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Abstract: Time-dependent deformation of surrounding rocks during construction and service directly
affects the structural safety of hydraulic tunnels. Specifically, the creep effect on the cross-fault
diversion tunnels is particularly significant. In recent years, a variety of research has focused on the
impact of creep on operating cross-fault diversion tunnels. However, there is a lack of consideration
for the creep phenomenon during the construction-operation period. This study proposes a simulation
method of segment linings deformation of cross-fault diversion tunnel combining deformation
monitoring, creep constitutive identification, and creep during construction operation. According to
the measured time-displacement data of the surrounding rock, the suitable creep constitutive model is
selected by a regression-comparison method. Subsequently, the three-dimensional numerical model
of the cross-fault tunnel is established, with the tunnel excavation and long-term creep calculation
carried out under the creep effect of the surrounding rock. In addition, the intelligent inversion
model was adopted to obtain the basic parameters of the surrounding rock. The results show that
fault directly affects the rock mass characteristics near the fault. The radius of influence is about one
time the tunnel diameter from the fault. The vertical deformation of segment linings of the vault and
inverted arch tends to be subsidence when the fault is above the tunnel; however, the trend is inverse
when the fault is under the tunnel. This work gives targeted engineering suggestions and provides
a scientific basis for designing and constructing diversion tunnels under complicated geological
structures.

Keywords: tunnel engineering; fault; construction-operation period; creep; segment lining; numeri-
cal simulation

1. Introduction

Tunnel engineering has been widely used in water transfer projects and has the ability
to cross various terrains. This approach can also shorten and smooth the route curve and
resist earthquake disasters [1,2]. Generally, hydraulic tunnels are long and extend along
with complex geological conditions [3]. In practice, the geology and route limitations
inevitably lead to tunnels passing through faults. Moreover, tunnels are surrounded by
rocks during construction and operation. In this situation, the influence of the creep of
the surrounding rock on the safety of tunnels cannot be ignored. Therefore, the tunnel is
prone to collapse and water gushing slightly carelessly and may cause severe financial and
material losses as well as personal injury and death [4–6].

In recent years, numerous research has been carried out to evaluate the interaction
between cross-fault tunnels and faults, including numerical simulation [7,8], theoretical
analysis [9] and model test [10–12]. All the damages to the eight traffic and water con-
veyance tunnels in Japan, the United States, and Turkey are caused by faults [13]. In
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general, the damage in traffic tunnels includes dense cracks in all linings, severe deforma-
tion, subsidence, crown bending due to the soil pressure, flaking of the internal surface
leading to breakage, peeling concrete blocks, rail deformations, buckling rails, and water
gushing. The damage to water conveyance tunnels consists of excessive stress in the tunnel,
cracking of walls, and breaking into small and large pieces, which, in turn, reduce the area
of tunnel section and form a water hammer. The nonlinear failure process of the strain and
fracture behavior of the tunnel-fault system can be divided into five main stages: (1) strain
localization, (2) fracture initiation, (3) crack acceleration, (4) spontaneous crack growth, and
(5) stability [14]. Several works have been carried out to evaluate the damage in the tunnel,
including an evaluation of stress and displacement caused by the fault using a tunnel
with an aluminum cylinder in a centrifugal experiment [15], an assessment of dynamic
characteristics of the cross-fault tunnel by using the shaking table test [16], and a simulation
of the LongMenShan Fault dislocation using a large-scale plate thrust model [17]. Those
studies found that the tunnel structure would experience two-stage seismic damage due to
the fault movement and seismic motion, where the fault movement contributed to more
serious damage to the tunnel structure than seismic motion. Moreover, the articulated
design may be adopted and constructed using basalt fiber reinforced concrete (BFRC)
material to obtain the tunnel response in order to cope with the serious damage caused by
fault dislocation. In order to use this material, the appropriate ratio of BFRC needs to be
selected to improve the anti-fault ability.

