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Abstract: Aftershock fragility is usually calculated conditioned on a range of potential post-mainshock
damage states. The post-mainshock damage can be identified using damage indices, the latter being
frequently associated with displacement-based parameters such as the maximum drift ratio or the
residual displacement. However, when the reliable simulation of a structural system in a specific
post-mainshock damage state is the objective of a numerical study, using such damage indicators may
not assure the structure experiencing a homogeneous level of damage due to different mainshocks
characteristics, which induce the aftershock fragility results unreliable. Along these lines, the current
study presents a damage evaluation methodology mainly used for aftershock fragility assessment. It
aims to reduce the variation of damage levels derived by using different mainshock seismic motions.
The methodology presented herein includes: (i) the introduction of a damage index defined by
comparing the monotonic pushover curve of the intact and post-earthquake damaged structure;
(ii) the description of a finite element (FE)-based scheme that enables to quantify of the proposed
damage index; and (iii) a deterioration-related modeling technique that can capture both strength and
stiffness degrading performance of structural systems exposed to earthquake-induced excitations.
The latter is essential to support the FE-based quantification scheme for the damage index. This
methodology evaluation methodology can be primarily used for calculating the aftershock fragility
assessment for a multi-span RC continuous girder bridge. The back-to-back incremental dynamic
analysis framework uses a larger number of mainshock-aftershock artificial sequences to generate
the aftershock fragility curves. The AS fragility results obtained via MBDI are compared with that via
maximum drift ratio in terms of the ability to reduce the variation of residual capacities obtained
using different mainshocks to induce a specific damage state but collapse by the same aftershock.
The comparison shows a more robust relationship of MBDI with the residual capacity. It is found
that MBDI, as well as its quantification approach proposed in this study, is a more effective damage
predictor than the widely used displacement-based indices for AS fragility assessment.

Keywords: aftershock fragility assessment; damage index; RC columns; incremental dynamic analysis

1. Introduction

During major earthquake events, it is common to observe strong aftershocks within a
short time window after the mainshock [1–3]. For example, the 2011 Tohuku earthquake
(Japan) of moment magnitude Mw equal to 9 was followed by numerous aftershocks of Mw
higher than 5, while the shortest time interval between two successive events was no longer
than a few days [4]. Such a short time window observed for the occurrence of successive
aftershock events renders it nearly impossible to retrofit the damaged structures promptly.
Hence, a mainshock-affected structure is usually associated with a higher vulnerability to
additional structural failures when exposed to subsequent aftershock(s), even when the
aftershock’s intensity is lower than the mainshock. For example, the mainshock of the
Kocaeli earthquake (Turkey, 17.08.1999, Mw = 7.4) damaged various structural systems.
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However, many of those structures eventually collapsed by an aftershock of lower magni-
tude (Mw = 5.9) that occurred almost a month after the mainshock [5]. Therefore, from a
public safety perspective, it is essential to reliably assess the increased vulnerability of a
mainshock-damaged structure subjected to potential aftershock(s) and hence, support the
relevant post-earthquake decision-making.

The aftershock (AS) fragility, defined as the probability of exceeding a particular
damage state given the intensity of an aftershock and conditioned on a specific damage
level induced by a mainshock, is a valuable tool to assess the seismic performance and
quantify the vulnerability of structures to damages from earthquakes [6–21] and have been
widely used for different types of structures, such as infilled RC structures [22], containment
structures [23], and cast-in-place RC industrial structures [24]. Under successive ground
motions, the structures may suffer from an increased number of hysteresis loops compared
to a single ground motion event. Therefore, it is relevant for AS fragility to consider
a damage index that captures the cumulative damage and the different deterioration
mechanisms (e.g., stiffness and strength degradation) that govern the cyclic performance of
structural systems subjected to seismic motions.

Most of the existing studies on AS fragility has adopted displacement-based dam-
age indices, such as the maximum drift ratio or the residual displacement, due to their
calculation-related simplicity (e.g., [10]). However, several studies have found that even
if the maximum or residual displacement of a structure under different ground motions
is identical, the degree of structural damage could be quite different [25,26]. Therefore,
a relatively deficient representation of the structural damage can be seen by using those
damage indices, and the latter can adversely affect the reliability of AS fragility since the
simulation of a specific post-mainshock damage state using such damage indices may fail
to ensure a homogeneous damage level due to different mainshocks.

Along these lines, the Park and Ang (PA) damage index [27,28], widely used in the
literature, evaluates seismic damage by linearly combining the large deformation induced
by the earthquake excitation and the corresponding energy dissipation. This integrated
(i.e., hybrid) damage index is comprehensively calibrated against a large amount of ob-
served seismic damages, including shear and bond failures. However, several difficulties
have arisen with using the proposed equation for the PA index. A critical problem is related
to the weighting factor, which has to be assigned to the energy dissipation term and has to
be assigned arbitrarily because the factor varies with structural configuration and section
properties [29]. Furthermore, the linear relationship between the two terms of the PA
damage index has been frequently found inappropriate for capturing structural damage
efficiently [29].

