Risk Assessment in the Industry Chain of Industrialized Construction: A Chinese Case Study
Abstract
:1. Introduction
2. Literature Review
2.1. Industrial Chain of Industrialized Construction
2.2. Application of Complex Network Models in Risk Assessment
3. Materials and Methods
3.1. Risk Identification
3.2. Determination of Risk Interrelations
3.3. Risk Analysis
3.3.1. Overall Network Analysis
3.3.2. Local Network Analysis
3.3.3. Individual Network Analysis
3.4. Comprehensive Degree
- Step 1: The out-degree of risk factors at the same risk network level and the total number of nodes affected within a two-step distance are determined.
- Step 2: The influence parameter for the same stratum of risk factors using the out-degree of the nodes and the total number of nodes affected within a two-step distance are determined, as in Equation (8).
- Step 3: The number of sub-neighboring nodes is calculated using the node’s out-degree and the total number of nodes affected within a two-step distance, as in Equation (9).
- Step 4: The comprehensive degree of the node is calculated using the parameter values from the preceding steps, as in Equation (10).
3.5. Result
4. Case Study
4.1. Background
4.2. Industry Chain Composition
4.3. Data Collection
4.4. Result of Network Analysis
4.4.1. Overall Network Analysis
4.4.2. Local Network Analysis
4.4.3. Individual Network Analysis
4.4.4. Hierarchical Analysis of Risk Factors
4.4.5. Comprehensive Degree Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CNICRA | Complex Network of Industrialized Construction Risk Associations |
BIM | Building Information Modeling |
IBS | Industrialized Building Systems |
TCs | Transaction Costs |
RFID | Radio Frequency Identification System |
References
- Ayalp, G.G.; Ay, I. Model validation of factors limiting the use of prefabricated construction systems in Turkey. Eng. Constr. Arch. Manag. 2020, 28, 2610–2636. [Google Scholar] [CrossRef]
- Luna-Tintos, J.F.; Cobreros, C.; Herrera-Limones, R.; López-Escamilla, Á. “Methodology Comparative Analysis” in the Solar Decathlon Competition: A Proposed Housing Model based on a Prefabricated Structural System. Sustainability 2020, 12, 1882. [Google Scholar] [CrossRef] [Green Version]
- Jackson, D.J.; Kaesehage, K. Addressing the challenges of integrating carbon calculation tools in the construction industry. Bus. Strat. Environ. 2020, 29, 2973–2983. [Google Scholar] [CrossRef]
- Liu, G.; Gu, T.; Xu, P.; Hong, J.; Shrestha, A.; Martek, I. A production line-based carbon emission assessment model for prefabricated components in China. J. Clean. Prod. 2019, 209, 30–39. [Google Scholar] [CrossRef]
- Liu, G.; Chen, R.; Xu, P.; Fu, Y.; Mao, C.; Hong, J. Real-time carbon emission monitoring in prefabricated construction. Autom. Constr. 2020, 110, 102945. [Google Scholar] [CrossRef]
- Mustaffa, N.K.; Kudus, S.A.; Aziz, M.F.H.A.; Joseph, V.R.A. Strategies and way forward of low carbon construction in Malaysia. Build. Res. Inf. 2022, 50, 628–645. [Google Scholar] [CrossRef]
