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Abstract: As cables are the most critical components of pre-stressed steel structures, accurate identifi-
cation of the cable force is necessary. This paper established a vibration equation of a multi-brace strut
cable, which ignores the influence of sagging and changes in the cable force during the vibration. The
form of cable vibration was also developed based on the vibration theory of cables. The analytical
solutions of cable vibration equations under different boundary conditions were derived by studying
the vibration models of single-span cables. The cable vibration under arbitrary boundary conditions
was discussed. Additionally, based on the multi-span cable element vibration theory, the theoretical
model of multi-span cable vibration and a cable force calculation method were proposed. A realiza-
tion principle and an algorithm of the multi-frequency fitting method were proposed to calculate and
identify the cable force. Further, the accuracy of the cable force calculated by the proposed method
was verified based on a multi-span cable model test and two practical project experiments. The
results show that the cable force was calculated with a relative error of 8%. Finally, a cable safety
monitoring system was developed and established.

Keywords: multi-frequency fitting; string structures; cable force test; multi-span cable

1. Introduction

Pre-stressed steel cables have been widely used in airports, stations, stadiums, bridges,
and other large-span spatial structures in recent years [1–3]. Controlling the cable force is a
critical task as the safety of the entire structure depends on it [4,5]. Changes in tension may
occur during construction using pre-stressed cables for the distribution of internal stress
in structures. Thus, accurate measurement and gradual adjustment of the tension during
construction are important to ensure that the altered cable force neither deviates from the
recommended value nor leads to a loss of control [6]. An accurate measurement method
for the cable force is crucial for the safety and durability of pre-stressed steel structures
during construction and service [7–9].

Currently, methods for measuring cable forces include the use of pressure gauge tests,
pressure sensors, vibration frequency [10], magnetic flux, acoustic emission [11], and fiber-
optic sensors [12–15]. The vibration method is widely used in practical projects for its ease
of operation and high accuracy. The method identifies the natural frequency of a cable based
on the relationship between the frequency and the cable force [5]. Acceleration sensors
are usually installed on a cable for frequency measurements [10]. With developments in
technology, some non-contact frequency measurement methods have been proposed [16],
such as microwave remote sensing [17,18] and digital image processing [19–21].

For single-span slender cables, the cable force identification accuracy can be improved
based on the relationship between cable force and frequency, which is established based
on the string vibration theory [22]. Irvine systematically studied a cable’s in-plane and
out-of-plane linear vibration with a vertical span ratio of less than 1:8. The theory was
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verified by experiments [23]. Fang and Wang proposed a practical formula to estimate the
cable force in a simple explicit expression, in which the bending stiffness of the cable was
included, and the sag effect was neglected [24]. Kim and Park proposed a method that
could simultaneously identify a cable’s tension force, flexural rigidity, and axial rigidity
using only a few lower modes [25]. Wang et al. derived an equation that reflected the
relationship between vibration frequency and horizontal tension of the main cable. An
anti-symmetric characteristic frequency vector estimated the cable force [26]. Analytical
models and cable force identification methods considering bending stiffness, boundary
conditions, damping devices, and additional masses have also been studied. Ceballos and
Prato presented the axial force of stay cables, considering both the bending stiffness and
the rotational restraint at the ends [27]. Nam and Nghia studied the combined effects of a
cable’s sag and flexural rigidity on its tension. The cable force can be explicitly determined
based on proper simplifying assumptions of a small flexural rigidity parameter [28]. Chen
et al. introduced a shifting parameter in the shape function to effectively consider the asym-
metrical boundary constraints and estimated the tension of a stay cable based on multiple
ambient-vibration measurements. Subsequently, they developed a tension estimation ap-
proach for elastic cables by eliminating complex boundary condition effects by employing
mode shape functions [29,30]. For cables with arbitrary boundary conditions, Yan et al.
transformed the tension estimation problem into a simple one that involved finding the
zero-amplitude points of the mode shapes. The essential parameters, including bending
stiffness and rotational spring, were investigated to determine the identification accuracy
of the method [31,32]. The formulas provided by Ma et al. can be used to calculate the
derivatives of the frequencies of a horizontal or inclined cable for its dynamic parameters,
such as the tension, flexural stiffness, axial stiffness, and rotational stiffness at the ends.
The formulas account for the sag effect, inclination angle, and thermal fluctuations, and the
numerical solution of the cable’s temperature-dependent dynamic equations is obtained
using the finite difference method [33,34]. Considering the effects of bending stiffness, sag,
and boundary conditions, Zhang et al. developed a two-step methodology for identifying
cable force [35].