An alternative, still hybrid, damage index was presented by Bracci et al. (the Bracci
damage index, BDI) [30]. BDI is defined in terms of the loss ratio of the monotonic load-
deformation curve area due to the extremal loading. The loss area of a load-deformation
curve is caused by both the strength degradation and the irrecoverable deformations.
Bracci et al. [30] suggested a quantification procedure for BDI, in which the simplified
bilinear moment-curvature relationship is employed to represent the actual physical prop-
erty of the structure, and the yield curvature, being necessary for the BDI calculation, is
modified after each cycle accounting for both the plastic deformation and the stiffness
degradation. The formulation of the BDI in terms of the moment-curvature relationship
renders this damage index sufficiently correlated with the seismic performance [29]; hence,
it can favor the reliable simulation of post-mainshock damage, which is of primary interest
for the AS fragility. However, some application-related restrictions are caused by the pro-
posed quantification procedure for the BDI. First, the BDI analytical expression includes a
weighting factor related to the degrading bilinear moment–curvature curve and is defined
arbitrarily [29]. The latter undermines the reliability of the estimated damage that is also
disfavored by the relatively simple bilinear moment-curvature curve currently used [31].
Most importantly, since the quantification procedure has to modify the moment-curvature
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curve after each cycle, the BDI is associated with a demanding calculation that restricts its
application in engineering practice.

In order to solve the problems mentioned above, the central objective of the current
study is the development of a damage evaluation framework oriented to favor the AS
fragility assessment and lead, eventually, to fragility results of increased reliability com-
pared to existing schemes. The integrated and novel methodology presented herein consists
of (i) an advanced damage index, (ii) a finite element (FE)-based quantification procedure
for this damage index, and (iii) a deterioration modeling technique that supports the quan-
tification procedure. Significantly, the damage index is developed after the appropriate
modification of the existing BDI and accounts not only for the peak and residual displace-
ment but also for the stiffness and strength deterioration, the latter being relevant for the
seismic response of structures. The proposed quantification procedure of the modified BDI
damage index is based on FE analysis with the use of a deterioration modeling technique
that effectively captures strength and stiffness degrading performance. The proposed
damage evaluation framework is applied herein for the AS fragility assessment of a multi-
span reinforced concrete (RC) continuous girder bridge. At the same time, a large number
of mainshock-aftershock artificial sequences are used within the B2B-IDA (back-to-back
incremental dynamic analysis) scheme to generate AS fragility curves. The performance of
the current damage evaluation procedure is comparatively assessed with existing damage
indices regarding the variation of collapse capacity of the damaged structures induced
by different mainshocks. The major contribution of the proposed methodology is the
refinement of an effective predictor for evaluating cumulative damage for AS fragility
assessment, which can provide powerful support for the performance-based earthquake
design of infrastructures considering aftershocks.

2. Modified Bracci Damage Index and FE-Based Quantification

This section presents the modified BDI damage index, currently proposed for the AS
fragility assessment of structures subjected to earthquake hazards. The necessary quantifi-
cation procedure of the modified BDI is also described herein based on FE model analysis.

2.1. Definition of the Modified Bracci Damage Index

Identical to the original definition of the BDI, the modified one herein (MBDI) employs
the philosophy of assessing the seismic-induced structural damage in terms of the loss ratio
of the monotonic load-deformation curve area compared to the one corresponding to the
intact structure. Especially in the MBDI model, Dr, as shown in Figure 1, is defined as the
total area under the post-earthquake reloading pushover curve. This area initiates from
the residual displacement point and, via the reloading curve, merges into the degraded
post-earthquake monotonic curve. Df is defined as the area under the unloading curve
that starts from the ultimate point of the intact monotonic backbone curve and ends by the
zero-force point. Finally, D0 is the total area under the intact monotonic load-deformation
curve of the structure under investigation.

Based on the above, the area loss of the monotonic load-deformation curve during the
earthquake can be calculated as follows:

Dloss = D0 − Dr (1)

Furthermore, the maximum loss of area is:

Dp = D0 − D f (2)

Hence, MBDI can be calculated as follows:

MBDI =
Dloss
Dp

(3)
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2.2. FE-Based Quantification of MBDI

Following the MBDI definition, the main challenge for its rigorous quantification is
determining the post-earthquake monotonic reloading pushover curve of the structure
under study. To this end, an FE-based quantification procedure consists of five steps, as
illustrated in Figure 2.
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Step 1—Development of deterioration numerical model: The structure under study
needs to be numerically simulated with an appropriate deterioration constitutive model
that can capture the structural degrading performance of structural elements accounting
for the earthquake-induced cumulative damage, such as the strength deterioration in the
backbone curve as well as the cyclic deterioration of strength and stiffness under seismic
loading. The deterioration model constitutes a crucial part of the MDBI quantification
procedure; hence, mode details are provided in the following section.

Step 2—Monotonic pushover analysis of the intact structure: A monotonic pushover
analysis needs to be performed by using the finite element model of the intact structure. This
inelastic static analysis should lead the structure to respond just before its final performance
phase, in which the collapse mechanism can be triggered (see the blue line in Figure 3a). By
executing this step, both D0 and Df can be calculated. Eventually, the maximum possible
area loss, Dp, can be estimated according to Equation (2).
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Step 3—Structural analysis under the target load: The finite element model of the
structure under study will be used for its structural analysis when exposed to the target
external loading. Either quasi-static or dynamic loads can be considered. At the same
time, various outcomes from the structural analysis (e.g., the moment–rotation relationship
presented by the dark gray line in Figure 3b) can be used to simulate the cyclic degradation
behavior under the target load according to the cumulative deterioration model developed
in Step 1.