- Johnsson, F.; Karlsson, I.; Rootzén, J.; Ahlbäck, A.; Gustavsson, M. The framing of a sustainable development goals assessment in decarbonizing the construction industry—Avoiding “Greenwashing”. Renew. Sustain. Energy Rev. 2020, 131, 110029. [Google Scholar] [CrossRef] [PubMed]
- Bonamente, E.; Cotana, F. Carbon and Energy Footprints of Prefabricated Industrial Buildings: A Systematic Life Cycle Assessment Analysis. Energies 2015, 8, 12685–12701. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.C.; Law, K.H.; Bjornsson, H.; Jones, A.; Sriram, R. A service oriented framework for construction supply chain integration. Autom. Constr. 2010, 19, 245–260. [Google Scholar] [CrossRef]
- Dunant, C.F.; Drewniok, M.; Sansom, M.; Corbey, S.; Cullen, J.M.; Allwood, J.M. Options to make steel reuse profitable: An analysis of cost and risk distribution across the UK construction value chain. J. Clean. Prod. 2018, 183, 102–111. [Google Scholar] [CrossRef]
- Lachimpadi, S.K.; Pereira, J.J.; Taha, M.R.; Mokhtar, M. Construction waste minimisation comparing conventional and precast construction (Mixed System and IBS) methods in high-rise buildings: A Malaysia case study. Resour. Conserv. Recycl. 2012, 68, 96–103. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, L. Resilience-Cost Tradeoff Supply Chain Planning for the Prefabricated Con-Struction project. J. Civ. Eng. Manag. 2021, 27, 45–59. [Google Scholar] [CrossRef]
- Han, Y.; Skibniewski, M.J.; Wang, L. A Market Equilibrium Supply Chain Model for Supporting Self-Manufacturing or Outsourcing Decisions in Prefabricated Construction. Sustainability 2017, 9, 2069. [Google Scholar] [CrossRef] [Green Version]
- Li, H.B.; Mao, Q. SD-Based Research on Industrialized Construction Supply Chain. In Proceedings of the International Conference on Construction and Real Estate Management 2017, Guangzhou, China, 10–12 November 2017. [Google Scholar]
- Feng, T.; Tai, S.; Sun, C.; Man, Q. Study on Cooperative Mechanism of Prefabricated Producers Based on Evolutionary Game Theory. Math. Probl. Eng. 2017, 2017, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Wang, J.; Ye, M.; Huang, Q.; Si, X. An Evaluation of Supply Chain Performance of China’s Prefabricated Building from the Perspective of Sustainability. Sustainability 2022, 14, 1299. [Google Scholar] [CrossRef]
- Tan, T. Barriers to Building Information Modeling (BIM) implementation in China’s prefabricated construction: An interpretive structural modeling (ISM) approach. J. Clean. Prod. 2019, 219, 949–959. [Google Scholar] [CrossRef]
- Du, J.; Sugumaran, V.; Informat, S.A. Ontology-Based Information Integration and Decision Making in Prefabricated Con-struction Component Supply Chain. In Proceedings of the 23rd Americas Conference on Information Systems (AMCIS), Boston, MA, USA, 10–12 August 2017. [Google Scholar]
- Zabihi, H.; Habib, F.; Mirsaeedie, L. Definitions, concepts and new directions in Industrialized Building Systems (IBS). KSCE J. Civ. Eng. 2013, 17, 1199–1205. [Google Scholar] [CrossRef]
- Wu, H.; Qian, Q.K.; Straub, A.; Visscher, H. Exploring transaction costs in the prefabricated housing supply chain in China. J. Clean. Prod. 2019, 226, 550–563. [Google Scholar] [CrossRef] [Green Version]
