Influence of the Jeziorsko Dam Reservoir on Water Flow in the Warta River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Object
2.2. Materials
2.3. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Munyaneza, O.; Nzeyimana, Y.K.; Wali, U.G. Hydraulic structures design for flood control in the Nyabugogo Wetland Secondary document. Nile Basin Water Sci. Eng. J. 2013, 6, 26–37. [Google Scholar]
- Ptak, M.; Choiński, A.; Strzelczak, A.; Targosz, A. Disappearance of Lake Jelenino since the end of the XVIII century as an effect of anthropogenic transformations of the natural environment. Pol. J. Environ. Stud. 2013, 22, 191–196. [Google Scholar]
- Hailemariam, F.M.; Brandimarte, L.; Dottori, F. Investigating the influence of minor hydraulic structures on modeling flood events in lowland areas. Hydrol. Processes 2014, 28, 1742–1755. [Google Scholar] [CrossRef]
- Lienou, G.; Mahe, G.; Piih, S.L.; Sighomnou, D.; Paturel, J.E.; Bamba, F. Is the building of dams an adaptation strategy to fight against drought in the basin of the River Niger? IAHS-AISH Proc. Rep. 2014, 363, 197–202. [Google Scholar]
- Kim, J.; Park, J.; Kwon, H. Assessment of Termination Criteria at Each Drought Response Stage on Climate Change in a Multi-Purpose Dam. Appl. Sci. 2022, 12, 5801. [Google Scholar] [CrossRef]
- Nowak, B.; Ptak, M.; Bartczaka, J.; Sojka, M. Hydraulic structures as a key component of sustainable water management in a catchment scale-case study of the Rgilewka River (Central Poland). Buildings 2022, 12, 675. [Google Scholar] [CrossRef]
- Nowak, B.; Ptak, M. Natural and anthropogenic conditions of water level fluctuations in lakes–Powidzkie Lake case study (Central-Western Poland). J. Water Land Dev. 2019, 40, 13–25. [Google Scholar] [CrossRef]
- Yao, L.; Zhao, L.; Pan, L.; Chen, X. Optimal water resource allocation based on stability–considering the correlation between water consumption and output value in different industries. Water Supply 2020, 20, 2499–2513. [Google Scholar] [CrossRef]
- Kosolapova, N.A.; Matveeva, L.G.; Nikitaeva, A.Y.; Molapisi, L. The Rational Use of Water Resources in the Strategy of Industry 4.0. Water Resour. Manag. 2021, 35, 3023–3041. [Google Scholar] [CrossRef]
- Donoso, G. Management of Water Resources in Agriculture in Chile and its Challenges. Int. J. Agric. Nat. Resour. 2021, 48, 171–185. [Google Scholar] [CrossRef]
- Wang, W.; Straffelini, E.; Pijl, A.; Tarolli, P. Sustainable water resource management in steep-slope agriculture. Geogr. Sustain. 2022, 3, 214–219. [Google Scholar] [CrossRef]
- Hämmerling, M.; Kałuża, T.; Zawadzki, P.; Zaborowski, S.; Sojka, M.; Liberacki, D.; Ptak, M. Application of the multi-criteria analytic methods for technical conditions assessment of small hydraulic structures. Buildings 2022, 12, 115. [Google Scholar] [CrossRef]
- Choiński, A.; Ptak, M.; Strzelczak, A. Changeability of accumulated heat content in alpine-type lakes. Pol. J. Environ. Stud. 2015, 24, 2363–2369. [Google Scholar] [CrossRef]
- Ptak, M.; Nowak, B. Variability of oxygen-thermal conditions in selected lakes in Poland. Ecol. Chem. Eng. 2016, 23, 639–650. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, P.; Pham, T.T.H.; Shrestha, S.; Loc, H.H.; Park, E. Projecting the impact of human activities and climate change on water resources in the transboundary Sre Pok River Basin. Clim. Chang. 2022, 172, 26. [Google Scholar] [CrossRef]
- Ougahi, J.H.; Cutler, M.E.J.; Cook, S.J. Modelling climate change impact on water resources of the Upper Indus Basin. J. Water Clim. Chang. 2022, 13, 482–504. [Google Scholar] [CrossRef]
