Coupled Effect of Granite Sand and Calcium Lignosulphonate on the Strength Behavior of Cohesive Soil
Abstract
:1. Introduction and Background
2. Materials and Methodology
2.1. Clay
2.2. Mechanical Stabilizer (GS)
2.3. Chemical Stabilizer (CLS)
2.4. Atterberg Limits and Differential Free Swell (DFS)
2.5. UCS
2.5.1. Sampling with GS
2.5.2. Sampling with GS and CLS
2.5.3. Pre-Compaction Mellowing Technique
2.6. Hydraulic Conductivity (K)
2.6.1. Sampling with GS
2.6.2. Sampling with GS and CLS
3. Results and Discussions
3.1. Variation in Atterberg Limits and DFS
3.2. Response of UCS
3.2.1. In the Presence of GS
3.2.2. In the Presence of GS and CLS
3.3. Response of Hydraulic Conductivity (K)
3.3.1. In the Presence of GS
3.3.2. In the Presence of GS and CLS
4. Critical Inference behind the Existing Mechanism
5. Regression Analysis of the Experimental Data
6. Summary and Conclusions
- The UCS of the clay–GS matrix is dependent on the dosage of GS. The presence of GS changes the particle size distribution of the matrix, which improves density by filling the voids, decreases cohesion due to increased silt fraction, and increases the shearing resistance.
- At constant water content and uniform density, an increase in dosage of GS from 30–50% reduces the UCS by 36% for 40%, 56% for 50% replacement, and a slight increase of 27% is found after the initial dosage i.e., at 30%.
- The combined effect of GS and CLS on clay improved the UCS performance. As the curing period increases, the strength of the clay–GS–CLS mix increases at a slow rate. The maximum strength achieved after 28 days of curing is 423.8 kPa for M1L0.5 and after 90 days of curing, it is 2.3 MPa for M2 with 0.5% CLS. Moreover, the response of UCS is more significant for the initial dosage of CLS, i.e., 0.5% for all the GS replacements. The UCS yielded lower values for 1–1.5% even with the elapse of time, and increased slightly for 2%.
- A total of 50% GS in clay–GS mixes enhances the permeability by 30 times. For clay–GS–CLS mixes, the permeability decreases with an increased dosage of CLS and curing period. An average decrement of 30% is observed for the clay–GS–CLS mix when cured for 28 days.
- The proposed nonlinear regression equations correlating dosages of granite sand (GS) and calcium lignosulphonate (CLS) and curing period (CP) to unconfined compressive strength () and hydraulic conductivity (K) may be used to obtain the amounts of GS and CLS for the satisfactory performance of subgrade, subbase, and base layers of low volume roads in terms of compressive strength and permeability.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
GS | Granite sand |
CLS | Calcium lignosulphonate |
CP (days) | Curing period |
M1 | 70% clay and 30% GS |
M2 | 60% clay and 40% GS |
M3 | 50% clay and 50% GS |
(%) | Dosage of GS |
(%) | Dosage of CLS |
(kPa) | Unconfined compressive strength of soil |
(kPa) | Unconfined compressive strength of soil obtained from experiment |
(kPa) | Unconfined compressive strength of soil obtained from curve fitting |
K (×10−7 cm/s) | Hydraulic conductivity of soil |
() (cm/s) | Hydraulic conductivity of soil obtained from experiment |
() (cm/s) | Hydraulic conductivity of soil obtained from curve fitting |
R2 | Coefficient of multiple determination |
References