- Arashpour, M. Optimizing decisions in advanced manufacturing of prefabricated products: Theorizing supply chain configura-tions in off-site construction. Autom. Constr. 2017, 84, 146–153. [Google Scholar] [CrossRef]
- Hsu, P.-Y.; Aurisicchio, M.; Angeloudis, P. Establishing Outsourcing and Supply Chain Plans for Prefabricated Construction Projects Under Uncertain Productivity. In Proceedings of the International Conference on Computational Logistics, Southampton, UK, 18–20 October 2017; pp. 529–543. [Google Scholar] [CrossRef]
- Bari, N.A.A. Environmental Awareness and Benefits of Industrialized Building Systems (IBS). In Proceedings of the ASEAN Conference on Envi-ronment-Behaviour Studies (AcE-Bs) on Way of Life—Socio-Economic and Cultural Context, Bangkok, Thailand, 16–18 July 2012. [Google Scholar]
- Qi, B.; Chen, K.; Costin, A. RFID and BIM-Enabled Prefabricated Component Management System in Prefabricated Housing Production. In Proceedings of the Construction Research Congress 2018, New Orleans, LA, USA, 2–4 April 2018. [Google Scholar] [CrossRef]
- Demiralp, G.; Guven, G.; Ergen, E. Analyzing the benefits of RFID technology for cost sharing in construction supply chains: A case study on prefabricated precast components. Autom. Constr. 2012, 24, 120–129. [Google Scholar] [CrossRef]
- Cheng, L.; Cao, D. Evolution model and quantitative assessment of risk network in housing construction accidents. Eng. Constr. Arch. Manag. [CrossRef]
- Zarei, B.; Sharifi, H.; Chaghouee, Y. Delay causes analysis in complex construction projects: A Semantic Network Analysis ap-proach. Prod. Plan. Control. 2018, 29, 29–40. [Google Scholar] [CrossRef]
- Ledwoch, A.; Brintrup, A.; Mehnen, J.; Tiwari, A. Systemic Risk Assessment in Complex Supply Networks. IEEE Syst. J. 2016, 12, 1826–1837. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Lou, J.; Zhao, X. Risk Response of Complex Projects: Risk Association Network Method. J. Manag. Eng. 2021, 37, 05021004. [Google Scholar] [CrossRef]
- Fu, Y.; Dong, N.; Ge, Q.; Xiong, F.; Gong, C. Driving-paths of green buildings industry (GBI) from stakeholders’ green behavior based on the network analysis. J. Clean. Prod. 2020, 273, 122883. [Google Scholar] [CrossRef]
- Qazi, A.; Dikmen, I. From Risk Matrices to Risk Networks in Construction Projects. IEEE Trans. Eng. Manag. 2019, 68, 1449–1460. [Google Scholar] [CrossRef]
- Wambeke, B.W.; Liu, M.; Hsiang, S.M. Task Variation and the Social Network of Construction Trades. J. Manag. Eng. 2014, 30, 05014008. [Google Scholar] [CrossRef] [Green Version]
- Can, U.; Alatas, B. A new direction in social network analysis: Online social network analysis problems and applications. Phys. A Stat. Mech. Its Appl. 2019, 535, 122372. [Google Scholar] [CrossRef]
- Yang, R.J.; Zou, P.X.W. Stakeholder-associated risks and their interactions in complex green building projects: A social network model. Build. Environ. 2014, 73, 208–222. [Google Scholar] [CrossRef]
- Wesz, J.G.B.; Formoso, C.T.; Tzortzopoulos, P. Planning and controlling design in engineered-to-order prefabricated building systems. Eng. Constr. Arch. Manag. 2018, 25, 134–152. [Google Scholar] [CrossRef]