- Morán-Tejeda, E.; López-Moreno, J.I.; Sanmiguel-Vallelado, A. Changes in Climate, Snow and Water Resources in the Spanish Pyrenees: Observations and Projections in a Warming Climate. Adv. Glob. Chang. Res. 2017, 62, 305–323. [Google Scholar]
- Nowak, B.; Władczyk, J. Działania retencyjne Wód Polskich na obszarze Pojezierza Wielkopolsko-Kujawskiego. Gospod. Wodna 2022, 2, 12–19. [Google Scholar] [CrossRef]
- Rzętała, M. Funkcjonowanie Zbiorników Wodnych oraz Przebieg Procesów Limnicznych w Warunkach Zróżnicowanej Antropopresji na Przykładzie Regionu Górnośląskiego; Wydawnictwo Uniwersytetu Śląskiego: Katowice, Poland, 2008. [Google Scholar]
- Machowski, R. Przemiany Geosystemów Zbiorników Wodnych Powstałych w Nieckach Osiadania na Wyżynie Katowickiej; Wydawnictwo Uniwersytetu Śląskiego: Katowice, Poland, 2010. [Google Scholar]
- Instytut Meteorologii i Gospodarki Wodnej. Hydrological Atlas of Poland; Instytut Meteorologii i Gospodarki Wodnej: Warszawa, Poland, 1987. (In Polish) [Google Scholar]
- Wiatkowski, M.; Wiatkowska, B. Changes in the flow and quality of water in the dam reservoir of the Mała Panew catchment (South Poland) characterized by multidimensional data analysis. Arch. Environ. Prot. 2019, 45, 26–41. [Google Scholar]
- Penas, F.J.; Barquin, J. Assessment of large-scale patterns of hydrological alteration caused by dams. J. Hydrol. 2019, 572, 706–718. [Google Scholar] [CrossRef]
- Peng, F.; Shi, X.; Li, K.; Wang, Y.; Feng, J.; Li, R.; Liang, R. How to comprehensively evaluate river discharge under the influence of a dam. Ecol. Inform. 2022, 69, 101637. [Google Scholar] [CrossRef]
- Regionalny Zarząd Gospodarki Wodnej w Poznaniu. Instrukcja Gospodarowania wodą. Zbiornik Jeziorsko; Regionalny Zarząd Gospodarki Wodnej w Poznaniu: Poznań, Poland, 2014. [Google Scholar]
- Gao, Y.; Vogel, R.M.; Kroll, C.N.; Poff, N.L.; Olden, J.D. Development of representative indicators of hydrologic alteration. J. Hydrol. 2009, 374, 136–147. [Google Scholar] [CrossRef]
- Wilcoxon, F. Individual comparisons by ranking methods. Biometries 1945, 1, 80–83. [Google Scholar] [CrossRef]
- Kendall, M.G.; Stuart, A. The Advanced Theory of Statistics, 3rd ed.; Charles Griffin Ltd.: London, UK, 1968. [Google Scholar]
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; Van Nostrand Reinhold, Co.: New York, NY, USA, 1987; p. 320. [Google Scholar]
- Sojka, M. Directions and Extent of Flows Changes in Warta River Basin (Poland) in the Context of the Efficiency of Run-of-River Hydropower Plants and the Perspectives for Their Future Development. Energies 2022, 15, 439. [Google Scholar] [CrossRef]
- Patakamuri, S.K.; O’Brien, N. Modified Versions of Mann Kendall and Spearman’s Rho Trend Tests, Version 1.6. 2021. Available online: https://cran.r-project.org/web/packages/modifiedmk/modifiedmk.pdf (accessed on 5 August 2022).
- Wrzesiński, D.; Perz, A. Cechy reżimu odpływu rzek w zlewni Warty. Bad. Fizjogr. 2016, 67, 289–304. [Google Scholar]
- Raczynski, K. Influence of a Multipurpose Retention Reservoir on Extreme River Flows, a Case Study of the Nielisz Reservoir on the Wieprz River (Eastern Poland). Water Resour. 2020, 47, 29–40. [Google Scholar] [CrossRef]
- Chaudhari, S.; Pokhrel, Y. Alteration of River Flow and Flood Dynamics by Existing and Planned Hydropower Dams in the Amazon River Basin. Water Resour. Res. 2022, 58, e2021WR030555. [Google Scholar] [CrossRef]