- Kukko, H. Stabilization of Clay with Inorganic By-Products. J. Mater. Civ. Eng. 2000, 12, 307–309. [Google Scholar] [CrossRef]
- Chang, I.; Lee, M.; Tran, A.T.P.; Lee, S.; Kwon, Y.-M.; Im, J.; Cho, G.-C. Review on Biopolymer-Based Soil Treatment (BPST) Technology in Geotechnical Engineering Practices. Transp. Geotech. 2020, 24, 100385. [Google Scholar] [CrossRef]
- Taha, R.; Al-Harthy, A.; Al-Shamsi, K.; Al-Zubeidi, M. Cement Stabilization of Reclaimed Asphalt Pavement Aggregate for Road Bases and Subbases. J. Mater. Civ. Eng. 2002, 14, 239–245. [Google Scholar] [CrossRef]
- Sarkar, R.; Abbas, S.M.; Shahu, J.T. Study of Geotechnical Behavior of Pond Ash Mixed with Marble Dust. Int. J. Adv. Technol. Civ. Eng. 2012, 1, 8. [Google Scholar] [CrossRef]
- Taha Jawad, I.; Raihan Taha, M.; Hameed Majeed, Z.; Khan, T.A. Soil Stabilization Using Lime: Advantages, Disadvantages and Proposing a Potential Alternative. RJASET 2014, 8, 510–520. [Google Scholar] [CrossRef]
- Hunter, D. Lime-induced heave in sulfate bearing clay soils. J. Geotech. Eng. 1988, 114, 150–167. [Google Scholar] [CrossRef]
- Rong, H.; Qian, C.; Wang, R. A Cementation Method of Loose Particles Based on Microbe-Based Cement. Sci. China Technol. Sci. 2011, 54, 1722–1729. [Google Scholar] [CrossRef]
- Venkata Vydehi, K.; Moghal, A.A.B.; Basha, B.M. Reliability-Based Design Optimization of Biopolymer-Amended Soil as an Alternative Landfill Liner Material. J. Hazard. Toxic Radioact. Waste 2022, 26, 04022011. [Google Scholar] [CrossRef]
- Arulrajah, A.; Mohammadinia, A.; Phummiphan, I.; Horpibulsuk, S.; Samingthong, W. Stabilization of Recycled Demolition Aggregates by Geopolymers Comprising Calcium Carbide Residue, Fly Ash and Slag Precursors. Constr. Build. Mater. 2016, 114, 864–873. [Google Scholar] [CrossRef]
- Kampala, A.; Horpibulsuk, S.; Prongmanee, N.; Chinkulkijniwat, A. Influence of Wet-Dry Cycles on Compressive Strength of Calcium Carbide Residue–Fly Ash Stabilized Clay. J. Mater. Civ. Eng. 2014, 26, 633–643. [Google Scholar] [CrossRef]
- Simatupang, M.; Mangalla, L.K.; Edwin, R.S.; Putra, A.A.; Azikin, M.T.; Aswad, N.H.; Mustika, W. The Mechanical Properties of Fly-Ash-Stabilized Sands. Geosciences 2020, 10, 132. [Google Scholar] [CrossRef] [Green Version]
- Ashfaq, M.; Moghal, A.A.B. Influence of Lime and Coal Gangue on the CBR Behavior of Expansive Soil. In Advanced Geotechnical and Structural Engineering in the Design and Performance of Sustainable Civil Infrastructures; Neves, J., Zhu, B., Rahardjo, P., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 102–113. [Google Scholar] [CrossRef]
- Nwaiwu, C.; Mshelia, S.; Durkwa, J. Compactive Effort Influence on Properties of Quarry Dust-Black Cotton Soil Mixtures. Int. J. Geotech. Eng. 2012, 6, 91–101. [Google Scholar] [CrossRef]
- Moghal, A.A.B.; Chittoori, B.C.S.; Basha, B.M.; Al-Shamrani, M.A. Target Reliability Approach to Study the Effect of Fiber Reinforcement on UCS Behavior of Lime Treated Semiarid Soil. J. Mater. Civ. Eng. 2017, 29, 04017014. [Google Scholar] [CrossRef] [Green Version]
- Moghal, A.A.B.; Chittoori, B.C.S.; Basha, B.M. Effect of Fibre Reinforcement on CBR Behaviour of Lime-Blended Expansive Soils: Reliability Approach. Road Mater. Pavement Des. 2018, 19, 690–709. [Google Scholar] [CrossRef]