- Nam, S.; Yoon, J.; Kim, K.; Choi, B. Optimization of Prefabricated Components in Housing Modular Construction. Sustainability 2020, 12, 10269. [Google Scholar] [CrossRef]
- Saad, S.; Alaloul, W.S.; Ammad, S.; Altaf, M.; Qureshi, A.H. Identification of critical success factors for the adoption of Industrialized Building System (IBS) in Malaysian construction industry. Ain Shams Eng. J. 2021, 13, 101547. [Google Scholar] [CrossRef]
- López-Guerrero, R.E.; Vera, S.; Carpio, M. A quantitative and qualitative evaluation of the sustainability of industrialised building systems: A bibliographic review and analysis of case studies. Renew. Sustain. Energy Rev. 2022, 157, 112034. [Google Scholar] [CrossRef]
- Masood, R.; Lim, J.B.; González, V.A. Performance of the supply chains for New Zealand prefabricated house-building. Sustain. Cities Soc. 2020, 64, 102537. [Google Scholar] [CrossRef]
- Tavares, V. What is the potential for prefabricated buildings to decrease costs and contribute to meeting EU environmental targets? Build. Environ. 2021, 206, 108382. [Google Scholar] [CrossRef]
- Bin Ismail, Z.-A. Improving contractor social networking on IBS infrastructure maintenance projects: A review. Eng. Constr. Arch. Manag. 2018, 25, 479–496. [Google Scholar] [CrossRef] [Green Version]
- Ben Mahmoud, B.; Lehoux, N.; Blanchet, P.; Cloutier, C. Barriers, Strategies, and Best Practices for BIM Adoption in Quebec Prefabrication Small and Medium-Sized Enterprises (SMEs). Buildings 2022, 12, 390. [Google Scholar] [CrossRef]
- Navaratnam, S.; Ngo, T.; Gunawardena, T.; Henderson, D. Performance Review of Prefabricated Building Systems and Future Research in Australia. Buildings 2019, 9, 38. [Google Scholar] [CrossRef]
- Ismail, F.; Yusuwan, N.M.; Baharuddin, H.E.A. Management Factors for Successful IBS Projects Implementation. In Proceedings of the 3rd Asia Pacific International Conference on Environment-Behaviour Studies (AicE-Bs), Giza, Egypt, 31 October–1 November 2012. [Google Scholar]
- Wang, T.; Gao, S.; Li, X.; Ning, X. A meta-network-based risk evaluation and control method for industrialized building construction projects. J. Clean. Prod. 2018, 205, 552–564. [Google Scholar] [CrossRef]
- Zhu, A.; Pauwels, P.; De Vries, B. Smart component-oriented method of construction robot coordination for prefabricated housing. Autom. Constr. 2021, 129, 103778. [Google Scholar] [CrossRef]
- Du, J.; Dong, P.; Sugumaran, V. Dynamic Production Scheduling for Prefabricated Components Considering the Demand Fluctuation. Intell. Autom. Soft Comput. 2020, 26, 715–723. [Google Scholar] [CrossRef]
- Liu, Z.; Jayaraman, V.; Luo, Y. The unbalanced indirect effects of task characteristics on performance in professional service outsourcing. Int. J. Prod. Econ. 2017, 193, 281–293. [Google Scholar] [CrossRef]
- Li, Z.; Shen, G.Q.; Xue, X. Critical review of the research on the management of prefabricated construction. Habitat Int. 2014, 43, 240–249. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Liu, H.; Zuo, J.; Xia, R.; Zillante, G. Are construction enterprises ready for industrialized residential building policy? A case study in Shenzhen. Sustain. Cities Soc. 2018, 41, 899–906. [Google Scholar] [CrossRef]
