seismic risk is the vulnerability of
structures. Dunand and Guneguen [3] showed that, even in regions with moderate seismic
hazard, a high seismic risk can be found if the seismic vulnerability of the construction
stock is high.

A convenient and widely adopted method for defining seismic vulnerability is the use
of Fragility Curves (FCs). Such curves provide the probability of exceeding a Limit State
(LS) or a Damage Level (DL) as function of a seismic intensity measure.

Different classifications have been proposed of the methods adopted to derive FCs [4,5].
A meaningful classification identifies four different groups of procedures, based on the main
source of information: (a) judgement-based, (b) mechanical, (c) empirical/observational,
and (d) hybrid.

Judgement-based FCs are derived from statistical treatment of estimates provided by
experts about the average DL that various types of structures may undergo when subjected
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to different levels of seismic motion. The main advantage of this method is that it cannot
be affected by shortage of data because experts can be asked to provide estimates for any
structural type and ground motion severity. However, these FCs seem too subjective and
may be biased by possible cross-influence among experts.

Mechanical methods, on the other hand, derive FCs from statistical elaboration of the
results of analytical/mechanical models [6]. The assessment of buildings in mechanical
methods for deriving FCs can be carried out through either: (a) non-linear dynamic
analysis [7,8] or (b) simplified pushover analysis. In the literature, several simplified
methods for the assessment of buildings are developed [9–11]. Expeditious pushover
methods enable conducting analysis on a large scale, but their simplified formulation is
often affected by certain drawbacks and limitations. The reliability of the so-obtained
FCs strongly depends on the representativeness of the adopted model with respect to the
structural typology it represents. When dealing with structural typologies, less care of
details is required, since the range of variation of typological quantities is usually large.
Refined models, apart from being computationally expensive in large-scale vulnerability
analyses, would lack the knowledge of several input parameters. Thus, simple models,
even 2D, as those dealt with in this work, are more effective, especially in view of territorial
studies where relative rather than absolute risk of different building typologies is sought.

Empirical/observational methods are based on the statistical treatment of data col-
lected in post-earthquake surveys [12–15]. The main advantage of these methods consists
of the employment of the most realistic sources of information as to building features,
damage pattern, ground motion, site effects, source, and path of the seismic waves, and
so on. However, very rarely are these data disaggregated, so that databases eventually
contain heterogeneous data referring to buildings: (1) built with different local construction
practices, (2) built on different soil categories, and (3) surveyed by different technicians in
different times and with different forms. Homogeneous datasets, on the other hand, may
present low statistical significance.

Hybrid methods tend to overcome the limits of each of the other procedures by
statistically elaborating a combination of different sources of information, as the method
proposed by Kappos et al. [16], which combines empirical data and analytical results.

Overall, with respect to other methods, mechanical methods allow disaggregating
large building stocks in more detailed subsets, and also allowing including the effects
of different soil categories, so to perform more meaningful risk studies. Such features
render this method ideal for use in parametric studies for the definition and calibration of
territorial policies relevant to urban planning, retrofitting, insurance, and others.

The main objective of this study is to highlight the influence of local site characteristics,
such as soil class and location, over the development of FCs. For this purpose, a simplified
mechanical model for the assessment of RC frames is developed, which enables conducting
analysis on a large scale with affordable computational effort. Finally, the resulting FCs in
this study are compared to some observational and analytical FCs available in the literature.
The study shows that local hazard and local soil class significantly affect the resulting
FCs. Consequently, FCs pertaining to the same typology/building change when used at
different locations and on different soil classes.

2. Determination of Displacement Capacity of 2D Frame
2.1. Simplified Analytical Model of A 2D Frame

To describe the global geometry of a 2D frame, representative of a building typology,
only a small yet significant set of parameters is needed, such as: number of storeys, storey
heights, number of spans, and span lengths. Permanent and variable loads are generally
known from the building category. As far as materials are concerned, they can be deduced
from the codes enforced at the time of construction of the building. The same codes
can be used to deduce the element sizes and the amount of longitudinal and transverse
reinforcement, either using the minimum amounts thereby defined or through a simulated
design according to the then-enforced rules.
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The simplified analytical model of a 2D frame rests on its interpretation as a series sys-
tem of storeys, which in turn are considered as parallel systems of columns, which in turn
are considered as series systems of flexural and shear-resisting mechanisms. Notwithstand-
ing the simplified system logic, such models represent a reasonable compromise between
typological representativeness and computational efficiency. The method is conceived to
be applied to existing buildings designed for gravity loads, where failures are generally
column-driven, since columns are often weaker than the framing beams. Additionally,
due consideration is given to failure of beam-column joints by limiting the capacity of the
framing columns accordingly.

One main issue arising when developing mechanical FCs is the global Damage Levels
(DL) definition. Here, some correspondence is established with the analytically defined
local Limit States (LS) at both the sectional and the element level. This step is essential
in that DLs, which have been defined mainly to facilitate and homogenize observational
data, are usually given in descriptive terms and, as such, suffer from being qualitative and
subjective. On the other hand, LSs are quantitively and objectively stated and are therefore
analytically usable.