Step 4—Monotonic pushover analysis of the damaged structure: The analysis of the
structure under the target external loading should be followed by the performance of a
back-to-back monotonic pushover analysis until the collapse in order to determine the
residual pushover curve of the damaged structure (i.e., the blue line in Figure 3b). By doing
so, Dr and Dloss can be determined according to Equation (1).

Step 5—Calculation of MBDI: The damage index proposed herein can be calculated
according to Equation (3).

3. Deterioration Modeling Technique

The deterioration modeling is essential herein to support the FE-based quantification
procedure for the MDBI. Along these lines, lumped plasticity (LP) models have been widely
seen to provide quite reliable results compared with fiber element models performing,
especially at lower levels of deformation that drive the losses. Additionally, both strength
and stiffness degradation, usually occurring as the structure approaches collapse, have been
sufficiently captured by LP models [32–35], the latter being challenged in real applications
due to the rather cumbersome calculation of the essential backbone curve parameters.
Therefore, the deterioration modeling technique proposed herein exploits the advantages
of the lumped plasticity models while developing a straightforward method to determine
the relevant backbone curve parameters. Next, the modeling technique is demonstrated
via its application for bridge columns.

3.1. Lumped Plasticity Model of Bridge Columns

The modeling method described by the current study consists of three different types
of elements, including a zero-length rotation spring for the bottom of the column and rigid
and fiber-based elements (Figure 4c). Among them, the zero-length rotation spring and the
rigid element are combined to act as the plastic hinge zone of the column. The length of the
rigid element, as shown in Figure 4a, is estimated according to Equation (4), recommended
by the Caltrans Seismic Design Criteria (Caltrans 2010), which considers the effects of strain
localization and softening.

Lp = 0.08L + 0.22 fyedbl ≥ 0.044 fyedbl (4)

where L is the column length, fye is the expected yield strength of longitudinal reinforcement,
and dbl is the nominal bar diameter of longitudinal reinforcement.



Buildings 2022, 12, 1675 6 of 18

Buildings 2022, 12, x FOR PEER REVIEW 6 of 18 
 

to determine the relevant backbone curve parameters. Next, the modeling technique is 
demonstrated via its application for bridge columns. 

3.1. Lumped Plasticity Model of Bridge Columns 
The modeling method described by the current study consists of three different types 

of elements, including a zero-length rotation spring for the bottom of the column and rigid 
and fiber-based elements (Figure 4c). Among them, the zero-length rotation spring and 
the rigid element are combined to act as the plastic hinge zone of the column. The length 
of the rigid element, as shown in Figure 4a, is estimated according to Equation (4), recom-
mended by the Caltrans Seismic Design Criteria (Caltrans 2010), which considers the ef-
fects of strain localization and softening. 

0.08 0.22 0.044p ye bl ye blL L f d f d= + ≥  (4)

where L is the column length, fye is the expected yield strength of longitudinal reinforce-
ment, and dbl is the nominal bar diameter of longitudinal reinforcement. 

 
Figure 4. Procedure for determining the backbone curve parameters: (a) the fiber-based column 
model, (b) conducting monotonic pushover analysis to determine the parameters for the zero-length 
rotation spring, and (c) the final lumped plasticity column model. 

The zero-length rotation spring employs the modified Ibarra–Medina–Krawinkler 
deterioration hysteretic model (IMK model) proposed by Lignos and Krawinkler [36,37]. 
This model is defined by a moment–rotation backbone curve and associated hysteretic 
rules. It can capture the strength and stiffness deterioration of RC columns up to the onset 
of structural collapse. The peak-orientated model is selected here as the associated hyster-
etic rules in this study. 

3.2. Definition of Lumped Plasticity Model 
The lumped plasticity model needs the definition of the backbone curve parameters 

and the cyclic deterioration parameters. 
  

Figure 4. Procedure for determining the backbone curve parameters: (a) the fiber-based column
model, (b) conducting monotonic pushover analysis to determine the parameters for the zero-length
rotation spring, and (c) the final lumped plasticity column model.

The zero-length rotation spring employs the modified Ibarra–Medina–Krawinkler
deterioration hysteretic model (IMK model) proposed by Lignos and Krawinkler [36,37].
This model is defined by a moment–rotation backbone curve and associated hysteretic rules.
It can capture the strength and stiffness deterioration of RC columns up to the onset of
structural collapse. The peak-orientated model is selected here as the associated hysteretic
rules in this study.

3.2. Definition of Lumped Plasticity Model

The lumped plasticity model needs the definition of the backbone curve parameters
and the cyclic deterioration parameters.

3.2.1. Definition of Backbone Curve Parameters

The parameters of the IMK model can be classified into two categories: the parameters
that define a quad-linear backbone curve and energy-based cyclic deterioration parameters
that define four cyclic strength and stiffness degradation modes. Even though Lignos
and Krawinkler [36,37] developed the median parameters for RC components using semi-
empirical relationships, such empirical equations would introduce uncertainty into the
backbone curve, considerably influencing the simulation accuracy. Therefore, a procedure
to determine backbone curve parameters is proposed here. The basic process is summarized
as follows:

(1) Model the column using fiber-based elements.