- Wang, T.; Wang, X.; Wang, L.; Au-Yong, C.P.; Ali, A.S. Assessment of the development level of regional industrialized building based on cloud model: A case study in Guangzhou, China. J. Build. Eng. 2021, 44, 102547. [Google Scholar] [CrossRef]
- Dou, Y.; Xue, X.; Wang, Y.; Luo, X.; Shang, S. New media data-driven measurement for the development level of prefabricated construction in China. J. Clean. Prod. 2019, 241, 118353. [Google Scholar] [CrossRef]
- Moradi, R.; Cofre-Martel, S.; Droguett, E.L.; Modarres, M.; Groth, K.M. Integration of deep learning and Bayesian networks for condition and operation risk monitoring of complex engineering systems. Reliab. Eng. Syst. Saf. 2022, 222, 108433. [Google Scholar] [CrossRef]
- de Pontes, L.S.; Rêgo, L.C. Impact of macroeconomic variables on the topological structure of the Brazilian stock market: A complex network approach. Phys. A Stat. Mech. Its Appl. 2022, 604, 127660. [Google Scholar] [CrossRef]
- Kartun-Giles, A.; Bianconi, G. Beyond the clustering coefficient: A topological analysis of node neighbourhoods in complex networks. Chaos Solitons Fractals X 2019, 1, 100004. [Google Scholar] [CrossRef]
- Sinkovits, R.S.; Moody, J.; Oztan, B.T.; White, D.R. Fast determination of structurally cohesive subgroups in large networks. J. Comput. Sci. 2016, 17, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Mei, W.; Chen, G.; Friedkin, N.E.; Dörfler, F. Structural balance and interpersonal appraisals dynamics: Beyond all-to-all and two-faction networks. Automatica 2022, 140, 110239. [Google Scholar] [CrossRef]
- de Arruda, G.F.; Costa, L.D.; Rodrigues, F.A. A complex networks approach for data clustering. Phys. A Stat. Mech. Its Appl. 2012, 391, 6174–6183. [Google Scholar] [CrossRef] [Green Version]
- García, E.; Romance, M. Controlling centrality: The inverse ranking problem for spectral centralities of complex networks. Math. Methods Appl. Sci. 2022, 5, 1–14. [Google Scholar] [CrossRef]
- Elmezain, M.; Othman, E.A.; Ibrahim, H.M. Temporal Degree-Degree and Closeness-Closeness: A New Centrality Metrics for Social Network Analysis. Mathematics 2021, 9, 2850. [Google Scholar] [CrossRef]
- Ugurlu, O. Comparative analysis of centrality measures for identifying critical nodes in complex networks. J. Comput. Sci. 2022, 62, 101738. [Google Scholar] [CrossRef]
- Joo, H.; Kim, H.S.; Kim, S.; Sivakumar, B. Complex networks and integrated centrality measure to assess the importance of streamflow stations in a River basin. J. Hydrol. 2021, 598, 126280. [Google Scholar] [CrossRef]
- Berahmand, K.; Bouyer, A.; Samadi, N. A new local and multidimensional ranking measure to detect spreaders in social networks. Computing 2018, 101, 1711–1733. [Google Scholar] [CrossRef]
- Namtirtha, A.; Dutta, A.; Dutta, B. Weighted kshell degree neighborhood: A new method for identifying the influential spreaders from a variety of complex network connectivity structures. Expert Syst. Appl. 2020, 139, 112859. [Google Scholar] [CrossRef]