- Moghal, A.A.B.; Basha, B.M.; Chittoori, B.; Al-Shamrani, M.A. Effect of Fiber Reinforcement on the Hydraulic Conductivity Behavior of Lime-Treated Expansive Soil-Reliability-Based Optimization Perspective. In Proceedings of the Fourth Geo-China International Conference, Shandong, China, 25–27 July 2016; pp. 25–34. [Google Scholar] [CrossRef]
- Shaker, A.A.; Al-Shamrani, M.A.; Moghal, A.A.B.; Vydehi, K.V. Effect of Confining Conditions on the Hydraulic Conductivity Behavior of Fiber-Reinforced Lime Blended Semiarid Soil. Materials 2021, 14, 3120. [Google Scholar] [CrossRef]
- Al-Mahbashi, A.M.; Al-Shamrani, M.A.; Moghal, A.A.B.; Vydehi, K.V. Correlation-Based Studies on Resilient Modulus Values for Fiber-Reinforced Lime-Blended Clay. Int. J. Geosynth. Ground Eng. 2021, 7, 59. [Google Scholar] [CrossRef]
- Ashfaq, M.; Moghal, A.A.B.; Munwar Basha, B. Reliability-Based Design Optimization of Chemically Stabilized Coal Gangue. J. Test. Eval. 2022, 50, 20210176. [Google Scholar] [CrossRef]
- Ashfaq, M.; Moghal AA, B.; Basha, B.M. The Sustainable Utilization of Coal Gangue in Geotechnical and Geoenvironmental Applications. J. Hazard. Toxic Radioact. Waste 2022, 26, 03122003. [Google Scholar] [CrossRef]
- Kufre Etim, R.; Ufot Ekpo, D.; Christopher Attah, I.; Chibuzor Onyelowe, K. Effect of Micro Sized Quarry Dust Particle on the Compaction and Strength Properties of Cement Stabilized Lateritic Soil. Clean. Mater. 2021, 2, 100023. [Google Scholar] [CrossRef]
- Emeka, A.E.; Jonah Chukwuemeka, A.; Benjamin Okwudili, M. Deformation Behaviour of Erodible Soil Stabilized with Cement and Quarry Dust. Emerg Sci J. 2018, 2, 383. [Google Scholar] [CrossRef] [Green Version]
- Toledo, M.C.F.; Kuznesof, P.M. Calcium Lignosulfonate (40-65). Chemical and Technical Assessment, draft CTA provided by DSM Nutritional Products. In Proceedings of the 69th JECFA Meeting, Rome, Italy, 17–26 June 2008; 2008. [Google Scholar]
- Puppala, A.J.; Hanchanloet, S. Evaluation of a New Chemical Treatment Method on Strength and Resilient Properties of a Cohesive Soil. In Proceedings of the 78th Annual Meeting of the Transportation Research Board; Transportation Research Board: Washington, DC, USA, 1999; Paper No. 990389. [Google Scholar]
- Chavali, R.V.P.; Reshmarani, B. Characterization of Expansive Soils Treated with Lignosulfonate. Geo-Engineering 2020, 11, 17. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Ceylan, H.; Kim, S. Laboratory Evaluation of Silty Soils Stabilized with Lignosulfonate. In Airfield and Highway Pavements 2019; American Society of Civil Engineers: Chicago, IL, USA, 2019; pp. 531–540. [Google Scholar] [CrossRef]
- Wu, D.; She, W.; Wei, L.; Zuo, W.; Hu, X.; Hong, J.; Miao, C. Stabilization Mechanism of Calcium Lignosulphonate Used in Expansion Sensitive Soil. J. Wuhan Univ. Technol. Mat. Sci. Edit. 2020, 35, 847–855. [Google Scholar] [CrossRef]
- Zhang, T.; Cai, G.; Liu, S. Application of Lignin-Stabilized Silty Soil in Highway Subgrade: A Macroscale Laboratory Study. J. Mater. Civ. Eng. 2018, 30, 04018034. [Google Scholar] [CrossRef]
- Alazigha, D.P.; Vinod, J.S.; Indraratna, B.; Heitor, A. Potential Use of Lignosulfonate for Expansive Soil Stabilisation. Environ. Geotech. 2019, 6, 480–488. [Google Scholar] [CrossRef] [Green Version]
- ASTM-D2487; Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). ASTM: West Conshohocken, PA, USA, 2017. Available online: https://www.astm.org/d2487-11.html (accessed on 29 September 2022).