In this study, the 2D frame response at the global level is described in terms of
base-shear vs. top-displacement by a piece-wise trilinear curve, where three objectively
measured LSs are identified: Damage limitation Limit State (DLS), Life safety Limit State
(LLS) and Collapse prevention Limit State (CLS).

These three global LSs are directly obtained from the corresponding LSs of each single
story, which in turn are derived from the LSs of each single column, which, again, are
derived from the local LSs of the sections at the column’s end plastic hinges, with criteria
that will be explained in the following. Following this approach, any global LS is directly
identified based on the attainment of the corresponding LS at the story level, at the column
level, and ultimately at the section level. Once LS criteria are established at the section
level, no additional LS criteria are needed at the column level, at the story level, and at
the global level. This ensures consistency between local LSs and global LSs and avoids
introducing a different metric for the global LSs, such as, for example, interstorey drifts.

2.2. Frame Section Capacity at x = D, L, C

The sectional moment-curvature diagram can be effectively described by a trilinear
curve passing through three Limit States: DLS, corresponding to yielding of the tensile
steel bars, LLS, corresponding to crushing of the concrete cover, and CLS, corresponding
to crushing of the concrete core (Figure 1). The coordinates of these three points can be
described by closed-form equations for curvature capacity φxLS and moment capacity
MxLS, where x = D, L, C.

For rectangular sections with symmetrical reinforcement, these equations are given in
Table 1 (further elaborated from [17]), with the notation in Figure 2, where d is the section
effective depth, b is the section width, dc is the section effective depth after concrete cover
spalling, As is the tension area of the longitudinal reinforcement, Asw is the area of the
transverse reinforcement, and s is the transverse reinforcement spacing.

Where εy is the steel yield strain, εcu is the concrete strain, fc is the concrete strength,
µs is the longitudinal reinforcement mechanical ratio, and nS is the normalized axial load,
the latter two given as, respectively:

ωs =
As fy

bd fc
and nS =

NS
bd fc

(1)

Moreover, σ̃2 is the confining stress normalized with respect to the characteristic
concrete strength fck, and η f is the concrete strength increase due to confinement, given as:

η f =

{
(1.000 + 5.0σ̃2) σ̃2 ≤ 0.05
(1.125 + 2.5σ̃2) σ̃2 > 0.05

(2)
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prevention Limit State (CLS, concrete core crushing).

Table 1. Flexural failure: equations for resisting moment and curvature at three LSs for the case of
rectangular sections with symmetric reinforcement.

Damage Limitation Limit State (DLS)

Moment capacity MDLS =
ε2

yd

ε2
cu
[0.45nS(0.8− nS) + 2.4 (ωs + 0.015)]bd2 fc

Curvature capacity φDLS =
εy
2d
(
3 +
√

nS
)

Life Safety Limit State (LLS)

Moment capacity MLLS =
[
ωs +

1
2 nS

(
1− nS

η f

)]
bd2 fc

Curvature capacity φLLS = εcu
d

0.8
nS

η f

Collapse Prevention Limit State (CLS)

Moment capacity MCLS =
[
ωs +

1
2 nS

(
1− nS

η f

)]
bd2

c fc

Curvature capacity φCLS = φLLS
d
dc

(
1 + 1

4
σ̃2
εcu

)
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If needed, the sectional curvature ductility at CLS can be calculated as:

µφ,CLS =
φCLS
φDLS

=

εcu
dc

0.8
nS

η f
d
dc

(
1 + 1

4
σ̃2
εcu

)
εy
2d
(
3 +
√

nS
) ≈ 800

η f

nS

εcu +
1
4 σ̃2

3 +
√

nS
(3)

2.3. Column Capacity at x = D, L, C

A column is considered as a series system of flexural plastic hinges, column shear, and
joints shear.

The flexural force-displacement diagram of a column is obtained by considering, both,
the rotations of the two end plastic hinges, which follow the above-described sectional
moment-curvature diagram, and the elastic deformation of the column between them. The
so-obtained purely flexural response of the column is then compared to its shear capacity
and the joints’, to obtain the actual capacity of the column.

The column shear and displacement corresponding to the three Limit States x = D, L, C
are obtained from equilibrium and compatibility as:

vxLS = min
(

2MxLS
H

, VR, VjR

)
(4)

uxLS =
vxLS
KE

+ φxLSLp
(

H − Lp
)

(5)

where the elastic stiffness is:
KE =

12Ecm I(
H − 2Lp

)3 (6)

where MxLS is the flexural capacity at xLS, H is the element height, φxLS is the curvature
capacity at xLS, Ecm is the concrete mean elastic modulus, I is the section moment of inertia,
and Lp is the plastic hinge length, given, for example, as:

Lp = 0.1H + 0.17
b + d

2
(7)

The column shear capacity VR is computed as:

VR = 0.9db fcωw

√
αcν

ωw
− 1 (8)

where ωw is the transverse reinforcement mechanical ratio:

ωw =
Aw

bs
fy

fc
(9)

with Aw being the transverse reinforcement area, while ν = 0.5 is the concrete compressive
strength reduction factor, and αc is a coefficient depending on the normalized axial load nS,
as follows:

αc =

{
1 + nS ≤ 1.25 0.00 ≤ nS < 0.50
2.5(1− nS) 0.50 ≤ nS < 1.00

(10)

The joint shear capacity VjR is computed as:

VjR = ηdcbj fc

√
1− nS

η
(11)

where dc is in Figure 2, bj is the joint effective width, and η = αj

(
1− fc

250

)
with fc in MPa

and αj = 0.6 for internal joints and αj = 0.48 for external joints.
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2.4. Story Capacity at x = D, L, C

A story is considered as a parallel system of j = 1 . . . m columns.
The i-th interstorey drift capacity dxLS,i and the corresponding resultant force VxLS,i at

x = D, L, C is determined when the first column attains the corresponding Limit State:

dxLS,i = min
j

uxLS,j (12)

VxLS,i =
m

∑
j=1

vj(dxLS,i) (13)

where uxLS,j is the j-th column displacement at xLS and vj(dxLS,i) is the j-th column force
at dxLS,i.

The i-th interstorey secant stiffness is:

kxLS,i =
VxLS,i

dxLS,i
(14)

2.5. Frame Capacity at x = D, L, C

The frame can be represented as a series system (a so-called “stick model”) of i =
1, . . . , n storeys, where each storey mass mi is located at height zi (Figure 3) and where
the connecting elements follow the respective trilinear story behavior, obtained from the
trilinear columns behaviors, in turn obtained from the trilinear sectional behaviors, as
explained in the previous sections.
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In such system, the lateral forces are applied along the frame height according to
the shape ψi, which can be taken as either one of the following (height-proportional or
mass-proportional):

ψi =
mizi

∑ mizi
or ψi =

mi

∑ mi
(15)

where it should be noticed that ∑ ψi = 1 for both.
From the applied force shape ψi, the interstorey shear shape τi is found as:

τi =
n

∑
j=i

ψj (16)

The elastic interstorey displacement shape can be found as:

ϕi =
τi

kDLS,i

(
n

∑
j=1

τj

kDLS,j

)−1

(17)
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with kDLS,i being the i-th story elastic stiffness at DLS.
The frame displacement capacity dxLS and resulting base shear VxLS at x = D, L, C

are determined when the first storey attains the corresponding Limit State:

dxLS = min
i

dxLS,i

ϕi
(18)

VxLS =
VxLS,imin

τimin
(19)

where dxLS,i is the i-th interstorey drift in Equation (12) at xLS and VxLS,i is the interstorey
shear in Equation (13), taken at the interstorey satisfying Equation (18), denoted with imin.

3. Determination of Displacement Demand on a 2D Frame
3.1. Simplified Modal Analysis

The first modal shape φ can be taken equal to the displacement shape. In “stick models”
with evenly distributed masses along the height, this is a reasonable approximation that
yields negligible errors (lower than 3% for both the eigenvalue ratio and the eigenvector
distance norm). Therefore:

φi =
i

∑
j=1

ϕj (20)

where it should be noticed that, by replacing Equation (17), the maximum value at the top
(i = n) is naturally equal to 1.

The participation factor Γ and the fundamental period T are then found as usual as:

Γ =
φTMr
φT Mφ

(21)

T = 2π

√
φT Mφ

φTKφ
(22)

It should be noticed that M and K are diagonal and banded, respectively, as follows
(posing for conciseness ki = kDLS,i):

M =



m1 0 · · · · · · 0

0
. . . 0

. . .
...

... 0 mi 0
...

...
. . . 0

. . . 0
0 · · · · · · 0 mn


(23)

K =



k1 + k2 −k2 · · · · · · 0

−k2
. . . −ki

. . .
...

... −ki ki + ki+1 −ki+1
...

...
. . . −ki+1

. . . −kn
0 · · · · · · −kn kn


(24)

This allows rewriting Equations (21) and (22) using only summations, thus simplifying
their use, for example, in spreadsheets or hand calculations:

Γ =
∑ miφi

∑ miφ
2
i

(25)
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T = 2π

√
m∗

k∗
(26)

where the effective mass m∗ and the effective stiffness k∗ are:

m∗ = ∑ miφ
2
i (27)

k∗ =
n−1

∑
i=1

(
(ki + ki+1)φ

2
i − 2ki+1φiφi+1

)
+ knφ2

n (28)

3.2. Equivalent SDOF System

The “stick model” of the frame is then transformed into an equivalent single degree
of freedom (SDOF) system. The top displacement (d∗) and the base shear (V∗) of the
equivalent SDOF system are obtained from Equations (18) and (19), as follows:

d∗xLS =
dxLS

Γ
(29)

V∗xLS =
VxLS

Γ
(30)

Having elastic stiffness:

K∗DLS =
V∗DLS
d∗DLS

(31)

3.3. Bilinearization

The SDOF system capacity curve, which has a trilinear shape through DLS, LLS, and
CLS, is bilinearized to determine its equivalent yield point, which is found as:

d∗y =
V∗y

K∗DLS
(32)

V∗y = V∗DLS

[
d∗CLS
d∗DLS
−
√(

d∗CLS
d∗DLS

)2
− d∗LLS

d∗DLS
+

V∗CLS
V∗DLS

(
d∗LLS
d∗DLS
− d∗CLS

d∗DLS

)
+

V∗LLS
V∗DLS

(
1− d∗CLS

d∗DLS

)]
(33)

The elastic period of such a bilinearized system is:

T∗ = 2π

√
m∗

K∗DLS
(34)

3.4. Displacement Demands at x = D, L, C

The displacement demands on the frame system pertaining to x = D, L, C are
obtained from the elastic displacement spectral ordinates SDe,xLS(T∗) computed at T∗ on
the displacement spectra pertaining to x = D, L, C, as:

dxLS,D = Γ · SDe,xLS(T∗) ·
{

1 if T∗ ≥ TC,xLS
1
q∗

[
1 + (q∗ − 1) TC,xLS

T∗

]
if T∗ < TC,xLS

(35)

where TC,xLS is the period at the onset of the descending branch of the acceleration spectrum,
and:

q∗ =
m∗ · Se,xLS(T∗)

V∗y
≥ 1 (36)

where Se,xLS(T∗) are the elastic spectral ordinates computed at T∗ on the acceleration
spectra pertaining to x = D, L, C. It is important to notice that the spectral shape changes
based on the soil class.
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4. Development of Fragility Curves for Frame Typologies
4.1. Definition of Fragility Curve

A fragility curve (FC) is defined as the exceedance probability of a threshold that
identifies the attainment of a Limit State for a given intensity measure (im):

PxLS(im) = P[dxLS,D ≥ dxLS|im ] (37)

where the demand is obtained from Equation (35) and the capacity pertaining to different
Limit States is in Equation (18). This is one of the merits of this study: instead of using
a purposely defined metric, such as, for example, a limit interstorey drift, the global
displacement capacity is consistently obtained from mechanics-based considerations, as
explained in the previous sections, and is therefore related to Limit States. To compare
the so-derived fragility curves with those developed in the literature, which are based on
qualitative descriptions of damage levels, some correspondence should be found with the
Limit States here adopted.

In empirical procedures, descriptive damage scales are preferred in reconnaissance
activities to produce post-earthquake damage statistics. Some of the most frequently used
damage scales are: HCR [5], HAZUS99 [18], Vision2000 [19], EMS98 [20], and ATC-13 [21].
Table 2, adapted from Ahmad et al. [22], shows a comparison between these damage scales
and the Limit States here adopted.

Table 2. Comparison of various damage scales and the Limit States considered in this study.

HRC HAZUS99 Vision2000 ATC-13
EMS98

Limit State
Grade Damage State

Slight
Slight damage

Fully operational Slight Grade 1

Light Operational Light Grade 2 DS1 DLS

Moderate Moderate damage
Life safety

Moderate
Grade 3 DS2 LLS

Extensive
Extensive damage

Heavy

Partial collapse Near collapse
Major Grade 4

DS3 CLS

Collapse Collapse DS4

Analytical fragility assessment methodologies are commonly based on two main com-
ponents: (a) the intensity-measure-to-structural-response function, and (b) the structural-
response-to-damage-state functions, which result from structural and damage analysis
procedures, respectively. Each procedure is affected by uncertainty. When developing
FCs from non-linear static analyses, as done in this work, the uncertainty relevant to (b)
is explicitly accounted for in all structural parameters: material properties, element sizes,
and reinforcement details. The uncertainty related to (a), which is mainly due to record-to-
record variability, can be added a posteriori using, for example, the statistically assessed
values suggested in FEMA P695 [23]. On the other hand, when developing FCs from
non-linear dynamic analyses, the record-to-record uncertainty is explicitly accounted for,
whereas including the uncertainty relevant to (b) requires significant computational effort
and is usually avoided, under the common assumption that uncertainties of (a) largely
exceed uncertainties of (b).

4.2. Selection of Frame Typologies

The frame typologies considered in this study are classified based on the number of
storeys, ranging from 1 to 5, and then sub-classified based on the number of bays and bay
lengths as given in Table 3 and Figure 4. For each frame typology, two sub-typologies
have been considered, representing two different construction periods, 1991–2000 denoted
as “new”, and 1961–1970 denoted as “old”. Each sub-typology is characterized by a
different range of material properties, concrete strength fcm, steel strength fym, and of
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shear reinforcement, stirrup spacing sst, stirrup diameter φ and flexural reinforcement
As (Table 4).

Table 3. Global geometry parameters of the frame typologies in Figure 4.