Several studies have been conducted to estimate the cable force using finite element
and other methods. Schlune et al. proposed a method to eliminate inaccurate modeling
simplification by utilizing manual model refinements before parameters were estimated by
nonlinear optimization [36]. In another study, considering the effect of bending stiffness of
the cable, Wang et al. proposed a finite element method for calculating the tension with
intermediate elastic supports [37]. Liao combined the measured multiple modal frequencies
with the established precise finite element model. A nonlinear least-square optimization
scheme was obtained, eliminating errors between the calculated and measured frequencies
to accurately determine the cable force [38]. According to the research status of tension
on pre-stressed steel cable structures, the vibration method can be accurately used for
cables with diameters less than 44 mm or single cables with length-to-diameter ratios
greater than 100:1. However, further research is needed for cables with ratios outside
these ranges as 80% of all construction projects employ such cables. To date, research on
cable force identification has primarily focused on long-span bridges [1,39–41]. Therefore,
measuring the force in multi-span cables in string structures remains difficult. When a
structure is supported by brace struts, cable vibration behavior is particularly complex due
to the rigidity of the struts and the complexity of the constituents’ structures. Further, it is
challenging to identify cable forces of string structures accurately based on the single-cable
vibration theory. Therefore, it is necessary to consider the structural characteristics of
string structures and study a dynamic model of a multi-brace strut cable to establish a
corresponding vibration theory and cable force measurement method.

Therefore, this paper proposes a multi-frequency fitting method for cable force identi-
fication of short, thick, and multi-span cables. The paper is organized as follows: Section 1
introduces the background of cable force identification, Section 2 explains the cable vi-
bration and cable force testing theory, Section 3 describes the series of tests conducted,
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Section 4 describes the realization and development of the cable safety monitoring system,
and Section 5 concludes the paper.

2. Cable Vibration and Cable Force Identification Theory
2.1. Equation of Cable Vibration

Considering the influence of sagging and cable force changes on vibration to be
negligible, the fundamental differential equation of the cable-free vibration of a pre-stressed
arch structure is given by:

∂2

∂x2

(
EI

d2y
dx2

)
+ N

∂2y
∂x2 + m

∂2y
∂t2 = 0 (1)

where N denotes the cable tension (negative), EI denotes the cable bending stiffness, m
denotes the unit mass of the cable, and l denotes the cable length. The vibration model of
the cable is depicted in Figure 1.
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In a constant cross-section cable, EI is constant. The separation of variables is used to
decompose Equation (1), and the following differential equation is obtained:

..
T(t) + ω2T(t) = 0 (2)

Y(4)(x) +
N
EI

Y′′ (x)− ω2m
EI

Y(x) = 0 (3)

Here, ω denotes the circular frequency. Equation (2) is a simple harmonic vibration
equation, indicating that the cable performs a simple harmonic vibration in time. The
general solution of Equation (3) is given by Equation (4), which is an expression for the
cable vibration shape:

Y(x) = C1chβx + C2shβx + C3cosγx + C4sinγx (4)

where,

γ =

√(
λ4 +

α4

4

)1/2

+
α2

2
; β =

√(
λ4 +

α4

4

)1/2

− α2

2
; α2 =

N
EI

; λ4 =
ω2m
EI

.

According to the cable boundary conditions, different cable vibration frequency equa-
tions can be calculated using Equation (4). The relationship between the cable force and
frequency can be established as given below.

The boundary conditions of the hinged cable at both ends (Figure 2) are
Y(0) = 0, Y′′ (0) = 0, and Y(l) = 0, Y′′ (l) = 0. The frequency equation can be obtained by
substituting these boundary conditions into Equation (4):

sin γl = 0 (5)

The roots of Equation (5) are γn = nπ
l (n = 1, 2, . . .). Therefore, the frequency expres-

sion is as follows:

ωn =
n2π2

l2

√(
EI
m
− Nl2

n2π2m

)
(n = 1, 2, . . .) (6)
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Thus, the formula for calculating cable force, T, with both ends of the cable hinged, is
as follows (here, fn denotes the Nth order frequency):

T = −N = 4
m f 2

n l2

n2 − EIn2π2

l2 (7)

Equation (7) is a commonly used cable force calculation formula based on the frequency
method for a single-slender cable.