- Vinod, J.S.; Indraratna, B.; Mahamud, M.A.A. Stabilisation of an Erodible Soil Using a Chemical Admixture. Proc. Inst. Civ. Eng. Ground Improv. 2010, 163, 43–51. [Google Scholar] [CrossRef] [Green Version]
- ASTM-D4318; Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM: West Conshohocken, PA, USA, 2017. Available online: https://www.astm.org/d4318-17e01.html (accessed on 29 September 2022).
- IS: 2720 (Part 40); Methods of Test for Soils: Determination of Free Swell Index of Soils. Bureau of Indian Standards: New-Delhi, India, 1977. Available online: https://standardsbis.bsbedge.com/BIS_searchstandard.aspx?Standard_Number=IS+2720+%3a+Part+40&id=19139 (accessed on 29 September 2022).
- ASTM-D698; Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3)). ASTM: West Conshohocken, PA, USA, 2012. Available online: https://www.astm.org/d0698-12r21.html (accessed on 29 September 2022).
- ASTM-D2166M; Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM: West Conshohocken, PA, USA, 2013. Available online: https://www.astm.org/d2166_d2166m-13.html (accessed on 29 September 2022).
- Sharmila, B.; Bhuvaneshwari, S.; Landlin, G. Application of Lignosulphonate—A Sustainable Approach towards Strength Improvement and Swell Management of Expansive Soils. Bull Eng Geol Environ. 2021, 80, 6395–6413. [Google Scholar] [CrossRef]
- ASTM-D5856; Standard Test Method for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using Rigid Wall Compaction-Mold Permeameter. ASTM: West Conshohocken, PA, USA, 2015. Available online: https://www.astm.org/d5856-15.html (accessed on 29 September 2022).
- Sridharan, A.; Rao, G.V. Mechanism of controlling liquid limit of clays. In Proceedings of the Istanbul Conference on Soil Mechanics and Foundation Engineering, Istanbul, Turkey, 31 March–4 April 1975; Volume 1, pp. 75–84. [Google Scholar]
- Soosan, T.; Sridharan, A.; Jose, B.; Abraham, B. Utilization of Quarry Dust to Improve the Geotechnical Properties of Soils in Highway Construction. Geotech. Test. J. 2005, 28, 11768. [Google Scholar] [CrossRef]
- Sabitha, B.S.; Sheela Evangeline, Y. Stabilisation of Kuttanad Soil Using Calcium and Sodium Lignin Compounds. In Proceedings of the Indian Geotechnical Conference 2019; Patel, S., Solanki, C.H., Reddy, K.R., Shukla, S.K., Eds.; Springer: Singapore, 2021; pp. 249–258. [Google Scholar] [CrossRef]
- Nayak, S.; Sarvade, P.G. Effect of Cement and Quarry Dust on Shear Strength and Hydraulic Characteristics of Lithomargic Clay. Geotech Geol Eng 2012, 30, 419–430. [Google Scholar] [CrossRef]