2-Bay 3-Bay

Type 1 Type 2 Type 3 Type 4 Type 5

L = 8 m
L1/L 0.50 0.30

L2/L 0.50 0.70

L = 10 m

L1/L 0.33 0.25 0.25

L2/L 0.33 0.50 0.25

L3/L 0.33 0.25 0.50

L = 12 m

L1/L 0.33 0.25 0.25

L2/L 0.33 0.50 0.25

L3/L 0.33 0.25 0.50
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Table 4. Ranges adopted for material properties and reinforcement for the two considered sub-typologies.

Median Concrete
Strength fym

(MPa)

Median Steel
Strength fym

(MPa)

Stirrup Diameter
φst

(mm)

Stirrup Spacing
sst

(mm)

Flexural
Reinforcement As

(%)

Code-Based
(New, 1991–2000) 18–28 300–500 8–10 150–250 0.75–1.25

Pre-Code
(Old, 1961–1970) 14–20 220–370 6–8 200–300 0.65–1.00

Uniform
distribution

Uniform
distribution

Discrete
distribution

Discrete
distribution

Discrete
distribution

4.3. Effects of Soil Class and Location

Fragility Curves (FC) of a given building typology are affected by the soil class. For
the purpose of this study, three soil classes have been considered, following the definition
in the Italian Building Code (NTC 2018) [24], depending on the equivalent shear wave
velocity VS,eq (in m/s): A (VS,eq > 800), B (360 < VS,eq ≤ 800), and C (180 < VS,eq ≤ 360).
To each soil category corresponds a set of coefficients, namely, Fo and T∗c , that define the
elastic spectral shape. The values of these coefficients are provided in the Italian Building
Code (NTC 2018) [24] for nine different return periods, with linear interpolation to obtain
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Fo and T∗c for intermediate periods. This implies that the spectral shape change with the
soil class. Therefore, fragility curves developed on a certain soil class need to be adjusted
if used in a different one. Such a spectral-shape-changing effect is accounted for in the
approach here presented.

As an example, to show such an effect, the FCs pertaining to a given building and
location are shown in Figure 5 as obtained on three different soil classes.
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It is worth noticing that the soil class not only affects the median of the FCs, but
also the dispersion, so that, for the same value of the PGA, largely different exceedance
probabilities are found.

Moreover, it should be noticed that the relationships between Fo and T∗c and the return
period change from location to location, based on the local hazard. This implies that the
spectral shape pertaining to a given soil class for a certain return period varies throughout
the territory. Therefore, fragility curves developed at a certain location must be adjusted if
used at a different one, even though they refer to the same soil class.

As an example, to show such effect, three different locations in Italy have been chosen:
Ferrara, Reggio Calabria, and L’Aquila. For each location, FCs are developed for soil A, B
and C. The results in Figure 6 show that, for each soil class considered, the FCs pertaining
to a given building change significantly among the three chosen locations.
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4.4. Monte Carlo Analyses

The fragility curves are built for each selected typology (see Section 4.2) and for
each selected soil class (see Section 4.3) through Monte Carlo analysis [25,26]. It is worth
mentioning that the location effect has not been accounted for and that a specific location
has been selected, i.e., Rome, for the purpose of focusing on the building typologies and
the soil effects. The cumulative probability of exceedance of a Limit State xLS (with
x = D, L, C) is expressed as function of the horizontal peak ground acceleration, ag, for
reasons of compatibility with the commonly used hazard maps in Italy. For each LS
considered, for a given intensity measure ag,k, Nit Monte Carlo analyses are performed and

a set of displacement-based capacity/demand ratios ρ = dxLS/di

(
ag,k

)
is obtained and

subsequently statistically elaborated as:

PxSL

(
ag,k

)
= P

[
D
(

ag,k

)
≥ dxLS

∣∣∣PGA = ag,k

]
=

1
Nit

Nit

∑
i=1

dxLS

di

(
ag,k

) (38)

where PxLS is the exceedance probability of the xLS (with x = D, L, C) for the kth seismic
intensity ag,k, with Nit = 1000 and k = 1, . . . , 52, corresponding to ag = 0.01g, . . . , 1.02g.

Once the probability for each ag,k is obtained, LSE non-linear regression [27–29] is
carried out to determine the parameters µ and VT of the lognormal cumulative distribution
function expressed in terms of ag:

PxSL
(
ag
)
= Φ

(
1

VT
ln

ag

µ

)
(39)

where Φ(·) is the standard normal cumulative distribution function, µ is the median of the
capacity, and VT is the total coefficient of variation, including both capacity and demand
variability.

4.5. Resulting Fragility Curves

The resulting soil-dependent FCs for soil classes A, B and C are shown in Figures 7–9,
respectively, where it should be noticed that, for each frame typology, a fragility fuse is
obtained. The fuse is the result of the variation of the global geometry (Table 3), while the
dispersion of each FC is the result of the uncertainties in material properties, beam/column
sectional sizes, shear and flexural reinforcement. The effect of the soil class on the FCs at
various Limit States (LS) is shown in Figure 10.