Buildings 2022, 12, x FOR PEER REVIEW 4 of 18 
 

𝜔௡ = 𝑛ଶ𝜋ଶ𝑙ଶ ඨቆ𝐸𝐼𝑚 − 𝑁𝑙ଶ𝑛ଶ𝜋ଶ𝑚ቇ (𝑛 = 1,2, . . . ሻ (6) 

Thus, the formula for calculating cable force, T, with both ends of the cable hinged, 
is as follows (here, fn denotes the Nth order frequency): 𝑇 = −𝑁 = 4 𝑚𝑓௡ଶ𝑙ଶ𝑛ଶ − 𝐸𝐼𝑛ଶ𝜋ଶ𝑙ଶ  (7) 

Equation (7) is a commonly used cable force calculation formula based on the fre-
quency method for a single-slender cable. 

 
Figure 2. Cable with both ends hinged. 

For cables with both ends fixed (Figure 3), Equation (8) can be calculated following 
the same method discussed above: 2𝛾𝛽(1 − 𝑐ℎ𝛽𝑙 𝑐𝑜𝑠 𝛾𝑙ሻ + (𝛽ଶ − 𝛾ଶሻ 𝑠𝑖𝑛 𝛾𝑙𝑠ℎ𝛽𝑙𝛽 = 0 (8) 

For cables with one end fixed and the other hinged (Figure 4), Equation (9) can be 
similarly obtained: 𝛾𝑠ℎ𝛽𝑙 𝑐𝑜𝑠 𝛾𝑙 − 𝛽𝑐ℎ𝛽𝑙𝑠𝑖𝑛𝛾𝑙 = 0 (9) 

Equations (8) and (9) are transcendental equations, so an explicit frequency expres-
sion cannot be obtained. Therefore, obtaining an exact expression for the cable force is 
difficult. However, solutions to Equations (8) and (9) can be approximated by constructing 
reasonable expressions. Take Equation (8) as an example. 

The relationship between 𝛼𝑙 and 𝜆𝑙 was established in Figure 5 using the numerical 
method. The curves show the two parameters’ relationship corresponding to each order 
of frequency, among which the fundamental one is our most concerned. 

 
Figure 3. Cable with both ends fixed. 

 
Figure 4. Cable with one end fixed and the other hinged. 

Figure 2. Cable with both ends hinged.

For cables with both ends fixed (Figure 3), Equation (8) can be calculated following
the same method discussed above:

2γβ(1− chβl cos γl) +
(

β2 − γ2
)

sin γlshβlβ = 0 (8)
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Figure 3. Cable with both ends fixed.

For cables with one end fixed and the other hinged (Figure 4), Equation (9) can be
similarly obtained:

γshβl cos γl − βchβlsinγl = 0 (9)
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Equations (8) and (9) are transcendental equations, so an explicit frequency expression
cannot be obtained. Therefore, obtaining an exact expression for the cable force is difficult.
However, solutions to Equations (8) and (9) can be approximated by constructing reasonable
expressions. Take Equation (8) as an example.

The relationship between αl and λl was established in Figure 5 using the numerical
method. The curves show the two parameters’ relationship corresponding to each order of
frequency, among which the fundamental one is our most concerned.
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λ2
1(0.66418l)2 = π

√
π2 −

(
α2(0.5l)2

)
λ2

2(0.4l)2 = π

√
π2 −

(
α2(0.349578l)2

)
λ2

3(0.285713409l)2 = π

√
π2 −

(
α2(0.25l)2

)
λ2

4(0.222222241l)2 = π

√
π2 −

(
α2(0.206778l)2

)
λ2

5(0.181818178l)2 = π

√
π2 −

(
α2(0.166667l)2

)
(10)

It can be unified as:

λ2
n(bnl)2 = π

√
π2 −

(
α2(anl)2

)
(11)

Based on the analysis, anl is the calculated length of the fixed cable at both ends for
the Nth order instability when the vibration frequency is zero. Further, bnl denotes the
Nth mode equivalent half-wavelength of a cable fixed at both ends when the axial force is
zero. Therefore, an and bn are considered to be length coefficients, whose values are listed
in Table 1.

Table 1. Calculation of the length coefficients.