- Wen, T.J.; Siong, H.C.; Noor, Z.Z. Assessment of embodied energy and global warming potential of building construction using life cycle analysis approach: Case studies of residential buildings in Iskandar Malaysia. Energy Build. 2015, 93, 295–302. [Google Scholar] [CrossRef]
- Jamrus, T.; Wang, H.-K.; Chien, C.-F. Dynamic coordinated scheduling for supply chain under uncertain production time to empower smart production for Industry 3.5. Comput. Ind. Eng. 2020, 142, 106375. [Google Scholar] [CrossRef]
- Jiang, L.; Li, Z.; Li, L.; Gao, Y. Constraints on the Promotion of Prefabricated Construction in China. Sustainability 2018, 10, 2516. [Google Scholar] [CrossRef] [Green Version]
- Gan, Y.; Shen, L.; Chen, J.; Tam, V.W.Y.; Tan, Y.; Illankoon, I.M.C.S. Critical Factors Affecting the Quality of Industrialized Building System Projects in China. Sustainability 2017, 9, 216. [Google Scholar] [CrossRef] [Green Version]
- Wu, P. The Analysis of Barriers to BIM Implementation for Industrialized Building Construction: A China Study. J. Civ. Eng. Manag. 2021, 27, 1–13. [Google Scholar] [CrossRef]
- Tabatabaee, S.; Mahdiyar, A.; Ismail, S. Towards the success of Building Information Modelling implementation: A fuzzy-based MCDM risk assessment tool. J. Build. Eng. 2021, 43, 103117. [Google Scholar] [CrossRef]
- Mohsen, A. Determining factors for enhanced skilled worker requirements in IBS construction projects in Malaysia. In Proceedings of the 12th International Civil Engineering Post Graduate Conference (SEPKA) / 3rd International Symposium on Expertise of Engineering Design (ISEED), Johor, Malaysia, 27–28 August 2018. [Google Scholar]
- Luo, L.Z. Risk factors affecting practitioners’ attitudes toward the implementation of an industrialized building system A case study from China. Eng. Constr. Archit. Manag. 2015, 22, 622–643. [Google Scholar] [CrossRef]
Code | Risk | Organization | Reference |
---|---|---|---|
V1 | Need of Skilled Labor | All | [37] |
V2 | More Knowledge Resources | All | [37] |
V3 | Uneven regional development | All | [38] |
V4 | Component production line capacity | Production Units | [36] |
V5 | Governmental Incentives | Government | [39] |
V6 | Stocks Control Ability | Production Units | [40] |
V7 | Enterprise collaboration level | All | [41] |
V8 | Fragmentation Issues | All | [42] |
V9 | Design Complication | Design Units | [43] |
V10 | Technology Adoption | All | [44] |
V11 | Innovation Capability | Design Units | [39] |
V12 | Fear of Investment | Investment Units | [37] |
V13 | Imperfect Supervision System | Construction Units | [45] |
V14 | Poor Construction Ability | Construction Units | [29] |
V15 | Diversity of Components | Production Units | [46] |
V16 | Advanced Equipment | Production Units | [46] |
V17 | Strategic Objectives of the Company | All | [43] |
V18 | Social Perception | All | [37] |
V19 | Flexible production capacity | Production Units | [47] |
V20 | Undetailed Construction Plan | Construction Units | [45] |
V21 | Credit Risks | All | [37] |
V22 | Ease in Procurement System | Construction Units | [45] |
V23 | Un-controlled Carbon Emissions | Construction Units | [45] |
V24 | Outflow of Talents | All | [48] |
V25 | Company Management | All | [49] |