The above-mentioned investigations have clearly explained the tunnel’s failure mode
and development process and its supporting system by fault and put forward some mea-
sures to enhance the structural performance. In addition, scholars tried to explore the
parameters that may affect the structure of cross-fault tunnels from the perspectives of
tunnel and fault. For instance, a scale model test was used to evaluate the influence of
reverse fault on the failure mode of the tunnel by verifying the test results using a numerical
model [18]. This study showed that the essential fault parameters influencing the stability
of the tunnel structure are the location, dip angle, thickness of the fault, and distance from
the fault and the tunnel. An experimental analysis was performed from the viewpoint of
location, depth and stiffness of the tunnel, and the soil relative density. Moreover, they
simulated the interaction between the tunnel and sand and proposed that the interaction
mechanism between the tunnel and soil should be considered in the tunnel design near
the active fault zone [19,20]. Moreover, the influence of faults with different thicknesses
and locations on the deformation, stress and plasticity of the tunnel were assessed [21] and
further improved the adopted model to discuss the influence of geometric characteristics,
i.e., fault angle, fault displacement, tunnel diameter, lining thickness, and overburden depth
on the cross-fault tunnel [22]. In addition, the behavior of the tunnel is then analyzed from
the perspective of bending moment and axial force combined with the demand-capacity
ratio. Similarly, numerical simulations were also used for parametric studies focusing on
the performance of shotcrete and segmented lining in shallow tunnels crossing strike-slip
faults [23] and influencing factors of the cross-fault tunnel and active length [24].

Significant research works in evaluating the quality of cross-fault tunnels have been
carried out, but those studies were mainly focused on instantaneous effects [25]. On the
other hand, the influence of segment lining in construction-operation cross-fault tunnel
under the creep effect of surrounding rock is widespread. This phenomenon also has an
important impact on the long-term stability of cross-fault tunnels [26]. However, the exist-
ing literature investigating this phenomenon is still less. Therefore, a numerical simulation
method is proposed in this paper to study the creep deformation of segment linings of
a cross-fault tunnel from the construction period to the operation period. Moreover, a
three-dimensional numerical model of the cross-fault tunnel is established in conjunction
with the “Yinda Jihuang” diversion tunnel project (DT-HS project). Among them, the
relationship between fault and the deformation of segment linings in the transition section
is the key analysis. The research results can provide a reference for the design, maintenance,
and operation monitoring of the cross-fault water conveyance tunnels.
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2. Overall Framework

Rock mass is regarded as an equivalent continuum [27]. The selected finite difference
software FLAC3D can simulate elastic deformation, plastic deformation, plastic flow, strain
softening, rheological deformation, and even large deformation of materials [28,29]. Figure 1 is
an architecture description of simulation analysis of cross-fault tunnel considering creep effect.
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Figure 1. An architecture description of simulation analysis of cross-fault tunnel considering creep effect.

The specific calculation steps are as follows:
(1) Conducting a comparative analysis of the characteristics of several different creep

constitutive models and the time-displacement curve of the surrounding rock fitted by
using field measured displacement data to select a suitable constitutive model.

(2) Establishing a three-dimensional numerical model with a rock-fault tunnel to
calculate the initial stress field. Definitions of material behavior, boundary, and initial
condition are used for the balancing calculation.

(3) Simulating tunnel excavation and applying segment lining. In this phase, the dis-
placement produced in calculating the initial stress field needs to be removed to eliminate
its influence. The surrounding rock and fault are then set as the constitutive creep model
selected in (1), and the corresponding creep parameters are given. Finally, the creep calcula-
tion is started. Considering the actual construction process of TBM, with the excavation
going on, the segments are arranged ring by ring.

(4) Recording the creep calculation lasted for 100 years, and deformation of sur-
rounding rocks and segment linings after excavation. In order to facilitate the analysis of
displacement during operation, the displacement during construction should be cleared at
the beginning of this step.

3. Comparison and Screening Creep Constitutive Model
3.1. Component Combination Method

The creep behavior of rocks shows the specific relation of stress-strain-time with
great differences in the creep properties of different rocks [30,31]. Various works have
been conducted to describe the constitutive relationship of rock creep with a clear concept
and physical meaning. The component combination model is one of the widely used
methods [32].
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In this work, the component of the combination model combines elastic components,
viscous components, and plastic components in series or parallel to simulate the elastic,
viscous, and plastic behavior of rocks [33]. The distribution of strain, strain rate, and load
on each component of the new component combination models are similar to that of the
circuit. In other words, the displacement rate and strain are equal to the current, and the
load is equal to the voltage. Specifically, in the series models, each component’s strain and
strain rate are equal, and the total load is the sum of the loads of each component. In the
parallel models, the load of each component is equal, and the total strain is the sum of the
strains of each component.

The research and application of component combination models have been very
extensive [34–38]. Seven common component combination models have been developed
including Maxwell, Kelvin, Modified Kelvin, Poying-Thomson, Burgers, Nishihara, and
Bingham. Table 1 lists the properties and applicability of each constitutive model.

Table 1. Properties and application scope of common component combination models.

Constitutive Typical Properties Scope of Application

Maxwell Instantaneous strain, steady
creep, delayed elasticity Rocks with larger depths

Kelvin steady creep, decay creep,
delayed elasticity General rocks

Modified Kelvin Instantaneous strain, decay
creep Short-term loaded rocks

Poying-Thomson Instantaneous strain, decay
creep Slate, shale, sandstone, etc.