- Oyediran, I.A.; Idowu, O.D. Performance Analysis of some Quarry dust treated soils. J. Min. Geol. 2017, 53, 45–53. [Google Scholar]
- Priyankara, N.H.; Wijesooriya, R.M.S.D.; Jayasinghe, S.N.; Wickramasinghe, W.R.M.B.E.; Yapa, S.T.A.J. Suitability of Quarry Dust in Geotechnical Applications to Improve Engineering Properties. Engineer 2009, 42, 7. [Google Scholar] [CrossRef] [Green Version]
- Alazigha, D.P.; Indraratna, B.; Vinod, J.S.; Ezeajugh, L.E. The Swelling Behaviour of Lignosulfonate-Treated Expansive Soil. Proc. Inst. Civ. Eng. -Ground Improv. 2016, 169, 182–193. [Google Scholar] [CrossRef] [Green Version]
- Ta’negonbadi, B.; Noorzad, R. Stabilization of Clayey Soil Using Lignosulfonate. Transp. Geotech. 2017, 12, 45–55. [Google Scholar] [CrossRef]
- Mudgal, A. Effect of Lime and Stone Dust in the Geotechnical Properties of Black Cotton Soil. Int. J Geomate 2014, 7, 1033–1039. [Google Scholar] [CrossRef]
- Güneyli, H.; Rüşen, T. Effect of Length-to-Diameter Ratio on the Unconfined Compressive Strength of Cohesive Soil Specimens. Bull. Eng. Geol. Environ. 2016, 75, 793–806. [Google Scholar] [CrossRef]
- Chetia, M.; Baruah, M.P.; Sridharan, A. Effect of Quarry Dust on Compaction Characteristics of Clay. In Contemporary Issues in Geoenvironmental Engineering; Singh, D.N., Galaa, A., Eds.; Sustainable Civil Infrastructures; Springer International Publishing: Cham, Switzerland, 2018; pp. 78–100. [Google Scholar] [CrossRef]
- Amulya, G.; Moghal, A.A.B.; Almajed, A. A State-of-the-Art Review on Suitability of Granite Dust as a Sustainable Additive for Geotechnical Applications. Crystals 2021, 11, 1526. [Google Scholar] [CrossRef]
- Chetia, M.; Sridharan, A.A. A Review on the Influence of Rock Quarry Dust on Geotechnical Properties of Soil. In Geo-Chicago 2016; American Society of Civil Engineers: Chicago, IL, USA, 2016; pp. 179–190. [Google Scholar] [CrossRef]
- Sivapullaiah, P.V.; Moghal, A.A.B. Role of gypsum in the strength development of fly ashes with lime. J. Mater. Civ. Eng. 2011, 23, 197–206. [Google Scholar] [CrossRef]
- Moghal, A.A.B.; Vydehi, V.; Moghal, M.B.; Almatrudi, R.; Almajed, A.; Al-Shamrani, M.A. Effect of calcium-based derivatives on consolidation, strength, and lime-leachability behavior of expansive soil. J. Mater. Civ. Eng. 2020, 32, 04020048. [Google Scholar] [CrossRef]
- Yıldız, M.; Sogancı, A.S. Effect of freezing and thawing on strength and permeability of lime-stabilized clays. Sci. Iran. 2012, 19, 1013–1017. [Google Scholar] [CrossRef] [Green Version]