V26 | Industrialization System | Production Units | [37] |
V27 | Scientific Research Investment Level | All | [37] |
Case Analysis Project | Survey Technique | Code | Risk |
---|---|---|---|
Promoting the IRB Policy in Shenzhen | Interviews and Questionnaire | V28 | Effectiveness of the Policy |
Chinese Real Estate Developers Introduce Industrial Methods to Improve Construction Efficiency and Quality | Interview | V29 | Large Differences between Design and Site Conditions |
Evaluation of the Development Level of Industrialized Buildings in Guangzhou | Official Data and Questionnaires | V30 | Building Industrialization Research and Development Achievements |
Hierarchical Study on the Influencing Factors of Construction Industrialization in Xiamen | Interview | V31 | Inadequate Standards |
Assembly Building Industrialization Development in Gansu | Investigation and Research | V32 | Industry Market Demand |
Risk Factors | |||||
0 | |||||
0 | |||||
0 | |||||
0 | |||||
· | 0 |
Item | Category | N | Proportion |
---|---|---|---|
Work attributes | Investment units | 18 | 21.69 |
Design units | 13 | 15.66 | |
Production units | 13 | 15.66 | |
Construction units | 16 | 19.28 | |
Universities | 23 | 27.71 | |
Work experience | ≤3 | 12 | 14.46 |
3~5 | 16 | 19.28 | |
6~8 | 16 | 19.28 | |
8~10 | 16 | 19.28 | |
≥10 | 23 | 27.71 | |
Number of projects involved | 1 | 5 | 6.02 |
2 | 24 | 28.92 | |
≥3 | 54 | 65.06 | |
Title | Primary | 9 | 10.84 |
Intermediate | 24 | 28.92 | |
Advanced | 31 | 37.35 | |
Others | 19 | 22.89 |
Code | Proportion (%) | Mean Score | Normalization | ||||
---|---|---|---|---|---|---|---|
Score 1 | Score 2 | Score 3 | Score 4 | Score 5 | |||
V27 | 0 | 3.61 | 12.05 | 46.99 | 37.35 | 4.18 | 1.00 |
V7 | 1.2 | 1.2 | 14.46 | 50.6 | 32.53 | 4.12 | 0.95 |
V28 | 0 | 3.61 | 12.05 | 56.63 | 27.71 | 4.08 | 0.92 |
V5 | 2.41 | 4.82 | 12.05 | 45.78 | 34.94 | 4.06 | 0.90 |
V32 | 0 | 1.2 | 10.84 | 68.67 | 19.28 | 4.06 | 0.90 |
V11 | 0 | 1.2 | 21.69 | 60.24 | 18.87 | 4.02 | 0.87 |
V18 | 0 | 2.41 | 15.66 | 66.27 | 15.66 | 3.95 | 0.81 |
V10 | 0 | 1.2 | 21.69 | 60.24 | 16.87 | 3.93 | 0.80 |
V16 | 0 | 3.61 | 15.66 | 65.06 | 15.66 | 3.93 | 0.80 |
V22 | 0 | 6.02 | 14.46 | 61.45 | 18.07 | 3.92 | 0.79 |
V19 | 0 | 6.02 | 16.87 | 57.83 | 19.28 | 3.9 | 0.77 |
V24 | 2.41 | 4.82 | 24.1 | 38.55 | 30.12 | 3.89 | 0.76 |
V13 | 1.2 | 3.61 | 14.46 | 66.27 | 14.46 | 3.89 | 0.76 |
V4 | 2.41 | 4.82 | 18.07 | 54.22 | 20.48 | 3.86 | 0.74 |
V17 | 2.41 | 3.61 | 14.46 | 66.27 | 13.25 | 3.84 | 0.72 |
V15 | 1.2 | 6.02 | 21.69 | 50.6 | 20.48 | 3.83 | 0.71 |
V9 | 1.2 | 4.82 | 21.69 | 57.83 | 14.46 | 3.8 | 0.69 |
V21 | 4.82 | 4.82 | 13.25 | 61.45 | 15.66 | 3.78 | 0.67 |
V25 | 0 | 3.61 | 24.1 | 62.65 | 9.64 | 3.78 | 0.67 |
Code | Sub Group | Code | SUB GROUP |
---|---|---|---|
1 | V32 V7 V27 V3 V26 V5 | 11 | V4 V32 V3 V26 V5 |
2 | V32 V7 V27 V10 V26 | 12 | V28 V24 V27 V26 V11 V5 |
3 | V32 V28 V27 V26 V5 | 13 | V16 V24 V27 V26 V11 |
4 | V16 V32 V22 V27 V26 | 14 | V24 V27 V3 V26 V5 |
5 | V32 V22 V27 V3 V26 | 15 | V17 V24 V3 V26 V25 |
6 | V32 V22 V27 V10 V26 | 16 | V28 V17 V24 V26 V25 |
7 | V4 V16 V19 V32 V22 V26 | 17 | V16 V22 V27 V26 V11 |