Burgers
Instantaneous strain, steady
creep, decay creep, delayed
elasticity

sandstone, mudstone, etc.

Nishihara

σ < σs Instantaneous strain,
decay creep
σ ≥ σs Instantaneous strain,
steady creep, decay creep

Soft rock

Bingham
σ < σs Instantaneous strain
σ ≥ σs Instantaneous strain,
steady creep

Clay, semi-hard rock

As shown in Table 1, all models are composed of essential components connected in
series and parallel, similar in composition and structure. However, the creep characteristics
of models displayed by different combinations are pretty different. Nishihara and Burgers’
creep constitutive models can reflect more creep characteristics, so they have a more
comprehensive application range. At the same time, Burgers has fewer parameters than
Nishihara, which makes it easier to identify parameters. The characteristic creep curves of
the commonly used combination models are summarized in Figure 2. The tunnel of the
DT-HS project is a deep and extra-long tunnel with extremely high ground stress; hence,
only the part of high ground stress for Nishihara and Poying-Thomson is presented in
Figure 2. The creep deformation of Kelvin, Modified Kelvin, and Poying-Thomson remains
constant after reaching a certain time, while the creep deformation of other models will
continue to increase.
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3.2. Model Selection

In the numerical simulation, choosing the appropriate constitutive model is one of the
most concerning issues for researchers [39]. At present, the numerical calculation of tunnel
creeps usually adopts the component combination model. Under different geological
conditions, the selection methods of the creep model are also different [40]. The creep
characteristics of each creep model in Section 3.2 needed to be analyzed, summarized, and
compared with test or monitoring results to select a suitable creep model. In practical
applications, direct screening and posterior exclusion methods are usually used to reflect
the main deformation characteristics of rocks [41]. The posterior exclusion method requires
field tests, while the direct screening method can obtain the deformation curve of the rock
under the action of time through field monitoring data, so the direct screening method is
adopted.

Optical fiber multipoint displacement meters are used to measure surrounding rock
deformation. According to the field deformation monitoring results of the typical section,
the displacement-time curve of the surrounding rock is drawn and fitted, and the results are
shown in Figure 3. Compared with the creep curves in Figure 2, Burgers and Nishihara can
reflect the deformation characteristics of the surrounding rock. However, when the stress
level is low, Nishihara will show Kelvin creep characteristics, and it is more challenging
to identify the parameters of Nishihara mentioned in Section 3.1. Therefore, Burgers is
selected as the constitutive creep model of the tunnel surrounding rock.
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3.3. Burgers Creep Model

Burgers is a four-parameter viscoelastic creep model formed by Kelvin and Maxwell
in series [42], and its structure is shown in Figure 4.
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The constitutive equation of Maxwell is:

εM =
σ0

EM
+

σ0

ηM
t (1)

where σ0 is the stress applied to the model; εM, EM, and ηM represent the strain, elastic
modulus, and viscosity coefficient of Maxwell, respectively.

The constitutive equation of Kelvin is:

εK =
σ0

EK

(
1 − e−

EK
ηK

t
)

ηK (2)

where σ0 is the stress applied to the model; εK, EK and ηK represent the strain, elastic
modulus, and viscosity coefficient of Kelvin, respectively.
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The total strain law should conform to the formula:

εB = εM + εK (3)

where εB is the total strain of the component combination model.
According to the rules of the series, the stress σ0 of Maxwell and Kelvin is the same.

Combining Equations (2)–(4) to obtain the Burgers creep constitutive equation:

εB =
σ0

EM
+

σ0

ηM
t +

σ0

EK

(
1 − e−

EK
ηK

t
)

(4)

4. Engineering Example
4.1. Project Overview
4.1.1. Geological Conditions

DT-HS project is a large-scale inter-basin water diversion project to solve the re-
source and engineering water shortage problems of the HuangShui River basin in Qinghai
Province, as shown in see Figure 5. The diversion tunnel is the key control project and
belongs to the deep-buried extra-long tunnel. The complexity of geological conditions is
extremely rare in the Tunnel Boring Machine (TBM) hydraulic tunnel projects that have
been completed and are under construction worldwide. The tunnel passes through more
than 30 large and small faults, among which the largest faults, F5 and F4 (K17 + 192 − K16
+ 088), are 1104 m wide, as shown in Figure 6.
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According to the engineering geological report of the DT-HS project, the maximum
horizontal principal stress is 21.1~22.1 MPa, the minimum horizontal principal stress is



Buildings 2022, 12, 1648 8 of 19

12~14.2 MPa, and the vertical stress is 18.2 MPa~21.9 MPa. The maximum horizontal
principal stress orientation is 307~317◦, close to the NW direction and similar to the tunnel
axis. Thus, σxy, σyz, and σzx can be set to 0. Papers related to the citation of the DT-HD
project also confirm the feasibility of this method of taking values [43]. Hence, when
calculating the initial stress field, σxx = 18.8 MPa, σyy = 25.8 MPa, σzz = 21.9 MPa, where y
and z are parallel and perpendicular to the tunnel axis, respectively, as shown in Table 2.