- Behnood, A. Soil and clay stabilization with calcium-and non-calcium-based additives: A state-of-the-art review of challenges, approaches, and techniques. Transp. Geotech. 2018, 17, 14–32. [Google Scholar] [CrossRef]
- Almajed, A.; Lateef, M.A.; Moghal, A.A.B.; Lemboye, K.K. State-of-the-Art Review of the Applicability and Challenges of Microbial-Induced Calcite Precipitation (MICP) and Enzyme-Induced Calcite Precipitation (EICP) Techniques for Geotechnical and Geoenvironmental Applications. Crystals 2021, 11, 370. [Google Scholar] [CrossRef]
- Sharma, L.K.; Singh, T.N. Regression-Based Models for the Prediction of Unconfined Compressive Strength of Artificially Structured Soil. Eng. Comput. 2018, 34, 175–186. [Google Scholar] [CrossRef]
Characteristics | Value | Chemical Composition | Value (%) |
---|---|---|---|
Color | Greyish black | Silica (SiO2) | 55.34 |
Specific Gravity | 2.62 | Alumina (Al2O3) | 9.92 |
Liquid limit (%) | 45.13 | Ferric Oxide (Fe2O3) | 8.15 |
Plastic limit (%) | 22.34 | Calcium Oxide (CaO) | 1.06 |
Plasticity Index (%) | 22.79 | Magnesium Oxide (MgO) | 1.97 |
Shrinkage limit (%) | 13 | Titanium Oxide (TiO2) | 1.13 |
% Fines | 63 | Sodium Oxide (Na2O) | 0.31 |
USCS classification | CI | ||
Differential free swell (%) | 33 | ||
Maximum Dry Density (kg/m3) | 1750 | ||
Optimum Moisture content (%) | 16.3 | ||
pH | 7.7 | ||
Electrical conductivity (milli S/m) | 1.05 |
Characteristic | Value | Chemical Composition | Value (%) |
---|---|---|---|
Color | Grey | Silica (SiO2) | 53.06 |
Specific Gravity | 2.72 | Alumina (Al2O3) | 6.16 |
Sand fraction (%) | 90 | Ferric Oxide (Fe2O3) | 9.06 |
Coarse sand (%) | 19 | Calcium Oxide (CaO) | 1.64 |
Medium Sand (%) | 32 | Magnesium Oxide (MgO) | 5.86 |
Fine Sand (%) | 39 | Titanium Oxide (TiO2) | 0.32 |
Mean particle size (µ) | 600 | Sodium Oxide (Na2O) | 1.37 |
Zone | 3 | ||
USCS classification | SP | ||
Maximum Dry Density (kg/m3) | 2100 | ||
Optimum Moisture content (%) | 8.3 | ||
pH | 7.36 |
Property | Values |
---|---|
Color | Yellow brown |
Molar mass | 528.61 g/mol |
pH | 4.3 |
Solubility | Soluble in water |
S. No | Mixtures | Liquid Limit (%) | Plastic Limit (%) | Plasticity Index (%) | Shrinkage Limit (%) | DFS (%) |
---|---|---|---|---|---|---|
1. | Clay | 45.13 | 22.34 | 22.79 | 13 | 33 |
2. | M1 | 35.79 | 13.14 | 22.85 | 13.2 | 0 |
3. | M2 | 29.56 | 13.93 | 15.63 | 21.92 | 0 |
4. | M3 | 25.64 | 13.14 | 12.5 | 24.5 | 0 |
Combinations | (kPa) | Hydraulic Conductivity (K) (×10−7 cm/s) |
---|---|---|
Clay | 105.3 | 0.16 |
M1 | 133.8 | 2.93 |
M2 | 66.39 | 3.64 |
M3 | 45.3 | 5.06 |