- Dott, C.; Bombaci, S.; Kasprak, A.; Korb, J. A tale of two rivers: Dam-induced hydrologic drought on the lower Dolores River and its impact on tamarisk establishment. Ecohydrology 2022, 15. [Google Scholar] [CrossRef]
- Boulange, J.; Hanasaki, N.; Yamazaki, D.; Pokhrel, Y. Role of dams in reducing global flood exposure under climate change. Nat. Commun. 2021, 12, 417. [Google Scholar] [CrossRef]
- Abdelmohsen, K.; Sultan, M.; Save, H.; Abotalib, Z.; Yan, E.; Zahran, K.H. Buffering the impacts of extreme climate variability in the highly engineered Tigris Euphrates river system. Sci. Rep. 2022, 12, 4178. [Google Scholar] [CrossRef]
- Sepehri, M.; Ildoromi, A.R.; Malekinezhad, H.; Ghahramani, A.; Ekhtesasi, M.R.; Cao, C.; Kiani-Harchegani, M. Assessment of check dams’ role in flood hazard mapping in a semi-arid environment. Geomat. Nat. Hazards Risk 2019, 10, 2239–2256. [Google Scholar] [CrossRef] [Green Version]
- Chalise, D.R.; Sankarasubramanian, A.; Ruhi, A. Dams and Climate Interact to Alter River Flow Regimes Across the United States. Earth’s Future 2021, 9, e2020EF001816. [Google Scholar] [CrossRef]
- Maddu, R.; Ganta, K.M.; Shaik, R.; Dhanya, C.T. Impact Assessment of Environmental Flows Using CORDEX Regional Climate Models: Case Study of Nagarjuna Sagar Dam, Krishna River, India. Lect. Notes Civ. Eng. 2022, 176, 187–204. [Google Scholar]
- Ptak, M.; Sojka, M.; Kozłowski, M. The increasing of maximum lake water temperature in lowland lakes of Central Europe: Case study of the Polish Lakeland. Ann. Limnol.-Int. J. Limnol. 2019, 55, 11. [Google Scholar] [CrossRef]
- Ptak, M.; Sojka, M.; Kałuża, T.; Choiński, A.; Nowak, B. Long-term water temperature trends of the Warta River in the years 1960-2009. Ecohydrol. Hydrobiol. 2019, 19, 441–451. [Google Scholar] [CrossRef]
- Czernecki, B.; Ptak, M. The impact of global warming on lake surface water temperature in Poland-the application of empirical-statistical downscaling, 1971–2100. J. Limnol. 2018, 77, 330–348. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, I.N.; Bolten, J.D.; Souter, N.J.; Shaad, K.; Vollmer, D. Diagnosing challenges and setting priorities for sustainable water resource management under climate change. Sci. Rep. 2022, 12, 796. [Google Scholar] [CrossRef] [PubMed]
- Al-Munqedhi, B.M.; El-Sheikh, M.A.; Alfarhan, A.H.; Alkahtani, A.M.; Arif, I.A.; Rajagopal, R.; Alharthi, S.T. Climate change and hydrological regime in arid lands: Impacts of dams on the plant diversity, vegetation structure and soil in Saudi Arabia. Saudi J. Biol. Sci. 2022, 29, 3194–3206. [Google Scholar] [CrossRef] [PubMed]
- Sojka, M.; Nowak, B.; Ptak, M.; Jaskuła, J. Historia funkcjonowania zbiornika Jeziorsko opisana zobrazowaniami satelitarnymi Landsat. Gospod. Wodna 2022, 9, 5–12. [Google Scholar] [CrossRef]
IHA Parameter Group | Hydrologic Parameters | Designation |
---|---|---|
| Mean value for each calendar month | |
November | QNov | |
December | QDec | |
January | QJan | |
February | QFeb | |
March | QMar | |
April | QApr | |
May | QMay | |
June | QJun | |
July | QJul | |
August | QAug | |
September | QSep | |
October | QOct | |
| Annual minima, 1-day mean | Q1Min |
Annual minima, 3-day means | Q3Min | |
Annual minima, 7-day means | Q7Min | |
Annual maxima, 1-day mean | Q1Max | |
Annual maxima, 3-day means | Q3Max | |
Annual maxima, 7-day means | Q7Max | |
Base flow index: 7-day minimum | BFI | |
flow/mean flow for year |
Parameter | With Jeziorsko | Without Jeziorsko | ||||||
---|---|---|---|---|---|---|---|---|
S | Z-Value | p-Value | Sen’s Slope | S | Z-Value | p-Value | Sen’s Slope | |