The primary advantage of the fiber-based model is that it is convenient to simulate the
monotonic behavior of concrete and reinforce steel materials employed in the fiber section.
The disadvantage is that it is challenging to capture cyclic deterioration behavior. Since
the cyclic deterioration behavior does not influence determining the backbone curve of
the column, it is reasonable to use the fiber-based model as a reference to determine the
backbone curve parameters for the IMK model.
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Columns are modeled with displacement-based beam-column elements using the
OpenSees platform [38]. The one-dimensional stress-strain response of concrete and rein-
forcing steel are simulated using the Concrete01 and Steel01 material models, respectively.
The plastic hinge length (l1) is defined according to Equation (4), as illustrated in Figure 4a.

(2) Replace the elements outside the plastic zone (l2) with rigid beam elements and
conduct a monotonic pushover analysis.

The monotonic pushover result will determine the backbone curve parameters for the
IMK model.

The elements outside the plastic zone are replaced with rigid beam elements to secure
the backbone curve of the lumped mode that can represent the monotonic behavior with
sufficient accuracy, as shown in Figure 5. Otherwise, the elastic performance of these
elements will be elastic, introducing error in the reference backbone curve.
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(3) Determine the backbone curve parameters for the IMK model according to the refer-
ence pushover curve.

As shown in Figure 5, using the quad-linear model to simulate the backbone curve and
determine the backbone curve parameters for the IMK model according to the values of the
four turning points in the multi-linear model. It is noted that the (equal) integration area
method is used to define the multi-linear model. The comparison between the monotonic
pushover curves of the original fiber-based model and the finally obtained lumped-based
model illustrates that the lumped-based model can reliably represent the monotonic force–
deformation relationships of the column.

3.2.2. Determine Cyclic Deterioration Parameters

The uncertainty from the empirical equations for cyclic deterioration parameters
has been reported not to cause significant errors [31]. Therefore, the empirical equation
obtained from [32] is employed as follows,

Λ = 170 × 0.27ν × 0.1s/d × θp (5)

where Λ is the normalized energy dissipation capacity, v is the axial load ratio, s is the stir-
rup spacing, d is the column depth, and θp is the pre-capping plastic rotation for monotonic
loading (difference between yield rotation and rotation at the maximum moment).
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3.3. Validation of the Deterioration FE Modeling Technique

An available quasi-static test of an RC column under reversed cyclic loading is studied
to verify the proposed modeling technique. Figure 6 compares the simulated and tested
hysteretic behavior of the RC column. It is observed that the numerical analysis curve
shows a good agreement with the experimental results. In addition, the comparison
between the test results (blue dotted line) with the monotonic backbone curve (black dotted
line) in Figure 6 also illustrates that the test specimen exhibits a significantly high level of
nonlinearity and deterioration. Thus, it is concluded that even when the column experiences
a high level of nonlinearity and deterioration under cyclic loadings, the numerical model
can still reasonably capture the hysteretic behavior with high accuracy.
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To summarize, the effectiveness of the proposed deterioration modeling technique
in representing the hysteresis behavior strongly supports the quantification of MBDI. It
takes both the advantage of fiber-based models in the simplicity to predict the monotonic
pushover curve and the lumped-based models in the simulation of cyclic deterioration
behaviors. With the integration of MBDI, the FE-based quantification procedure, and
the deterioration modeling method, the methodology provides a novel perspective and a
feasible way to evaluate the damage. Its advantages over the method suggested by Bracci
are summarized as follows:

(1) It is applicable to quantify damage under static cyclic loading and dynamic excitation.
(2) The process is simple and convenient to implement because it avoids tedious update

works of the backbone curve.
(3) With sophisticated hysteretic models being used, it can consider all the critical dete-

rioration behaviors of RC components compared to the bi-linear model employed
by Bracci.

(4) The residual monotonic pushover curve area after external loading is influenced by
many factors, such as stiffness and strength deterioration, peak displacement, and
residual displacement, meaning that the proposed methodology can reflect that all of
these factors account for cumulative damage.

(5) Considering such multiple factors, the Modified BDI has a stronger relationship with
the residual seismic capacity, which facilitates assessing the AS fragility.
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4. Case Study: Numerical Model, Earthquake Actions, and the Damage States

The current study focuses on the AS fragility assessment of an RC continuous girder
bridge, which is numerically modeled following the deterioration technique presented in
Section 3. The detailed description of the bridge numerical model is as below, along with
strong ground motions, the latter being necessary to represent the seismic excitation of
the bridge structure. The damage states of the bridge model are also defined since they
constitute an inherent part of any fragility calculation.