Table 2. Ground stress field.

σxx/MPa σyy/MPa σzz/MPa σxy/MPa σyz/MPa σzx/MPa

18.8 25.8 21.9 0.0 0.0 0.0

4.1.2. Excavation Methods and Blockage Accidents

The entrance floor elevation of the diversion tunnel is 2955.6 m, and the exit floor
elevation is 2914.7 m. The tunnel is a pressureless diversion tunnel, with a length of
24.16 km, a maximum buried depth of 1100 m, and an average buried depth of 480 m. The
export section is built by the TB593E/TS double shielded TBM from Germany. As shown in
Figure 7, the length of the main engine was 12.5 m, and the diameter of the TBM excavation
was 5930 mm. Precast quadrilateral reinforced concrete segments are used for lining.

Buildings 2022, 12, 1648 8 of 20 
 

 
Figure 6. Engineering geologic profile. 

According to the engineering geological report of the DT-HS project, the maximum 
horizontal principal stress is 21.1 ~ 22.1 MPa, the minimum horizontal principal stress is 
12 ~ 14.2 MPa, and the vertical stress is 18.2 MPa ~ 21.9 MPa. The maximum horizontal 
principal stress orientation is 307 ~ 317°, close to the NW direction and similar to the tun-
nel axis. Thus, σxy, σyz, and σzx can be set to 0. Papers related to the citation of the DT-HD 
project also confirm the feasibility of this method of taking values [43]. Hence, when cal-
culating the initial stress field, σxx = 18.8 MPa, σyy = 25.8 MPa, σzz = 21.9 MPa, where y and 
z are parallel and perpendicular to the tunnel axis, respectively, as shown in Table 2. 

Table 2. Ground stress field. 

σxx /MPa σyy /MPa σzz /MPa σxy /MPa σyz /MPa σzx /MPa 
18.8 25.8 21.9 0.0 0.0 0.0 

4.1.2. Excavation Methods and Blockage Accidents 
The entrance floor elevation of the diversion tunnel is 2955.6 m, and the exit floor 

elevation is 2914.7 m. The tunnel is a pressureless diversion tunnel, with a length of 24.16 
km, a maximum buried depth of 1100 m, and an average buried depth of 480 m. The ex-
port section is built by the TB593E/TS double shielded TBM from Germany. As shown in 
Figure 7, the length of the main engine was 12.5 m, and the diameter of the TBM excava-
tion was 5930 mm. Precast quadrilateral reinforced concrete segments are used for lining. 

 
Figure 7. TB593E/TS TBM. 

The surrounding rock is crushed, kaolinized, with low rock strength, and is seriously 
metamorphic of some rock. Blockage accidents have occurred more than ten times, as 

Figure 7. TB593E/TS TBM.

The surrounding rock is crushed, kaolinized, with low rock strength, and is seriously
metamorphic of some rock. Blockage accidents have occurred more than ten times, as
shown in Figure 8, and Table 3 summarizes the time, place, and reasons for the blockage
accident.
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Table 3. Blockage accidents.

Order Time Location Reasons

1 3 April 2008 K17 + 140 Convergence
2 30 April 2008 K17 + 135 Collapse and convergence
3 29 June 2008 K17 + 133 Collapse
4 3 September 2008 K17 + 117 Convergence
5 3 November 2008 K17 + 102 Collapse and convergence
6 24 December 2008 K17 + 086 Collapse and convergence
7 18 September 2009 K16 + 905 Collapse
8 18 October 2009 K16 + 881 Collapse and convergence
9 25 December 2009 K16 + 876 Collapse and convergence
10 23 July 2010 K16 + 775 Convergence

4.2. Numerical Model of Fault

The traditional methods for meshing cross-fault 3D numerical models are mainly
divided into two types in Figure 9. The first one does not need much consideration about
mesh shape and is automatically divided by mesh division software. The second is to
consider the grid’s shape and the fault’s approximation boundary conditions and divide
the regular grid according to the approximation boundary of the fault. On the other hand,
the grid division method suggested in this work divides the rock body into regular grids
first. This grid is then demarcated as a fault when more than half of it is within a fault, and
else it is another rock body. The computation accuracy will be higher since the grid is more
regular and situated closer to the real fault border. The specific discriminatory formula is
as follows:

SC

SF
≥ 1

2
(5)

where SC is the area of the grid that falls within the fault; SF is the grid area.
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In general, the boundary of the model can be divided into two categories: natural
boundary and artificial boundary. The natural boundary refers to the boundary that should
exist in the model itself in the actual engineering state, and this kind of boundary usually
needs to be set when the engineering model is established. In contrast, the artificial bound-
ary refers to the critical surface that exists around the engineering model after a certain
engineering range is separated from the infinite geotechnical body. The model boundary
in this paper is an artificial boundary. In order to make the geotechnical characteristics in
the model consistent with actual engineering, certain constraints, such as displacements
and stresses, are imposed on these boundaries before calculation. The advantage of this
approach is that it does not need to build a complete underlying model, reducing the
number of meshes while improving computational efficiency.
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Choosing a reasonable model size also plays a vital role in ensuring the efficiency and
accuracy of the calculation. Experimentally, the boundary of a deep underground tunnel
model is generally 3~5 times the diameter of the tunnel [44]. Therefore, the calculation
range of the model is 36 m × 36 m × 50 m, with horizontal coordinates (x-direction),
vertical coordinates (z-direction), and extending tunnel axial direction (y-direction) of
−18~18 m, −18~18 m, and 0~50 m, respectively. Meanwhile, the center point of the tunnel
in section y = 0 m is the origin, the length of the fault is 10 m along the extension direction,
and the included angle between the fault and the tunnel is 60. It is noteworthy that the
model is modeled and gridded by HYPERMESH and converted to FLAC3D format by the
HYPERMESH-FLAC3D program. The calculation model is divided by hexahedron grids,
including 614400 elements and 637721 nodes. In order to ensure calculation accuracy, the
grid size on and around the fault is refined, as shown in Figure 10.
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Figure 10. Fault-tunnel 3D Numerical Model.

The tunnel is circular with a diameter of 5 m, and segments with a width of 1.5 m and
thickness of 0.35 m are used as linings. The segment concrete strength grade C40 and the
impermeability grade WS are adopted. There are 6 pieces in each ring simulated by entity
units. The specific physical and mechanical parameters are shown in Table 4.

Table 4. Physical and mechanical parameters of segment.

Elastic
Modulus
E/GPa

Poisson Ratio
µ

Volumetric
Weight
γ/kN·m−3

Outer
Diameter
R/m

Inner Diameter
r/m

Thickness
t/m

Longitudinal
Length
L/m

25 0.15 25 5.7 5 0.35 1.5

The boundary nodes are fixed in the direction parallel to the Y-Z plane (x = −18 m and
x = 18 m) and the X-Z plane (y = 0 m and y = 50 m). The nodes at the bottom of the model
(z = −18 m) are also fixed in the vertical direction (see Figure 11) [45–47].
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Poisson 
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μ 

Internal 
Friction 
Angle 
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Viscosity Co-
efficient 
η 
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Elastic 
Modulus 
EK/GPa 

Viscosity Co-
efficient 
η 

K/GPa·h 

Rock 27.0 14.2 0.30 32.5 1 4 75 6 80 

Figure 11. Fixed boundary and monitoring locations.

In addition, Figure 10 presents the scheme of typical sections and monitoring points
to study the influence of fault on the surrounding rock and segment lining. Three typical
sections are set up in the tunnel model: (1) Section S1 (y = 18.5 m) placed at the entering
zone of the fault, (2) Section S2 (y = 25 m) located in the middle of the fault, and Section S3
(y = 31.5 m) positioned completely separated from the fault. The measuring points A, B,
C, and D are located along the tunnel and at the vault, inverted arch, right hance, and left
hance of typical sections, respectively.

4.3. Simulation Parameters

The basic physical and mechanical parameters of the surrounding rock of F5 under the
condition of measured ground stress are obtained using an intelligent inversion model and
an integration analysis method combined with various machine learning algorithms [48].
Moreover, the other physical and mechanical parameters of creep analysis can be found in
Table 5 [49,50].

Table 5. Physical and mechanical parameters of surrounding rock.