(Days) | (kPa) | (kPa) | Residual (kPa) | % Error |
---|---|---|---|---|
0 | 105.30 | 105.06 | 0.24 | 0.23 |
7 | 107.00 | 107.69 | −0.69 | −0.64 |
14 | 110.30 | 109.74 | 0.56 | 0.51 |
28 | 112.30 | 112.42 | −0.12 | −0.10 |
90 | 117.60 | 117.60 | 0.00 | 0.00 |
(Days) | (%) | (%) | (kPa) | (kPa) | Residual (kPa) | % Error |
---|---|---|---|---|---|---|
7 | 30 | 0.5 | 271.48 | 198.84 | 72.64 | 26.76 |
30 | 1.0 | 178.40 | 187.05 | −8.65 | −4.85 | |
30 | 1.5 | 158.50 | 175.95 | −17.45 | −11.01 | |
30 | 2.0 | 208.13 | 165.51 | 42.62 | 20.48 | |
40 | 0.5 | 135.70 | 186.37 | −50.67 | −37.34 | |
40 | 1.0 | 123.10 | 175.32 | −52.22 | −42.42 | |
40 | 1.5 | 111.00 | 164.92 | −53.92 | −48.57 | |
40 | 2.0 | 100.60 | 155.13 | −54.53 | −54.21 | |
50 | 0.5 | 86.80 | 174.69 | −87.89 | −101.25 | |
50 | 1.0 | 94.63 | 164.32 | −69.69 | −73.65 | |
50 | 1.5 | 96.35 | 154.57 | −58.22 | −60.43 | |
50 | 2.0 | 90.50 | 145.40 | −54.90 | −60.67 | |
14 | 30 | 0.5 | 396.80 | 240.89 | 155.91 | 39.29 |
30 | 1.0 | 307.77 | 226.60 | 81.17 | 26.37 | |
30 | 1.5 | 220.23 | 213.16 | 7.07 | 3.21 | |
30 | 2.0 | 357.90 | 200.51 | 157.39 | 43.98 | |
40 | 0.5 | 206.47 | 225.78 | −19.31 | −9.35 | |
40 | 1.0 | 173.14 | 212.39 | −39.25 | −22.67 | |
40 | 1.5 | 169.48 | 199.79 | −30.31 | −17.88 | |
40 | 2.0 | 223.40 | 187.93 | 35.47 | 15.88 | |
50 | 0.5 | 198.30 | 211.63 | −13.33 | −6.72 | |
50 | 1.0 | 262.35 | 199.07 | 63.28 | 24.12 | |
50 | 1.5 | 191.37 | 187.26 | 4.11 | 2.15 | |
50 | 2.0 | 200.50 | 176.15 | 24.35 | 12.14 |
(Days) | (%) | (%) | (kPa) | (kPa) | Residual (kPa) | % Error |
---|---|---|---|---|---|---|
28 | 30 | 0.5 | 423.80 | 353.54 | 70.26 | 16.58 |
30 | 1.0 | 350.80 | 332.57 | 18.23 | 5.20 | |
30 | 1.5 | 251.60 | 312.83 | −61.23 | −24.34 | |
30 | 2.0 | 363.60 | 294.27 | 69.33 | 19.07 | |
40 | 0.5 | 400.60 | 331.37 | 69.23 | 17.28 | |
40 | 1.0 | 298.40 | 311.71 | −13.31 | −4.46 | |
40 | 1.5 | 231.96 | 293.22 | −61.26 | −26.41 | |
40 | 2.0 | 368.40 | 275.82 | 92.58 | 25.13 | |
50 | 0.5 | 213.50 | 310.59 | −97.09 | −45.48 | |
50 | 1.0 | 290.20 | 292.16 | −1.96 | −0.68 | |
50 | 1.5 | 140.30 | 274.83 | −134.53 | −95.89 | |
50 | 2.0 | 184.80 | 258.52 | −73.72 | −39.89 | |
90 | 30 | 0.5 | 1890.70 | 1933.41 | −42.71 | −2.26 |
30 | 1.0 | 1651.10 | 1818.70 | −167.60 | −10.15 | |
30 | 1.5 | 1628.80 | 1710.80 | −82.00 | −5.03 | |
30 | 2.0 | 1685.90 | 1609.30 | 76.60 | 4.54 | |
40 | 0.5 | 2306.80 | 1812.16 | 494.64 | 21.44 | |
40 | 1.0 | 1458.00 | 1704.65 | −246.65 | −16.92 | |
40 | 1.5 | 1376.50 | 1603.51 | −227.01 | −16.49 | |