4.1. Description of Case Study Bridge

A multi-span RC continuous girder bridge, a common type of highway bridge in
China, is selected as the testbed structure for the AS fragility analysis. The bridge has three
units, each consisting of three spans, and has a deck width of 9.8 m. The spans in the first
and last units of the bridge were 30 m long each, and the length of the three middle spans
in the central unit was chosen to be 30 m, 50 m, and 30 m, resulting in an overall bridge
length of 290 m. Each bridge column has a circular cross-section of 1524 mm in diameter
along 12.10 m in height. Especially, 28 longitudinal steel bars of 32.8 mm diameter and
transverse (spiral) reinforcing bars of 12 mm diameter and 89 mm spacing were used to
reinforce the cross-section of the bridge columns. The compressive strength of concrete for
columns is 33.0 Mpa, while the yield strength of reinforcing bars is 465 Mpa. The column
aspect ratio was calculated well above 2.5, indicating the dominant flexural behavior of the
column that, in turn, may lead to flexural failure due to the formation of a plastic hinge.
The single-column bents and the box girder were linked with sliding rubber bearings. In
each unit, one column can be found along the longitudinal direction designed to be the
critical component; hence, fixed bearings have been placed at the top of those elements to
decrease their vulnerability to structural failures. Figure 7 shows the thorough review of
plans for the middle unit of the bridge, which is numerically modeled in this study.
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The bridge was modeled using OpenSees Finite element code [38], as shown in
Figure 8. It is noted that only the seismic performance of the middle unit of the bridge is
investigated here, with the other two units being the boundary conditions. The critical
column, i.e., the third column from the left, was modeled using the previous deterioration
modeling technique. Additionally, the soil-structure interaction effects were considered.
The first two natural vibration periods in the longitudinal direction of the FE model of the
bridge were 0.99 s and 0.17 s, reflecting the bridge’s dominant first mode of vibration.

4.2. Strong Ground Motions

The calculation of the AS fragility requires using the bridge finite element model to
perform response history analysis. To this end, mainshock-aftershock earthquake sequences
were generated using a set of 30 earthquake ground motions already selected and used by
Vamvatsikos and Cornell [39]. These earthquake motions, used herein both as mainshock
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and aftershock ground excitations, have been recorded at firm soil sites during past seismic
events occurring in the western USA (California), with moment magnitude and closest
distance to fault rupture ranging between 6.5 and 6.9 and 15 and 33 km, respectively.
Additionally, the intensity of the selected earthquake motions, in terms of peak ground
acceleration (PGA), varies between 0.04 and 0.63 g. It should be noted, though, that the
measure used in the current study to quantify the intensity of earthquake motions is
the first mode of spectral acceleration, Sa(T1), calculated at a damping ratio of 5%. The
response spectra of the 30 ground motions are illustrated in Figure 9. The use of the
30 seismic motions, for which more details can be found elsewhere [39], eventually allowed
the generation of 900 artificial mainshock-aftershock sequences since each strong ground
motion was used both as mainshock and aftershock excitation. Such an artificial generation
of mainshock–aftershock sequences has been widely adopted for relevant studies due to
the difficulty of finding a sufficient number of recorded sequence events.
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4.3. Definition of Damage States

The MBDI is employed herein as the seismic demand (also called engineering de-
mand parameter, EDP) to quantify the structural damage induced to the multi-span RC
continuous girder bridge when subjected to the seismic hazard. Along these lines, the
correlation between physical damage and the currently proposed MBDI for various damage
states needs to be established to facilitate the fragility calculation, especially to enable the
numerical realization of different levels of damaged structures. This study categorizes the
damage as minor, moderate, and extensive, while the last damage level adopted herein
corresponds to the collapse.
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The correspondence between the physical damage and the damage states, the latter
defined in terms of MBDI, are shown in Table 1. The maximum drift ratio for each damage
state can be obtained first through monotonic pushover analysis on the intact numerical
model. Step 1 and Step 2 are introduced in detail in Section 2.2. The pushover result is
illustrated in Figure 10a. The maximum drift ratio corresponding to each damage state
can be determined numerically when it reaches the physical damage. According to the
pushover result, the maximum drift ratio for each damage state is 0.0446, 0.0784, 0.1035,
and 0.1286, respectively, as listed in Table 1. Based on the above, Step 3, Step 4, and
Step 5, introduced in detail in Section 2.2, are carried out to obtain the values of MDBI
corresponding to each limit state, as shown in Figure 10b. In Step 3, a monotonic pushover
is conducted as the target load until it reaches the maximum drift ratio corresponding to
a specific damage state, then unloaded until zero force. In Step 4, conduct a back-to-back
monotonic pushover analysis in the same direction as the structural model until collapse.
In Step 5, the values of MDBI corresponding to each limit state are calculated according
to Equation (3). Finally, the threshold of the MBDI corresponding to the damage states
are 0.02, 0.21, 0.57, and 1 for minor damage, moderate damage, extensive damage, and
collapse, respectively.

Table 1. Damage states defined in the current study.

DS Limit State Physical Damage Maximum Drift Ratio MBDI

DS1 Minor Spalling of cover concrete 0.33 0.02
DS2 Moderate Core crushing 0.57 0.21
DS3 Extensive Bar buckling 0.76 0.57
DS4 Collapse Large drift 0.94 1.00



Buildings 2022, 12, 1675 12 of 18Buildings 2022, 12, x FOR PEER REVIEW 12 of 18 
 

 
(a) 

 
(b) 

Figure 10. (a) The pushover curves for the study case, and (b) the definition of damage states in 
terms of Maximum Drift ratio and MBDI. 

5. Aftershock Fragility Assessment 
5.1. The B2B-IDA Methodology for Aftershock Fragility Assessment 

The incremental dynamic analysis (IDA) approach is widely used to generate fragil-
ity curves. An IDA involves a series of nonlinear time-history analyses of the structure 
subjected to incrementally increasing ground excitations. The intensity of each ground 
motion record in the ensemble is scaled to multiple levels to force the structure to undergo 
the entire range of behavior, from elastic to inelastic and finally to collapse. 