November | −35 | −0.75 | 0.454 | −0.33 | −65 | −1.41 | 0.158 | −0.49 |
December | −51 | −1.10 | 0.270 | −0.42 | −45 | −0.97 | 0.332 | −0.31 |
January | −31 | −0.66 | 0.508 | −0.32 | −59 | −1.28 | 0.201 | −0.48 |
February | −59 | −1.28 | 0.201 | −0.81 | −69 | −1.50 | 0.134 | −0.80 |
March | −53 | −1.15 | 0.252 | −0.55 | −119 | −2.60 | 0.009 ** | −0.99 |
April | −141 | −3.09 | 0.002 ** | −1.83 | −147 | −3.22 | 0.001 ** | −1.37 |
May | −39 | −0.84 | 0.402 | −0.41 | −71 | −1.54 | 0.123 | −0.51 |
June | −83 | −1.81 | 0.071 | −0.47 | −91 | −1.98 | 0.047 * | −0.56 |
July | −149 | −3.26 | 0.001 ** | −1.10 | −119 | −2.60 | 0.009 * | −0.87 |
August | −145 | −3.17 | 0.002 ** | −1.04 | −131 | −2.87 | 0.004 ** | −0.84 |
September | −117 | −2.56 | 0.011 * | −0.83 | −117 | −2.56 | 0.011 * | −0.81 |
October | −33 | −0.71 | 0.481 | −0.36 | −147 | −3.22 | 0.001 ** | −0.68 |
Year | −125 | −2.73 | 0.006 ** | −0.79 | −143 | −3.13 | 0.002 ** | −0.87 |
Q70days | 129 | 2.82 | 0.005 ** | 6.38 | 163 | 3.57 | 0.000 ** | 6.09 |
Q90days | 159 | 3.48 | 0.000 ** | 3.16 | 119 | 2.60 | 0.009 ** | 2.83 |
1-day_min | −159 | −3.48 | 0.000 ** | −0.39 | −53 | −1.15 | 0.252 | −0.18 |
1-day_max | −95 | −2.07 | 0.038 * | −2.11 | −97 | −2.12 | 0.034 * | −3.25 |
3-day_min | −165 | −3.61 | 0.000 * | −0.43 | −93 | −2.03 | 0.043 * | −0.30 |
3-day_max | −95 | −2.07 | 0.038 * | −1.82 | −99 | −2.16 | 0.031 * | −3.23 |
7-day_min | −165 | −3.61 | 0.000 ** | −0.46 | −115 | −2.51 | 0.012 * | −0.37 |
7-day_max | −91 | −1.98 | 0.047 * | −1.59 | −97 | −2.12 | 0.034 * | −2.90 |
BFI | 9 | 0.18 | 0.860 | 0.00 | 5 | 0.09 | 0.930 | 0.00 |
Parameter | Temperature (°C) | Precipitation (mm) | ||||||
---|---|---|---|---|---|---|---|---|
S | Z-Value | p-Value | Sen’s Slop (per Decade) | S | Z-Value | p-Value | Sen’s Slope (per Decade) | |
November | 105 | 2.17 | 0.030 * | 1.1 | −51 | −1.04 | 0.297 | −6.4 |
December | 129 | 2.67 | 0.008 ** | 1.4 | −49 | −1.00 | 0.317 | −3.8 |
January | −9 | −0.17 | 0.868 | −0.1 | 17 | 0.33 | 0.739 | 2.2 |
February | 19 | 0.38 | 0.707 | 0.5 | −67 | −1.38 | 0.169 | −5.3 |
March | 89 | 1.83 | 0.067 | 0.7 | −35 | −0.71 | 0.478 | −3.5 |
April | 81 | 1.67 | 0.095 | 0.7 | −83 | −1.71 | 0.087 | −9.1 |
May | −53 | −1.08 | 0.278 | −0.3 | −33 | −0.67 | 0.505 | −4.9 |
June | 107 | 2.21 | 0.027 * | 0.6 | 21 | 0.42 | 0.677 | 3.7 |
July | 17 | 0.33 | 0.739 | 0.1 | −37 | −0.75 | 0.453 | −5.8 |
August | 113 | 2.33 | 0.020 * | 0.7 | −83 | −1.71 | 0.087 | −9.4 |
September | 91 | 1.88 | 0.061 | 0.8 | 7 | 0.13 | 0.900 | 1.1 |
October | 35 | 0.71 | 0.478 | 0.5 | 31 | 0.63 | 0.532 | 5.3 |
Year | 113 | 2.33 | 0.020 * | 0.6 | −55 | −1.13 | 0.260 | −47.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowak, B.; Ptak, M.; Szyga-Pluta, K.; Sojka, M. Influence of the Jeziorsko Dam Reservoir on Water Flow in the Warta River. Buildings 2022, 12, 1624. https://doi.org/10.3390/buildings12101624
Nowak B, Ptak M, Szyga-Pluta K, Sojka M. Influence of the Jeziorsko Dam Reservoir on Water Flow in the Warta River. Buildings. 2022; 12(10):1624. https://doi.org/10.3390/buildings12101624
Chicago/Turabian StyleNowak, Bogumił, Mariusz Ptak, Katarzyna Szyga-Pluta, and Mariusz Sojka. 2022. "Influence of the Jeziorsko Dam Reservoir on Water Flow in the Warta River" Buildings 12, no. 10: 1624. https://doi.org/10.3390/buildings12101624
APA StyleNowak, B., Ptak, M., Szyga-Pluta, K., & Sojka, M. (2022). Influence of the Jeziorsko Dam Reservoir on Water Flow in the Warta River. Buildings, 12(10), 1624. https://doi.org/10.3390/buildings12101624