Type

Basic Physical and Mechanical Parameters Creep Parameter

Maxwell Kelvin

Volumetric
Weight
kN/m3

Elastic
Modulus

E/GPa

Poisson
Ratio

µ

Internal
Friction
Angle
Φ/(º)

Cohesion
c/MPa

Elastic
Modulus
EM/GPa

Viscosity
Coefficient
ηM/GPa·h

Elastic
Modulus
EK/GPa

Viscosity
Coefficient
ηK/GPa·h

Rock 27.0 14.2 0.30 32.5 1 4 75 6 80
Fault 21.7 3.8 0.35 17.0 20 2 48 3 55

5. Results and Discussion
5.1. Creep Analysis during Construction

During excavation, the surrounding rock will produce instantaneous strain and creep
deformation under the time effect. Therefore, after the initial stress calculation is completed,
the Burgers creep constitutive model is adopted for calculation, and the creep deformation
of the surrounding rock is fully considered.

By sorting out the calculation results, the longitudinal deformation profile (LDP) of the
surrounding rock at monitoring points during construction is drawn, as shown in Figure 12.
The LDP at the vault, inverted arch, and hance have similar overall changes. This shows that
the displacement value increases at first and then decreases along the excavation direction.
The maximum displacement segments of all monitoring points of the surrounding rock are
also found to be located at fault. Moreover, the maximum displacement section does not
appear in the middle of the fault, but it is on the vault, hance, and inverted arch in turn
due to a certain included angle between the fault and the tunnel. The maximum vertical
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displacements of the vault and the inverted arch are 8.74 cm at y = 22.75 m and 9.41 cm
at y = 28.75 m, respectively. On the other hand, the maximum horizontal displacement of
hance is 8.14 cm at y = 25.75 m.
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According to the distance between the tunnel face and the fault from far to near, the
deformation of the surrounding rock can be divided into small deformation, gradually
increasing, and rapidly increasing, respectively. This phenomenon indicates that excavation
near the fault is affected by the fault. The deformation of the surrounding rock suddenly
increased near the fault, and hence, the tunnel structure is prone to collapse. However, it
is impossible to judge whether there is a fault in front by monitoring the deformation of
the surrounding rock in real tunnel construction. Subsequently, geological forecasting and
reinforcing the surrounding rock in advance is necessary. Otherwise, the influence scope
is about one time the tunnel diameter away from the fault, and the closer to the fault, the
greater the influence. Since the vault enters the fault first, the displacement of the vault is
affected by the fault first, followed by the hance, and finally, the inverted arch. Therefore,
the tunnel face should be pre-reinforced at least one time the tunnel diameter from the fault.

Figure 13 shows the deformation gradient profile (DGP) of the surrounding rock. The
deformation of the surrounding rock has a sudden change in the position of into and off the
fault. Moreover, the deformation gradient of the surrounding rock in the fault is relatively
large. At the fault’s entry, the vault’s maximum deformation gradient is 3.34 cm. Opposite,
it is 4.21 and 3.01 cm of the inverted arch and hance, respectively, at the exit of the fault.
This change increases the risk of uncoordinated deformation between the surrounding rock
and the tunnel structure, and it is easy to cause damage to the tunnel structure.

According to the allowable longitudinal deflection or angular deformation of tunnel
structure, the design idea of the segmented tunnel lining with flexible joints crossing the
fault area can be adopted. That is to say, tunnel lining is divided into several segmented
tunnel linings along the longitudinal direction, and the flexible joints are installed between
the segmented tunnel linings and connected like a chain hinge. Therefore, the flexible
joints hinder the axial transmission of segment lining deformation and reduce damage
to the lining structure. In addition, the segment linings with flexible joints could make
the structure localize damage to improve the dislocated performance of the whole tunnel
through fault.
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5.2. Creep Analysis during Operation
5.2.1. Cumulative Displacement Curves of Surrounding Rock

Figure 14 shows the cumulative displacement profile (CDP) of the surrounding rock
at monitored sites after creep calculation for 100 years. The maximum cumulative vertical
displacement of the vault and inverted arch and the maximum cumulative horizontal
displacement of hance are all within the fault. The greater the accumulated displacement
and the faster the change means that the weak surrounding rock in the fault has stronger
creep characteristics. This phenomenon will have an impact on the surrounding rock within
one time of the tunnel diameter outside the fault. Consequently, during the operation, it is
necessary to focus on monitoring the surrounding rock within the fault and strengthen the
monitoring of the rock mass within one time of the tunnel diameter outside the fault.
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In addition, the inlet and outlet of fault at the vault and inverted arch are not sym-
metrical with respect to Section S2 and their cumulative vertical displacement curves are
also asymmetrical. This trend occurred because of a significant included angle between the
fault and the tunnel (i.d. 60). The cumulative displacement curve of the tunnel face near
the entrance of the fault also changes more slowly than that of the tunnel face near the exit
of the fault since the vault first contacts the fault. The inlet and outlet of fault at the hance
take Section S2 as the symmetry plane so that the accumulated horizontal displacement
curves are symmetrical.