The engineering community has developed different numerical schemes to assess AS 
fragility [6–18]. The latter can be mainly classified according to how the mainshock dam-
age and the assessment of the post-mainshock capacity are simulated. Among those 
schemes, the so-called back-to-back incremental dynamic analysis (B2B-IDA) framework 
is widely used to calculate AS fragility of structural systems of varying size, geometry, 
material, importance, and complexity [10]. According to the B2B-IDA framework, post-
mainshock damaged structure simulation is facilitated by incrementally scaling each 
mainshock strong ground motion until a specific level of damage is induced. Next, the AS 
fragility curves can be generated by performing IDA on the mainshock-damaged struc-
ture under a set of selected aftershock excitations. 

This paper employs the B2B-IDA methodology to generate AS fragility curves. The 
process involves the following steps: 
(1) First, scale each mainshock incrementally to determine the intensity of the mainshock 

to induce the structure to reach exactly each specified damage state. 
(2) Second, perform a nonlinear time history analysis of the structure in each post-

mainshock damage state subjected to mainshock-aftershock sequences (so-called 
“back-to-back” dynamic analyses). The mainshock serves as a means to induce the 
structure to sustain a certain level of post-mainshock damage, while the aftershock is 
scaled incrementally to calculate the AS fragility according to the EDP during the 
aftershock. 

(3) Last, determine the probability distribution of aftershock intensity values associated 
with each post-aftershock damage state conditioned on each post-mainshock damage 
state over all the 900 pairs of specific mainshock-aftershock sequences. 

5.2. Aftershock Fragility Results 
Scaling an earthquake record to obtain a realization of the building in each post-

mainshock damage state is an iterative process, and the MBDI is used as EDP in the pro-
cess. The intensities of the mainshocks to induce each damage state are firstly listed in 
Table 2. 

  

Figure 10. (a) The pushover curves for the study case, and (b) the definition of damage states in
terms of Maximum Drift ratio and MBDI.

5. Aftershock Fragility Assessment
5.1. The B2B-IDA Methodology for Aftershock Fragility Assessment

The incremental dynamic analysis (IDA) approach is widely used to generate fragility
curves. An IDA involves a series of nonlinear time-history analyses of the structure
subjected to incrementally increasing ground excitations. The intensity of each ground
motion record in the ensemble is scaled to multiple levels to force the structure to undergo
the entire range of behavior, from elastic to inelastic and finally to collapse.

The engineering community has developed different numerical schemes to assess AS
fragility [6–18]. The latter can be mainly classified according to how the mainshock damage
and the assessment of the post-mainshock capacity are simulated. Among those schemes,
the so-called back-to-back incremental dynamic analysis (B2B-IDA) framework is widely
used to calculate AS fragility of structural systems of varying size, geometry, material,
importance, and complexity [10]. According to the B2B-IDA framework, post-mainshock
damaged structure simulation is facilitated by incrementally scaling each mainshock strong
ground motion until a specific level of damage is induced. Next, the AS fragility curves
can be generated by performing IDA on the mainshock-damaged structure under a set of
selected aftershock excitations.

This paper employs the B2B-IDA methodology to generate AS fragility curves. The
process involves the following steps:

(1) First, scale each mainshock incrementally to determine the intensity of the mainshock
to induce the structure to reach exactly each specified damage state.

(2) Second, perform a nonlinear time history analysis of the structure in each post-
mainshock damage state subjected to mainshock-aftershock sequences (so-called
“back-to-back” dynamic analyses). The mainshock serves as a means to induce the
structure to sustain a certain level of post-mainshock damage, while the aftershock
is scaled incrementally to calculate the AS fragility according to the EDP during
the aftershock.

(3) Last, determine the probability distribution of aftershock intensity values associated
with each post-aftershock damage state conditioned on each post-mainshock damage
state over all the 900 pairs of specific mainshock-aftershock sequences.

5.2. Aftershock Fragility Results

Scaling an earthquake record to obtain a realization of the building in each post-
mainshock damage state is an iterative process, and the MBDI is used as EDP in the process.
The intensities of the mainshocks to induce each damage state are firstly listed in Table 2.



Buildings 2022, 12, 1675 13 of 18

Table 2. Seismic intensities of the mainshocks to induce each damaged state.

Ground Motion
Seismic Intensity (Sa(T1),g)

DS1 DS2 DS3 DS4

1 1.30 2.24 2.96 3.23
2 1.70 3.42 3.88 3.95
3 1.56 2.60 2.90 3.06
4 1.88 2.98 3.71 4.24
5 1.77 2.63 2.86 2.91
6 1.13 2.65 2.85 2.93
7 1.49 5.45 6.25 6.58
8 1.33 2.03 2.16 2.24
9 0.98 1.28 1.60 1.69
10 1.50 1.64 1.68 1.70
11 1.11 1.58 1.89 2.18
12 1.05 2.22 3.77 4.96
13 1.47 2.42 2.67 2.80
14 0.75 1.14 1.36 1.54
15 1.25 1.67 1.89 2.02
16 0.74 1.11 1.28 1.50
17 1.51 2.30 2.91 3.29
18 1.04 1.26 1.36 1.44
19 1.40 2.16 2.80 3.22
20 1.16 1.58 1.86 2.03
21 1.12 2.21 4.15 4.84
22 1.32 2.10 2.63 3.52
23 1.45 3.73 6.81 7.71
24 3.38 4.60 5.01 5.25
25 2.26 4.42 4.83 5.00
26 1.44 2.28 2.79 3.22
27 1.06 1.47 1.73 1.94
28 0.86 1.10 1.20 1.26
29 1.00 1.65 2.03 2.24
30 0.81 1.05 1.24 1.35