Building height/number of stories is another parameter that influences the shape
of the fragility curves, whereby the fragility of the frames increases with the increasing
number of stories. Table 5 reports the FC parameters (mean µG and coefficient of variation
VG of the PGA-based capacity) for three Limit States, given for different soil classes (A, B,
C), different construction types (“Old” and “New”) and with number of storeys ranging
from 1 to 5. The mean is given as a range around its mean value ± the distance from the
fuse boundaries.

As a further step, the FCs are aggregated across the soil classes, so as to obtain wider
fuses as shown in Figure 10. On passing, these fuses are akin to the observational FCs,
which are usually constructed without disaggregating the soil class. Table 6 summarizes
these FC parameters (mean µSG and coefficient of variation VSG of the PGA-based capacity)
for three Limit States, including soil type variation, for different construction types (“Old”
and “New”) and with number of storeys ranging from 1 to 5. The mean is given as a range
around its mean value ± the distance from the fuse extremes and VSG is determined as the
average of the VG of soil A, B and C.
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So
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2 0,135 0,021 0,421 0,516 0,035 0,360 0,960 0,047 0,312 
3 0,139 0,018 0,406 0,460 0,040 0,422 0,871 0,044 0,300 
4 0,134 0,022 0,398 0,432 0,038 0,410 0,821 0,040 0,284 
5 0,127 0,019 0,403 0,406 0,036 0,428 0,750 0,050 0,260 

So
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2 0,096 0,018 0,421 0,409 0,038 0,320 0,868 0,052 0,323 

Figure 10. Soil-aggregated fragility fuses for: (a) DLS (DS1); (b) LLS (DS2); and (c) CLS (DS3).
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Table 5. Fragility curve parameters (mean µG, fuse width around the mean, and coefficient of variation VG of the PGA-based
capacity) for three Damage/Limit States, for three soil types (A, B, C), two construction types (“Old”, Gravity Load Design,
and “New”, code-based design) and with number of storeys ranging from 1 to 5.

Soil Type Design Type Storey
DS1 = DLS DS2 = LLS DS3 = CLS

µG ± VG µG ± VG µG ± VG

Soil A

Old (GLD)

1 0.207 0.016 0.337 0.813 0.050 0.320 1.162 0.048 0.368

2 0.158 0.022 0.332 0.478 0.048 0.323 0.902 0.052 0.356

3 0.152 0.018 0.336 0.380 0.052 0.316 0.817 0.048 0.295

4 0.151 0.019 0.339 0.406 0.044 0.309 0.785 0.044 0.284

5 0.149 0.020 0.337 0.377 0.040 0.321 0.690 0.046 0.286

New
(Code-Based)

1 0.241 0.026 0.551 0.990 0.052 0.380 1.496 0.052 0.360

2 0.198 0.020 0.505 0.636 0.044 0.338 1.275 0.048 0.352

3 0.188 0.023 0.488 0.501 0.038 0.325 0.954 0.048 0.330

4 0.183 0.018 0.478 0.533 0.046 0.325 1.043 0.042 0.353

5 0.170 0.016 0.483 0.506 0.042 0.323 0.934 0.046 0.313

Soil B

Old (GLD)

1 0.149 0.024 0.303 0.602 0.044 0.320 0.972 0.045 0.350

2 0.133 0.023 0.298 0.433 0.048 0.379 0.843 0.050 0.359

3 0.125 0.020 0.302 0.388 0.036 0.377 0.684 0.042 0.296

4 0.127 0.016 0.305 0.315 0.046 0.379 0.642 0.038 0.299

5 0.124 0.018 0.303 0.292 0.040 0.361 0.571 0.044 0.266

New
(Code-Based)

1 0.169 0.025 0.459 0.767 0.046 0.347 1.158 0.048 0.398

2 0.135 0.021 0.421 0.516 0.035 0.360 0.960 0.047 0.312

3 0.139 0.018 0.406 0.460 0.040 0.422 0.871 0.044 0.300

4 0.134 0.022 0.398 0.432 0.038 0.410 0.821 0.040 0.284

5 0.127 0.019 0.403 0.406 0.036 0.428 0.750 0.050 0.260

Soil C

Old (GLD)

1 0.122 0.024 0.303 0.308 0.044 0.330 0.850 0.038 0.360

2 0.088 0.020 0.298 0.300 0.036 0.337 0.747 0.042 0.332

3 0.074 0.018 0.302 0.244 0.042 0.281 0.596 0.044 0.289

4 0.069 0.016 0.305 0.209 0.034 0.268 0.516 0.048 0.249

5 0.064 0.018 0.303 0.199 0.040 0.242 0.474 0.050 0.243

New
(Code-Based)

1 0.121 0.020 0.459 0.591 0.042 0.340 0.932 0.044 0.370

2 0.096 0.018 0.421 0.409 0.038 0.320 0.868 0.052 0.323

3 0.090 0.022 0.406 0.375 0.040 0.333 0.795 0.048 0.298

4 0.088 0.017 0.398 0.302 0.046 0.361 0.707 0.044 0.289

5 0.085 0.018 0.403 0.280 0.048 0.311 0.671 0.048 0.282

To this point, the capacity-related variability VSG stems directly from the analysis. As
mentioned in Section 4.1, the demand variability VD should be added as follows:

VT =
√

V2
SG + V2

D (40)

where VD is the coefficient of variation due to record-to-record variability, which, according
to FEMA P695 [23], can be estimated as 0.2 for DLS and 0.4 for LLS and CLS. Table 7 reports
the FC parameters µSG and VT .
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Table 6. Fragility curve parameters including soil type (mean µSG, fuse width around the mean, and coefficient of variation
VSG of the PGA-based capacity), for three Damage/Limit States, two construction types (“Old”, Gravity Load Design, and
“New”, code-based design) and with number of storeys ranging from 1 to 5.

Design Type # Storey
DS1 = DLS DS2 = LLS DS3 = CLS

µSG ± VSG µSG ± VSG µSG ± VSG

Old (GLD)

1 0.161 0.063 0.314 0.564 0.300 0.323 1.011 0.199 0.359

2 0.124 0.056 0.309 0.395 0.131 0.346 0.830 0.125 0.349

3 0.113 0.057 0.313 0.317 0.115 0.325 0.709 0.157 0.293

4 0.112 0.059 0.316 0.313 0.138 0.319 0.649 0.181 0.277

5 0.108 0.062 0.314 0.288 0.129 0.308 0.580 0.156 0.265

New
(Code-Based)

1 0.184 0.083 0.490 0.796 0.247 0.356 1.218 0.330 0.376

2 0.148 0.070 0.449 0.526 0.155 0.339 1.070 0.254 0.329

3 0.140 0.072 0.433 0.437 0.102 0.360 0.875 0.128 0.309

4 0.136 0.065 0.425 0.418 0.162 0.365 0.874 0.211 0.309

5 0.127 0.060 0.430 0.390 0.158 0.354 0.802 0.179 0.285

Table 7. Fragility curve parameters including soil type and demand variability (mean µSG, fuse width around the mean,
and total coefficient of variation VT ), for three Damage/Limit States, two construction types (“Old”, Gravity Load Design,
and “New”, code-based design) and with number of storeys ranging from 1 to 5.

Design Type # Storey
DS1 = DLS DS2 = LLS DS3 = CLS

µSG ± VT µSG ± VT µSG ± VT

Old (GLD)

1 0.161 0.063 0.373 0.564 0.300 0.514 1.011 0.199 0.538

2 0.124 0.056 0.368 0.395 0.131 0.529 0.830 0.125 0.531

3 0.113 0.057 0.372 0.317 0.115 0.515 0.709 0.157 0.496

4 0.112 0.059 0.374 0.313 0.138 0.511 0.649 0.181 0.487

5 0.108 0.062 0.373 0.288 0.129 0.505 0.580 0.156 0.480

New
(Code-Based)

1 0.184 0.083 0.529 0.796 0.247 0.535 1.218 0.330 0.549

2 0.148 0.070 0.492 0.526 0.155 0.525 1.070 0.254 0.518

3 0.140 0.072 0.477 0.437 0.102 0.538 0.875 0.128 0.506

4 0.136 0.065 0.469 0.418 0.162 0.542 0.874 0.211 0.505

5 0.127 0.060 0.474 0.390 0.158 0.534 0.802 0.179 0.491

4.6. Comparison with Literature Fragility Curves

The validity of the developed analytical FCs is appraised by comparing them with
some observational and analytical FCs available in the literature (Figure 11).

Del Gaudio et al. [30] derived observational-based FCs from the damage distribution
data of 7857 buildings in L’Aquila region collected by the Italian Civil Protection Depart-
ment after the 2009 earthquake. In particular, FCs for low- and medium-rise structures of
different types are described. The damage states considered are DS1, DS2, and DS3, which
in this work are made to correspond to DLS, LLS and CLS.

De Luca et al. [31] proposed FCs based on the damage data of 131 buildings in the
neighborhood of Pettino after L’Aquila earthquake in 2009.
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Figure 11. Fragility curves: observational (a) Del Gaudio et al. [30]; (b) De Luca et al. [31]; (c) Rossetto and Elnashai [5]; and
analytical (d) Ahmad et al. [22].

Rossetto and Elnashai [5] developed FCs for European RC structures based on the
damage data collected after 19 seismic events, following the HRC damage scale.

Ahmad et al. [22] developed analytical FCs using displacement-based pushover
methodology for earthquake loss assessment.

All observational FCs are developed based on statistical analysis of the damage
data collected from a set of buildings after seismic events, without distinguishing among
different soil classes. This heterogenous collection of data leads to significantly wider
dispersions in the fragility fuses than those obtained in this study by disaggregating the
soil classes (see Figures 7–9). A more consistent comparison is therefore done with respect
to the fragility fuses obtained in this study by aggregating the soil classes (see Figure 10).