40 | 2.0 | 1801.80 | 1508.38 | 293.42 | 16.29 | |
50 | 0.5 | 1632.80 | 1698.52 | −65.72 | −4.03 | |
50 | 1.0 | 1686.21 | 1597.75 | 88.46 | 5.25 | |
50 | 1.5 | 1202.20 | 1502.95 | −300.75 | −25.02 | |
50 | 2.0 | 1605.90 | 1413.79 | 192.11 | 11.96 |
(Days) | (cm/s) | (cm/s) | Residual (cm/s) | % Error |
---|---|---|---|---|
0 | 105.30 | 105.06 | 0.24 | 0.23 |
7 | 107.00 | 107.69 | −0.69 | −0.64 |
28 | 112.30 | 112.42 | −0.12 | −0.10 |
(Days) | (%) | (%) | (cm/s) | (cm/s) | Residual (kPa) | % Error |
---|---|---|---|---|---|---|
7 | 30 | 0.5 | 2.30 | 3.17 | −0.87 | −37.93 |
30 | 1.0 | 1.60 | 2.67 | −1.07 | −66.88 | |
30 | 1.5 | 1.32 | 2.25 | −0.93 | −70.25 | |
30 | 2.0 | 0.73 | 1.89 | −1.16 | −159.09 | |
40 | 0.5 | 7.21 | 7.28 | −0.07 | −1.02 | |
40 | 1.0 | 6.43 | 6.13 | 0.30 | 4.66 | |
40 | 1.5 | 6.13 | 5.16 | 0.97 | 15.83 | |
40 | 2.0 | 6.04 | 4.34 | 1.70 | 28.11 | |
50 | 0.5 | 16.20 | 16.72 | −0.52 | −3.22 | |
50 | 1.0 | 15.62 | 14.07 | 1.55 | 9.90 | |
50 | 1.5 | 12.04 | 11.84 | 0.20 | 1.62 | |
50 | 2.0 | 8.05 | 9.97 | −1.92 | −23.84 | |
28 | 30 | 0.5 | 1.77 | 2.47 | −0.70 | −39.71 |
30 | 1.0 | 0.88 | 2.08 | −1.20 | −136.51 | |
30 | 1.5 | 1.07 | 1.75 | −0.68 | −63.71 | |
30 | 2.0 | 0.57 | 1.47 | −0.90 | −158.65 | |
40 | 0.5 | 6.47 | 5.68 | 0.79 | 12.25 | |
40 | 1.0 | 5.28 | 4.78 | 0.50 | 9.50 | |
40 | 1.5 | 5.65 | 4.02 | 1.63 | 28.82 | |
40 | 2.0 | 5.22 | 3.38 | 1.84 | 35.16 | |
50 | 0.5 | 12.24 | 13.03 | −0.79 | −6.49 | |
50 | 1.0 | 11.12 | 10.97 | 0.15 | 1.35 | |
50 | 1.5 | 9.63 | 9.23 | 0.40 | 4.12 | |
50 | 2.0 | 6.76 | 7.77 | −1.01 | −14.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amulya, G.; Moghal, A.A.B.; Basha, B.M.; Almajed, A. Coupled Effect of Granite Sand and Calcium Lignosulphonate on the Strength Behavior of Cohesive Soil. Buildings 2022, 12, 1687. https://doi.org/10.3390/buildings12101687
Amulya G, Moghal AAB, Basha BM, Almajed A. Coupled Effect of Granite Sand and Calcium Lignosulphonate on the Strength Behavior of Cohesive Soil. Buildings. 2022; 12(10):1687. https://doi.org/10.3390/buildings12101687
Chicago/Turabian StyleAmulya, Gudla, Arif Ali Baig Moghal, B. Munwar Basha, and Abdullah Almajed. 2022. "Coupled Effect of Granite Sand and Calcium Lignosulphonate on the Strength Behavior of Cohesive Soil" Buildings 12, no. 10: 1687. https://doi.org/10.3390/buildings12101687
APA StyleAmulya, G., Moghal, A. A. B., Basha, B. M., & Almajed, A. (2022). Coupled Effect of Granite Sand and Calcium Lignosulphonate on the Strength Behavior of Cohesive Soil. Buildings, 12(10), 1687. https://doi.org/10.3390/buildings12101687