Based on these, the back-to-back nonlinear time history analysis (NTHA) of the struc-
ture subjected to mainshock-aftershock sequences is performed. The AS fragility curves for
each post-mainshock damage state are generated through the probability distribution of the
EDPs obtained from 900 artificial mainshock-aftershock sequences. The IDA curves of the
structure subjected to aftershocks conditioned on each post-mainshock damage state are
shown in Figure 11. In the IDA method, the probability distribution of the EDPs for each
damage state over all the 900 seismic sequences is assumed to be lognormal distribution. It
must be validated through the hypothesis-testing method, e.g., the Kolmogorov–Smirnov
test. The AS fragility curves are determined as the cumulative distribution function (CDF)
of the EDPs in terms of the intensity of the aftershock. The IDA curves of the structure
subjected to aftershocks conditioned on each post-mainshock damage state are shown in
Figure 11. It is found that the aftershock IDA curves have a distinct upward tendency
around the damage state corresponding to the mainshock damaged state. This phenomenon
is even more evident for the higher structural damage sustained during the mainshock.
Moreover, by comparing the IDA curves in the three subfigures, it is also found that the
more severe damage caused by the mainshock, the lower the seismic intensity of the
aftershock required to cause a certain degree of damage.
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Figure 12 compares the AS fragility conditioned on different mainshock-damage
states. As shown in Figure 12a, only the minor-damage aftershock fragility for the intact
mainshock-damage state varies with the AS intensity, and the fragility for other mainshock-
damage states turns out to be 1.0 constantly. This is because the structure already experi-
enced a higher level than the minor damage due to the mainshock and can only sustain a
greater extent of damage after an aftershock. Along this line, it is also observed that the
moderate aftershock fragility for the moderate and extensive mainshock-damaged structure
in Figure 12b and the extensive aftershock fragility for the extensive mainshock-damaged
structure in Figure 12c are constantly 1.0. For others, the aftershock fragility curves increase
with the AS intensity. In addition, it is also found that the higher the damage sustained
during the mainshock, the greater the probability that the bridge will exhibit a more severe
damage state when subjected to an aftershock of a given intensity. For example, Figure 12d
compares the collapse fragility conditioned on the different mainshock-damage states.
Specifically, when an aftershock with an intensity of 3.0 g occurs, the probability for the
structure in a minor damage state (due to the mainshock) to collapse is 0.2. If the structure
sustains extensive damage from the mainshock, the probability of collapse will sharply
rise to 0.78. Therefore, the post-mainshock damage level will significantly influence the
vulnerability of the structure to withstand an aftershock. In other words, when a structure
sustains a higher damage level from a mainshock, it will be much more fragile. A similar
trend can also be found in Figure 12a–c.



Buildings 2022, 12, 1675 15 of 18Buildings 2022, 12, x FOR PEER REVIEW 15 of 18 
 

 
Figure 12. Aftershock fragility curves for different damage states (a) minor damage, (b) moderate 
damage, (c) extensive damage, and (d) collapse damage conditioned on different mainshock-dam-
age states. 

6. Validation of MBDI as EDP for Aftershock Fragility 
In order to validate the effectiveness of the MBDI as a predictor of AS fragility, the 

assessment results are compared with those obtained from using the maximum drift ratio 
as EDP, one of the most widely used displacement-based damage indices [10]. 

The effectiveness of damage indices as predictors of AS fragility is evaluated in terms 
of their ability to reduce the deviation of collapse capacity of the structure when simulat-
ing a specific damage state using different mainshocks. The collapse capacity under an 
earthquake record herein is defined as the smallest ground motion spectral acceleration 
(at T1 and a damping ratio of 5%) of the record that would induce localized or complete 
structural collapse in an aftershock. Along these lines, the collapse capacity of a structure 
can be defined as the mean value of the collapse capacities under a number of ground 
motions. The deviation of collapse capacity concerned above is quantified via the coeffi-
cient of variation, COV (i.e., COV = σ/µ, where σ and µ are the standard deviation and the 
arithmetic mean value). σ and µ are calculated statistically based on the collapse capacities 
derived from using different mainshocks to induce a specific damage state. The same set 
of 30 aftershocks, as mentioned in Section 4, is used in this study to determine the collapse 
capacities. 

Figure 13 illustrates the outcome for the mainshock-damage structure in minor, mod-
erate, and extensive damage states (DS0 = 1, 2, 3) obtained via MBDI and the maximum 
drift ratio, with each column representing the COV of the residual capacities for the set of 
30 mainshocks that induce damage and collapse by each aftershock. The comparison 
shows that the COVs for MBDI are generally lower than using the maximum drift ratio. 
In addition, the difference between the COVs via the two damage indices becomes more 
significant as the mainshock-damage level increases. The lower trend of the COVs for 
MBDI, when the structure sustains extensive damage from the mainshocks, shows a 
stronger relationship between MBDI and the residual capacity and therefore demon-
strates the advantage of MDBI over maximum drift ratio in simulating severe damage. 
Based on the above discussion, it is concluded that MBDI, in this case, is a better damage 
index predictor of AS fragility. 