5.2.2. Displacement Analysis of Segment Linings

The vertical displacement contour of Section S1 and Section S3 segment linings are
presented in Figure 15. In Section S1, the vertical deformation of the segment lining at the
vault is mainly settlement increasing continuously from 0.98 mm in the first year to 6.12 mm
in the 100th year, with a total increase of 5.14 mm. The growth rate is relatively fast from the
first year to the tenth year, and then it remains stable over time. The vertical deformation
of segment lining at the inverted arch is also mainly uplift decreasing continuously (the
settlement value increases) from 16.30 mm in the first year to 12.96 mm in the 100th year,
with a total decreasing range of 3.34 mm. The rate of decline is rapid from the first year to
the tenth year, and then it remains stable with time. More specifically, the changing trend
of vertical displacement at the vault and inverted arch are basically the same under creep
conditions, and the segment linings have a settlement trend as a whole. The horizontal
displacement changes of the left and right hance segment lining are basically consistent. The
maximum horizontal displacement occurs in the left and right hance and is symmetrically
distributed on both sides. The displacement direction is developing towards the inside of
the tunnel. Moreover, the horizontal displacement of left and right hance decreased from
11.28 to 10.34 mm from the first year to the 100th year with a total decrease rate of 8.33%. It
declined rapidly in the previous decade and then stabilized.
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In Section S3, the vertical deformation of segment lining at the vault is mainly settle-
ment decreasing continuously (the uplift value increases) from 12.36 mm in the first year
to 10.67 mm in the 100th year, with a total decreasing range of 1.69 mm. The decrease
rate is relatively fast from the first year to the tenth year, and then it remains stable over
time. Furthermore, the vertical deformation of segment lining at the inverted arch is mainly
uplifted, increasing continuously from 1.36 mm in the first year to 5.59 mm in the 100th
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year, with a total increase of 4.59 mm. The growth rate is relatively fast from the first year
to the tenth year, and then it remains stable with time. Obviously, under creep conditions,
the changing trend of vertical displacement at the vault and inverted arch are basically the
same, and the segment linings have a rising trend as a whole. The horizontal displacement
changes of the left and right hance segment lining are basically consistent. The maximum
horizontal displacement occurs in the left and right hance and is symmetrically distributed
on both sides. The displacement direction is developing towards the inside of the tunnel.
The horizontal displacement of left and right hance decreased from 11.79 mm to 10.40 mm
from the first year to the 100th year, with a total decrease rate of 11.79%. Moreover, the
decrease in the horizontal displacement in Section S3 is greater than that in Section S1. It
declined rapidly in the previous decade and then stabilized.

5.3. Comparative Analysis
5.3.1. Displacement Comparison of Segment Linings at Typical Sections

The overall variation of segment lining displacement in Section S1 and Section S3 is
basically the same. Both change rapidly in the first ten years and then rapidly decrease. Be
worth noting that the fault affects the vertical displacement of segment linings. Section S1
shows the vertical displacement of the vault and inverted arch developing downward
because the fault is located above the tunnel. However, the vertical displacement of the
vault is relatively large. In contrast, the vertical displacement of the inverted arch changes
significantly, while the vertical displacement of the vault and inverted arch develops up-
ward in Section S3, where the fault is located below the tunnel. The horizontal displacement
of left and right hance segment linings decreases slightly, with the same decrescent mag-
nitude in two sections. The development direction of lining horizontal displacement is
inward, indicating that the fault has little influence on the horizontal displacement of
segment linings.

Table 6 summarizes the displacement of different monitoring points at different times
in Sections S1 and S3. The change rate of the surrounding rock is significant in the first
10 years, then decreases and remains stable. The vertical displacement is obviously higher
than the horizontal displacement. Consequently, the influence of fault on the surrounding
rock displacement is mainly vertical. In addition, the main direction of compression in
gravity in situ stress field is vertical, and the creep of the surrounding rock also causes
compression deformation of the strata. Thus, the overall deformation of the segment lining
is compressed into the tunnel. However, the vertical displacement of the segment linings at
the inverted arch of Section S1 and the vault of Section S3 develop towards the outside of
the tunnel. This indicates that the creep of the surrounding rock in the fault also causes the
compression deformation of the stratum, with a direction towards the outside of the fault.

Table 6. Displacement of different monitoring points at different times.