Order: n an bn

1 0.5 0.664178761
2 0.349578 0.40003957
3 0.25 0.285713409
4 0.206778 0.222222241
5 0.166667 0.181818178

The comparison between the numerical solution curve of theoretical Equation (8) and
the fitting Equation (11) is shown in Figure 6. It can be seen that Equation (11) has high
fitting accuracy and is suitable for application.

According to Equation (11), the frequency expression is as follows:

ωn =
π2

(bnl)2

√√√√(EI
m
− N(anl)2

mπ2

)
(n = 1, 2, . . .) (12)
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For cables with fixed ends, the following practical formula can be obtained:

T =
4 f 2

n m(bn)
4l2

(an)
2 − π2EI

(anl)2 (13)
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plitudes of force P at both ends of the cable are as follows: MA, MB, which denote the bend-
ing moment amplitudes, and QA, QB, which denote the shear amplitudes. The vibration 
amplitudes of displacement, Δ, at both ends are as follows: φA, φB, which denote the angu-
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2.2. Theoretical Vibration Model of Continuous Multi-Span Cable Element

Given the vibrational complexity of continuous multi-span cables, a theoretical vibra-
tion model can be established using an inter-span cable as the analysis unit. The general
cable unit model is depicted in Figure 7.
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The following general boundary conditions were adopted. At one end, the bending
moment and shear vibration frequency is ω, the amplitudes are M0 and Q0, the vibration
period of rotation and deflection is ω, and the amplitudes are ϕ0 and Y0. By substituting
the boundary conditions in Equation (4), the following equation is obtained:

Y(0) = Y0, Y′(0) = ϕ0,−EIY′′ (0) = M0,−EIY′′′ (0) = Q0 (14)

Order β∗ = βl, γ∗ = γl, i = EI/l denotes the line stiffness of the cable. From
Equations (4) and (14), we obtain Equation (15). In the process of vibration, the vibration
amplitudes of force P at both ends of the cable are as follows: MA, MB, which denote
the bending moment amplitudes, and QA, QB, which denote the shear amplitudes. The
vibration amplitudes of displacement, ∆, at both ends are as follows: ϕA, ϕB, which denote
the angular displacement amplitudes, and YA, YB, which denote the vertical displace-
ment amplitudes. 

MA = i
(

DϕA + EϕB + F YA
l − G YB

l

)
MB = i

(
EϕA + DϕB + G YA

l − F YB
l

)
QA = − i

l

(
HϕA + GϕB + K YA

l − R YB
l

)
QB = − i

l

(
GϕA + HϕB + R YA

l − K YB
l

) (15)
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where,

D = 1
∏

(
β∗2 + γ∗2

)
(γ∗ sin β∗chγ∗ − β∗ cos β∗shγ∗);

E = 1
∏

(
β∗2 + γ∗2

)
(β∗shγ∗ − γ∗ sin β∗);

F = 1
∏ β∗γ∗

[
2β∗γ∗ sin β∗shγ∗ −

(
γ∗2 − β∗2

)
(1− cos β∗chγ∗)

]
;

G = 1
∏ β∗γ∗

(
β∗2 + γ∗2

)
(chγ∗ − cos β∗);

H = 1
∏

[
β∗γ∗

(
γ∗2 − β∗2

)
(1− cos β∗chγ∗) +

(
γ∗4 + β∗4

)
sin β∗shγ∗

]
;

K = 1
∏ β∗γ∗

(
β∗2 + γ∗2

)
(β∗chγ∗ sin β∗ + γ∗shγ∗ cos β∗)

R = 1
∏ β∗γ∗

(
β∗2 + γ∗2

)
(β∗ sin β∗ + γ∗shγ∗)

∏ = 2β∗γ∗(1− cos β∗chγ∗) +
(
γ∗2 − β∗2

)
shγ∗ sin β∗ (Π 6= 0)

When Π = 0, the vibration characteristic equation of a cable fixed at both ends can be
expressed in the following general form:

K11∆1 + K12∆2 + K13∆3 + K14∆4 = P1
K21∆1 + K22∆2 + K23∆3 + K24∆4 = P2
K31∆1 + K32∆2 + K33∆3 + K34∆4 = P3
K41∆1 + K42∆2 + K43∆3 + K44∆4 = P4

(16)

where,

∆1 = ϕA; ∆2 = ϕB; ∆3 = YA; ∆4 = YB;

P1 = MA; P2 = MB; P3 = QA; P4 = QB;

K11 = K22 = iD; K21 = K12 = iE;K13 = −K24 = i
l F; K14 = −K23 = K32 = K41 = − i

l G;

K31 = K42 = − i
l H; K33 = −K44 = − i

l2 K;K34 = −K43 = i
l2 R.