Figure 12. Aftershock fragility curves for different damage states (a) minor damage, (b) moder-
ate damage, (c) extensive damage, and (d) collapse damage conditioned on different mainshock-
damage states.

6. Validation of MBDI as EDP for Aftershock Fragility

In order to validate the effectiveness of the MBDI as a predictor of AS fragility, the
assessment results are compared with those obtained from using the maximum drift ratio
as EDP, one of the most widely used displacement-based damage indices [10].

The effectiveness of damage indices as predictors of AS fragility is evaluated in
terms of their ability to reduce the deviation of collapse capacity of the structure when
simulating a specific damage state using different mainshocks. The collapse capacity under
an earthquake record herein is defined as the smallest ground motion spectral acceleration
(at T1 and a damping ratio of 5%) of the record that would induce localized or complete
structural collapse in an aftershock. Along these lines, the collapse capacity of a structure
can be defined as the mean value of the collapse capacities under a number of ground
motions. The deviation of collapse capacity concerned above is quantified via the coefficient
of variation, COV (i.e., COV = σ/µ, where σ and µ are the standard deviation and the
arithmetic mean value). σ and µ are calculated statistically based on the collapse capacities
derived from using different mainshocks to induce a specific damage state. The same
set of 30 aftershocks, as mentioned in Section 4, is used in this study to determine the
collapse capacities.

Figure 13 illustrates the outcome for the mainshock-damage structure in minor, mod-
erate, and extensive damage states (DS0 = 1, 2, 3) obtained via MBDI and the maximum
drift ratio, with each column representing the COV of the residual capacities for the set
of 30 mainshocks that induce damage and collapse by each aftershock. The comparison
shows that the COVs for MBDI are generally lower than using the maximum drift ra-
tio. In addition, the difference between the COVs via the two damage indices becomes
more significant as the mainshock-damage level increases. The lower trend of the COVs
for MBDI, when the structure sustains extensive damage from the mainshocks, shows a
stronger relationship between MBDI and the residual capacity and therefore demonstrates
the advantage of MDBI over maximum drift ratio in simulating severe damage. Based
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on the above discussion, it is concluded that MBDI, in this case, is a better damage index
predictor of AS fragility.
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7. Summary and Conclusions

This study presents an FE-based damage evaluation methodology for continuous
girder bridges used to develop AS fragility curves based on post-mainshock damage condi-
tions. It integrates a combined damage index that accounts for multiple factors associated
with cumulative damage, an FE-based quantification procedure, and the supporting deteri-
oration modeling technique. The proposed combined damage index (MBDI) is a modified
version based on the damage model developed by Bracci. The FE-based quantification
procedure is developed, in which back-to-back monotonic pushover analysis is required.
For the deterioration modeling technique, the lumped plastic numerical model of bridge
columns is established, consisting of three elements: a zero-length rotation spring at the
bottom of the column, a rigid element, and fiber-based elements. The IMK hysteretic model
captures the deterioration behaviors under MS-AS sequences. The process of determin-
ing the parameters for IMK material (including both the backbone curve and the cyclic
deterioration parameters) is introduced. The proposed damage measure methodology can
consider nearly all the critical factors related to cumulative damage, such as stiffness and
strength deterioration, peak displacement, and residual displacement. A multi-span RC
continuous girder bridge is studied and modeled to demonstrate the proposed method
using OpenSees. The B2B-IDA framework is applied using 900 MS-AS synthetic sequences
generated from 30 earthquake records to calculate the AS fragility conditioned on a different
level of post-mainshock damage. The influence of the post-mainshock damage states on
AS fragility is investigated. The following broad conclusions emerge.

(1) The aftershock fragility results show that the higher the damage sustained during
the mainshock, the greater the probability that the bridge will exhibit a more severe
damage state when subjected to an aftershock of a given intensity.
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(2) The proposed damage index’s effectiveness is investigated in the second part of
the study. The AS fragility results obtained via MBDI are compared with those via
maximum drift ratio in terms of the ability to reduce the variation of residual capacities
obtained using different mainshocks to induce a specific damage state but collapse by
the same aftershock. The comparison shows a more robust relationship of MBDI with
the residual capacity and therefore demonstrates that MBDI is a better damage index
predictor of AS fragility.

(3) The major contribution of the proposed damage measure methodology is the refine-
ment of an effective predictor for evaluating cumulative damage for AS fragility as-
sessment. It enables quantitative evaluation of the increased vulnerability of damaged
RC bridges while significantly reducing the variation derived from using different
mainshocks to simulate structural damage.

(4) It is noted that the deterioration modeling technique proposed in this study fits well
with the structures in which the plastic hinges generate only in finite and fixed posi-
tions under external loading. For those structures with uncertain plastic hinge zone,
developing other applicable deterioration modeling methods is necessary. Whether
the quantification procedure for the MBDI is still suitable needs to be discussed in
future studies.

(5) The proposed damage quantification methodology can be extended to other AS
fragility analysis frameworks, such as the IDA-Cloud framework. In future studies,
the methodology should be adapted to explore its effectiveness in developing AS
fragility using the cloud method.
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