Position
Displacement/mm Average Speed

1st Year 10st Year 100th Year Previous
10 Years

Posterior
90 Years

Previous
10 Years

Posterior
90 Years

S1
Vault 0.98 4.18 6.12 3.20 1.32 0.356 0.015
Inverted arch 16.30 14.3 12.96 2.00 1.34 0.222 0.015
Hance 11.28 11.00 10.34 0.28 0.66 0.031 0.007

S3
Vault 12.36 12.08 10.67 0.28 1.41 0.031 0.016
Inverted arch 1.36 3.47 5.95 2.11 2.48 0.234 0.028
Hance 11.79 11.45 10.40 0.34 1.05 0.038 0.012

In general, the vertical displacement of the vault segment lining of Section S1 is the
most obvious under creep effect. Figure 16 shows the research object and drawing of the
displacement-time curve. The figure indicates that the creep deformation rate of segment
lining is very large in the first 10 years, then drops suddenly. The deformation of segment
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linings in the first 50 years accords with the deformation of the decay creep stage, while the
deformation of segment lining in the last 50 years is in the steady creep stage.
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5.3.2. Stress Comparison of Segment Linings at Typical Sections

Creep is the process in which the internal stress of the surrounding rock is constantly
adjusted. In this section, the maximum principal stress contour of Section S1 and Section S3
segment linings are presented in Figure 17 to compare the stress of segment linings in typical
sections. The maximum principal stress and minimum principal stress on the segment
lining of Section S1 and Section S3 are basically the same. Both stresses are constantly
changing and tend to increase over time. At the initial stage after the tunnel’s completion,
the stress growth rate of segment linings is relatively high. After a period of time, the stress
growth rate gradually decreases, confirming the existence of the creep characteristics of the
surrounding rock. Therefore, it shows that the creep of the surrounding rock has changed
the stress of segment linings.
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Considering the interaction between the surrounding rock and segment linings, the
creep of the surrounding rock greatly impacts the stress of segment linings in the first
10 years after the completion of tunnel construction. Subsequently, a period of 10 to 50 years
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is a process of adjustment. Thereafter, the lining stress gradually stabilizes. Moreover,
the maximum principal stress of vault segment lining slowly changes from a tensile state
to a pressure state, specifically where the location of the fault is above the tunnel (i.e.,
Section S1). In contrast, the maximum principal stress of tunnel segment lining gradually
changes from tensile stress to compressive stress where the location of the fault is under the
tunnel (i.e., Section S3). The results show that the fault has an influence on the stress state
of segment linings, which is the same as the changing trend of displacement of segment
linings.

6. Conclusions

A three-dimensional cross-fault numerical model of the DT-HS project is established
to study the influence of fault on surrounding rocks and segment linings during tunnel
construction and operation under the creep effect. The conclusions are as follows:

(1) Certain differences in the stress distribution of surrounding rocks are found in the
first 10 years after the completion of tunnel construction. More specifically, the creep of the
surrounding rock greatly influences the stress of segment linings within this period. In the
following 10~50 years, the creep of surrounding rocks continuously adjusts and affects the
stress of segment linings. Since then, the stress on the lining is gradually stabilized.

(2) The vertical displacement is obviously higher than the horizontal displacement.
Consequently, the influence of fault on the displacement of the surrounding rock is mainly
vertical. Meanwhile, the creep of the surrounding rock in the fault causes the compression
deformation of the stratum, with a direction towards the outside of the fault. Consequently,
attention should be paid to monitoring the deformation of the segment linings at the vault
and the inverted arch. In addition, the design idea of the segmented tunnel lining with
flexible joints crossing the fault area can also be adopted.

(3) The fault affects the stress state of segment linings. Moreover, the maximum
principal stress of vault segment linings slowly changes from a tensile state to a pressure
state when the fault is above the tunnel at Section S1. However, the maximum principal
stress of tunnel segment lining gradually changes from tensile stress to compressive stress
when the fault is under the tunnel at Section S3.

(4) The fault directly affects the rock mass characteristics near the fault with a radius of
influence of about one time the tunnel diameter from the fault. Generally, the closer to the
fault, the greater the influence. The inlet and outlet of fault at the vault and inverted arch are
not symmetrical with respect to the S2 section resulting in their asymmetrical cumulative
vertical displacement curves. Nevertheless, the inlet and outlet of fault at the hance take the
S2 section as the symmetry plane so that the accumulated horizontal displacement curves
are symmetrical. In this case, geological forecasting is necessary, and the surrounding rock
should be pre-reinforced one time the tunnel diameter from the fault. After the completion
of the tunnel construction, we should focus on monitoring the structure, which is one time
the tunnel diameter from the fault or in the fault in the first 50 years, and adopt a higher
monitoring frequency in the first 10 years to ensure that the deformation of the surrounding
rock is within the controllable range.
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