When the cable force T = 0, Equation (16) degenerates into the vibration equation of a
frame or beam without axial force.

2.3. Multi-Frequency Fitting Method for Continuous Multi-Span Cables

A multi-span continuous cable vibration model was established, as depicted in Fig-
ure 8. The established vibration equation is:

(Z11 + k1)∆1 + Z12∆2 + Z13∆3 . . . + Z1n∆n = 0,
Z21∆1 + (Z22 + k2)∆2 + Z23∆3 . . . + Z2n∆n = 0,
Z31∆1 + Z32∆2 + (Z33 + k3)∆3 . . . + Z3n∆n = 0,

· · ·
Zn1∆1 + Zn2∆2 + Kn3∆3 . . . + (Znn + kn)∆n = 0,

(17)

where the non-zero elements of the stiffness coefficient are given by:

Z11 = K(1)
11 ;

Z12 = K(1)
12 ; Z21 = K(1)

21 ; Z22 = K(1)
22 + K(2)

11 ;

Z23 = K(2)
12 ; Z32 = K(2)

21 ; Z33 = K(2)
22 + K(3)

11 ;

· · ·

Z(n−1)n = K(n−1)
12 ; Zn(n−1) = K(n−1)

21 ; Znn = K(n−1)
22 +Kn

11.
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Here, k1, k2, . . . , and kn are the unknown constraints, and the corresponding frequency
characteristic equation is given by:∣∣∣∣∣∣∣∣

Z11 + k1 Z12 · · · 0
Z21 Z22 + k2 · · · 0
· · · · · · · · · 0

0 0 · · · Znn + kn

∣∣∣∣∣∣∣∣ = 0. (18)

Equation (18) can be expressed as:

f (EI, m, ωi, T, k1, k2, . . . , kn) = 0 (i = 1, 2, 3 . . .). (19)

The system (as given in Equation (19)) has n + 1 unknown parameters T and ki. The
multi-span cable characteristic parameters can be identified using the multi-frequency
method. If the detected frequency order s is greater than the number of unknown parame-
ters n + 1, all unknown parameters can be accurately identified. Theoretically, an infinite
number of frequencies satisfy the frequency equation (Equation (18)). While obtaining the
cable force from a set of frequency values, distortion may occur due to order dislocation.
However, the frequency error will cause deviations of the calculated cable force from
the real cable force. Thus, the distorted cable force can be preliminarily ruled out by the
cable force.
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3. Experimental Verification of Cable Force Identification Theory
3.1. Multi-Frequency Fitting Method for Cable Force Identification and Its Verification

For multi-span cables, cable forces can be effectively identified by detecting the multi-
order vibration frequencies using the multi-frequency fitting method. The procedure is
as follows:

1. First, a multi-span cable vibration model is established. The characteristic equation of
a cable supported by brace struts, with m spans and n unknown stiffness constraints,
is given by:

fi(EI, M, ωi, T, l1, l2, . . . , lm, k1, k2, . . . , kn) = 0, (i = 1, 2, 3 . . .). (20)

2. The N + 1 natural frequencies, ωi, are obtained from the experimental data. N equa-
tions for the cable force T and n stiffness constraints are established. The optimization
algorithm model is designed with the following optimization objective function:

fobj = Min
{
∑| f (EI, m, ωi, T, k1, k2, . . . , kn)|

}
. (21)

3. To calculate the cable force T, an unconstrained optimization algorithm is adopted to
select the initial cable force parameters. The values of the n + 1 unknown parameters
are calculated via regression for the optimization objective function.

4. The accuracy of the obtained cable force value is verified, and conclusions are drawn
based on the calculation.

3.1.1. Single-Cable Test—Phase I

Data analysis was performed using the specific data acquisition and analysis software
of the DASP-V10 engineering edition produced by the China Orient Institute of Noise and
Vibration (INV). Lance LC0116T-2 low-frequency ICP piezoelectric uniaxial acceleration
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sensors were used for the test. A Lance CBook2000-P type specific dynamic acquisition
instrument was used as the acquisition model. The bracket structure of the model used in
the test is illustrated in Figures 9 and 10. The linear density of the cable was 1.4235 kg/m,
and the bending modulus of the 15.2 mm-diameter steel strand was 526.4 N·m2. The
continuous cable comprised four spans, each with a length of 2 m. According to the
test conditions, the cable boundary constraint stiffness of the multi-frequency cable force
identification model was taken to be zero. The self-spectral analysis of the acceleration
response is depicted in Figure 11, and the obtained frequency and cable force values are
listed in Table 2.
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3.1.2. Cable-Stayed Structure Test—Phase II