Such comparison is done in Figure 12, where the blue, orange and red solid lines
represent the soil-aggregated fuses for the three LSs. With reference to Figure 10, the
lower boundary is determined as the rightmost FC pertaining to soil class A and the upper
boundary is determined as the leftmost FC pertaining to soil class C.
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In Figure 12, having in mind the correspondence between DS1, DS2 and DS3, to DLS,
LLS and CLS, respectively, shown in Table 2, it can be observed that: (a) for DLS, two out of
four literature FCs fully fall within the fragility fuse, with the notable exception of that by
Del Gaudio et al. [30] which significantly underestimates the DLS-exceedance probability
under high PGA values (as a matter of fact, their “light” FC crosses the “extensive” FC, as
shown in Figure 11, which is clearly inconsistent), (b) for LLS, basically three out of four
literature FCs fall within the fragility fuse, again with the notable exception of that by Del
Gaudio et al. [30], which also in this case significantly underestimates the LLS-exceedance
probability under high PGA values, (c) for CLS, two out of four literature FCs fall within the
fragility fuse, where Ahmad et al. [22] significantly overestimate and Del Gaudio et al. [30]
significantly underestimate the CLS-exceedance probability.

5. Conclusions

Fragility Curves are a useful tool for conducting risk analyses at an urban, provincial,
or regional scale of territorially diffused building stocks. One of the methods to develop
fragility curves relies on statistical processing of the data numerically produced by means
of models representing the construction typologies in the region of interest. The so-obtained
analytical fragility curves have several advantages over other fragility curves obtained from
the statistical treatment of observational damage data, such as, for example: (a) ability to
quantitatively define the attainment of certain damage state, as opposed to the qualitative
description of observational methods, (b) objectivity of the database, as opposed to the
surveyor-dependent observational database, (c) completeness of the database, which is built
spanning throughout the range of all basic variables, as opposed to the incomplete database
of observational data, (d) flexibility of the database, since analyses can be conducted on any
region, even for those where no observational data are available. So far, in the literature,
these fragility curves have been obtained: (i) by non-linear dynamic analysis conducted on
detailed numerical finite element models, or (ii) with simplified models.

In this study, the second approach was undertaken, by developing a simplified me-
chanical model that ensures a good compromise between accuracy, representativeness,
and computational effort. The simplified model assumes shear-type behavior, which is
nonetheless acceptable for most of the existing reinforced concrete buildings. The global
displacement-based capacity is analytically derived directly from the local capacity of
structural elements and resisting mechanisms, through a simplified closed-form push-over
analysis that identifies the attainment of the three global Limit States of interest: Damage,
Life Safety, and Collapse. The advantage of the developed method over other simplified
pushover analyses in the literature [11,22] is both in its non-iterative approach and in its
closed-form nature, which renders the method computationally more efficient, making it
suitable for conducting risk studies on a large scale. This allows implementation of the
developed assessment methodology, either by hand calculations or in a spreadsheet. The
potential of this simplified mechanical model has been shown by applying it on selected
typologies of reinforced concrete frames, defined based on number of storeys and construc-
tion periods. The latter have been chosen to represent different seismic design compliance
levels, from none to full. Within each typology, frames have been randomly generated
by varying global and local geometry parameters, reinforcement quantities and material
properties, within ranges that are representative of the Italian construction practice in
different periods.

Moreover, in this study, a fundamental issue that has been dealt with is the following:
fragility curves pertaining to a given typology/building differ depending on the location
and the soil class. This is because different locations are characterized by different hazard
curves and because different soil classes are characterized by different spectral shapes.
These combined effects produce significant changes in the fragility curves, which cannot
be accounted for in a simplistic way.

Bearing this in mind, analytical fragility curves for different building typologies have
been derived for different soil classes and the parameters of the fitted lognormal curves are
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summarized in Table 5, where only the within-typology variability is considered, Table 6,
where the soil influence is also included, and Table 7, where the demand variability is also
included. Such curves have been compared with some observational and analytical curves
from the literature, showing acceptable agreement.

The main conclusions drawn from this study can be summarized as follows:

Location and soil class influence: when developing analytical fragility curves, the
influence of the local hazard curve and of the local soil class must be considered. FCs
pertaining to the same typology/building change when used at different locations
and/or on different soil classes. This induces significant errors on risk and scenario
studies at the territorial level. To carry out this study in a more effective manner, a
strategy is under development aiming at transforming, through analytical closed-form
functions, FCs developed on a certain location and soil class to another one. This
is beyond the scope of the present study and will be discussed and presented in a
future article.
Construction age: RC frames fragility is significantly dependent on the construction
age when it spans from pre-seismic-code to seismic-code periods. The fragility curves
of the two epochs provide insightful information about the vulnerability features of
the structures with respect to their construction age.
Building height: the building height/number of stories is a crucial parameter to the
evaluation of the fragility curves, since the LS-exceedance probability increases with
the height/number of stories (here, studied only up to five). Thus, it is effectively
used as a key parameter to define different building typologies.
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