8 | V4 V19 V32 V22 V10 V26 | 18 | V7 V27 V26 V11 V5 |
9 | V19 V32 V7 V10 V26 | 19 | V4 V19 V13 V22 V10 |
10 | V4 V32 V22 V3 V26 |
Code | K-Bundle Coefficient | Code | K-Bundle Coefficient |
---|---|---|---|
V4 V16 V19 V32 V22 V10 V26 | 0.80 | V32 V28 V17 V24 V27 V3 V26 | 1.07 |
V4 V16 V32 V22 V27 V3 V26 | 4.29 | V32 V28 V17 V24 V3 V26 V5 | 1.07 |
V4 V16 V32 V22 V27 V10 V26 | 4.29 | V32 V28 V24 V27 V3 V26 V5 | 3.00 |
V4 V32 V22 V27 V3 V10 V26 | 4.29 | V32 V28 V7 V27 V26 V11 V5 | 2.00 |
V4 V32 V22 V27 V3 V26 V5 | 3.00 | V32 V7 V22 V27 V3 V10 V26 | 2.00 |
V16 V19 V32 V22 V27 V10 V26 | 0.80 | V24 V7 V27 V3 V26 V11 V5 | 2.00 |
V19 V32 V7 V22 V27 V10 V26 | 0.80 |
Number | Outdegree | Indegree | Degree Difference | Number | Outdegree | Indegree | Degree Difference |
---|---|---|---|---|---|---|---|
V26 | 12.00 | 12.00 | 0.00 | V5 | 6.00 | 7.00 | −1.00 |
V7 | 11.00 | 3.00 | 8.00 | V22 | 5.00 | 10.00 | −5.00 |
V32 | 9.00 | 11.00 | −2.00 | V21 | 5.00 | 5.00 | 0.00 |
V27 | 9.00 | 5.00 | 4.00 | V11 | 5.00 | 7.00 | −2.00 |
V25 | 8.00 | 5.00 | 3.00 | V9 | 4.00 | 2.00 | 2.00 |
V3 | 8.00 | 8.00 | 0.00 | V17 | 4.00 | 7.00 | −3.00 |
V28 | 7.00 | 5.00 | 2.00 | V15 | 3.00 | 6.00 | −3.00 |
V24 | 7.00 | 5.00 | 2.00 | V19 | 3.00 | 8.00 | −5.00 |
V16 | 7.00 | 5.00 | 2.00 | V13 | 3.00 | 4.00 | −1.00 |
V4 | 7.00 | 7.00 | 0.00 | V18 | 2.00 | 5.00 | −3.00 |
V10 | 6.00 | 4.00 | 2.00 |
Number | Betweenness Centrality | Number | Betweenness Centrality |
---|---|---|---|
V26 | 73.71 | V24 | 11.74 |
V32 | 58.48 | V28 | 11.73 |
V4 | 22.94 | V16 | 10.79 |
V3 | 19.51 | V11 | 8.39 |
V17 | 18.24 | V15 | 7.00 |
V22 | 17.82 | V10 | 6.03 |
V21 | 16.31 | V19 | 5.84 |
V7 | 14.81 | V13 | 2.84 |
V5 | 13.55 | V18 | 1.47 |
V27 | 13.45 | V9 | 1.14 |
V25 | 13.19 |
Code | Risk Factors | Hierarchical Results |
---|---|---|
V7 | Enterprise Collaboration Level | Critical factors |
V27 | Scientific Research Investment Level | Critical factors |
V26 | Industrialization System | Intermediate conduction factor |
V32 | Industry Market Demand | Intermediate conduction factor |
V4 | Component Production Line Capacity | Intermediate conduction factor |
V3 | Uneven Regional Development | Intermediate conduction factor |
V17 | Strategic Objectives of the Company | Intermediate conduction factor |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, F.; Shi, J.; Zhu, T.; Hu, X. Risk Assessment in the Industry Chain of Industrialized Construction: A Chinese Case Study. Buildings 2022, 12, 1688. https://doi.org/10.3390/buildings12101688
Ji F, Shi J, Zhu T, Hu X. Risk Assessment in the Industry Chain of Industrialized Construction: A Chinese Case Study. Buildings. 2022; 12(10):1688. https://doi.org/10.3390/buildings12101688
Chicago/Turabian StyleJi, Fanrong, Jili Shi, Tianle Zhu, and Xiancun Hu. 2022. "Risk Assessment in the Industry Chain of Industrialized Construction: A Chinese Case Study" Buildings 12, no. 10: 1688. https://doi.org/10.3390/buildings12101688
APA StyleJi, F., Shi, J., Zhu, T., & Hu, X. (2022). Risk Assessment in the Industry Chain of Industrialized Construction: A Chinese Case Study. Buildings, 12(10), 1688. https://doi.org/10.3390/buildings12101688