A cable force identification test platform was adopted using a large-span spatial
structure. It comprised 158 bolt-ball nodes and 560 rods, as shown in Figure 12. The
platform was a grid structure with a length of 9 m, width of 6 m, and height of 0.8 m. The
platform had the characteristics of good stability, light weight, flexibility, and convenient
installation, and could simulate various spatial-structure types.

IEPE-INV9822 acceleration sensors were used as the dynamic measuring equipment
in the experiment. The signal acquisition equipment was an INV3065N2 data acquisition
system. Specific data acquisition and analysis software of the DASP-V11 engineering
edition produced by the China Orient Institute of Noise and Vibration were utilized for
the data analysis. The cable-stayed structural model is depicted in Figures 13 and 14.
The linear density of the cable was 1.4235 kg/m, and the bending modulus of the steel
strand was 220.8 N·m2. The total length of the cable-stayed structure was 7.2 m, which
was divided into two sections (3.6 m each) by the middle brace strut. Based on the test
conditions, the boundaries of the cable were considered hinged. The self-spectral analysis
of the acceleration response is depicted in Figure 15, and the results of frequency detection
and cable force identification are listed in Table 3.
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Table 2. Results of frequency detection and cable force identification.

Calculation Times Initial Values of
Optimization (kN)

Identified Cable
Force Values (kN)

Actual Tension
Value (kN)

1 89.819 89.725
902 80.000 89.725

3 100.000 89.725
Detection frequency (Hz): f (1) = 32.25; f (2) = 46.5; f (3) = 63.25; f (4) = 99.25; f (5) = 149.5.
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Table 3. Results of frequency detection and cable force calculation of a cable-stayed structure.

Frequency Order Identified Cable
Force Values (kN)

Identified Cable Force
Average Values (kN)

Actual Cable Force
Value (kN)

1 21.385

18.872 20.35
2 20.881
3 16.132
4 17.355
5 18.606

Detection frequency (Hz): f (1) = 17.0898; f (2) = 34.1797; f (3) = 46.3867; f (4) = 65.9180; f (5) = 87.8906.

The results show that the cable force was determined with a relative error of 8%.

3.1.3. Unidirectional String Structure Test

The unidirectional string structure used in the experiments is depicted in Figure 16.
The lengths of its spans were 5441.7, 7566.7, 7566.7, 7566.7, 7566.7, and 5441.7 mm. The
linear density of the cable was 18.7 kg/m, and the bending modulus was 139.0208 kN·m2.
The frequency detection and multi-frequency cable force identification results are listed
in Table 4.
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unidirectional string structure.

Table 4. Results of frequency detection and multi-frequency fitting cable force optimization of a
unidirectional string structure.

Calculation
Times

Initial Values of
Optimization

(kN)

Constraint
Stiffness of

the Left
Support
(kN·m2)

Constraint
Stiffness of
the Right
Support
(kN·m2)

Identified
Cable Force
Values (kN)

Identification
Stiffness of

Left Support
(kN·m2)

Identification
Stiffness of

Right Support
(kN·m2)

Actual
Tension

Value (kN)

1 415.534 1.0 1.0 287.815 151.412 92.340
3002 322.956 1.0 1.0 286.748 147.336 43.374

Detection frequency (Hz): f (1) = 9.00; f (2) = 10.135; f (3) = 12.00; f (4) = 13.56.

3.1.4. Bidirectional String Structure Test

The bidirectional string structure used in the experiments is depicted in Figure 17.
The structure comprised seven horizontal and six vertical cables. Cables in both directions
passed through the lower part of the brace struts and were connected to the upper and
lower ends of the inner and outer brace struts. The lengths of the spans tested were
2.256, 2.716, 2.703, 2.700, 2.703, 2.716, and 2.256 m. The linear density of the cable was
3.28 kg/m, and the bending modulus was 321.00 N·m2. The results of frequency detection
and multi-frequency cable force identification are listed in Table 5.
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bidirectional string structure.

Table 5. Results of frequency detection and multi-frequency fitting cable force optimization of a
bidirectional string structure.

Calculation
Times

Initial Values of
Optimization

(kN)

Constraint
Stiffness of

the Left
Support
(kN·m2)

Constraint
Stiffness of
the Right
Support
(kN·m2)

Identified
Cable Force
Values (kN)

Identification
Stiffness of

Left Support
(kN·m2)

Identification
Stiffness of

Right Support
(kN·m2)

Actual
Tension

Value (kN)

1 50.768 1.0 1.0 54.354 3.7976 3.187
552 55.317 1.0 1.0 55.386 3.8576 6.026

Detection frequency (Hz): f (1) = 23; f (2) = 24; f (3) = 31.

The analysis of the test results revealed that the cable force value obtained is in good
agreement with the actual cable force value.

4. Realization and Development of Cable Safety Monitoring System
4.1. System Function Design

The cable safety monitoring system can be used for efficiently monitoring and con-
trolling the cable force and assessing the reliability of pre-stressed cable structures dur-
ing construction and operation. The primary components of the system are depicted
in Figure 18.
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4.2. System Hardware Integration

The system’s hardware used for vibration signal acquisition comprised sensors, signal
acquisition equipment, data processing tools, and excitation equipment.

1. Sensors: Lance LC0116T-2 low-frequency ICP piezoelectric uniaxial acceleration sen-
sors were used in this paper. The technical indices of the sensor are listed in Table 6.

2. Signal acquisition equipment, the Cm4016 conditioning module for sensors, was
used. The acquisition module was a Lance CBook 2000-P specific dynamic acquisition
instrument capable of accepting 16-channel parallel input acquisition simultaneously
with an effective resolution of 16 bit. A cassette acquisition device was used as
an intelligent signal analyzer, which can be used with computers and software, to
realize the full automation of large-capacity multichannel data acquisition, display,
oscilloscope measurements, readings, waveform analysis, spectrum analysis, digital
filtering, integral and differential, calculation of waveform analysis, storage, printing,
copying, etc.

3. The specific data acquisition and analysis software of the DASP-V10 engineering
edition produced by the China Orient Institute of Noise and Vibration was utilized
for the data analysis. Its design functions included large-capacity signal oscillograph
sampling and the analyses of multi-trace time domain, multi-trace self-spectrum,
autocorrelation, cross-correlation, cross-power spectrum, and transfer function.

Table 6. Parameters of the sensor.

Technical Indexes Index Value Technical Indexes Index Value

Response frequency 0.05–300 kHz Sensitivity of the sensor 2.5 V/g
Effective stationary response frequency Approximately 0.1–230 kHz Sensitivity of the large range sensor 25 mV/g

Natural frequency 3000 kHz Weight 220 g
Nonlinear response ≤5%

4.3. Visual Software System

The visual software system was originally developed with C# based on the multi-
frequency fitting method and cable force calculation formula studied in this paper. The
cable safety monitoring system consisted of single- and multi-span cable force analysis
modules, as depicted in Figure 19.
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The functional modules of the software included cable force calculation for the simpli-
fied model, single-cable force calculation with an arbitrary boundary, and multi-span cable
force calculation.

1. The cable force calculation for the simplified model included three types of specific
boundaries: cables with both ends hinged, one end fixed and the other hinged, and
both ends fixed, as illustrated in Figure 20.
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2. For single-cable force calculation with an arbitrary boundary, the cable force and
constraint stiffness were calculated according to the input basic cable parameters and
multi-order frequencies obtained by the spectrum analysis, as illustrated in Figure 21.

3. For the multi-span cable force calculation, the multi-frequency fitting method was
used to calculate the cable force and the cable stiffness constraints according to the
input cable parameters and multi-order frequencies, as illustrated in Figure 22.
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5. Conclusions

Based on the multi-frequency fitting method, this study proposed a cable force identi-
fication approach for pre-stressed steel structures. The vibration model and characteristic
equations of short and coarse cables were established based on the vibration theory. The
corresponding relationship between cable force and frequency was also established. For
cables with arbitrary elastic boundary conditions, the cable forces were determined by
measuring multi-frequencies with no less than a number of unknown parameters. Con-
sidering the bending stiffness, the established vibration frequency transcendence equation
was optimized and solved based on the unconstrained optimization algorithm. The pro-
posed method has strong adaptability and reliability. The traditional single-cable force
calculation method poses difficulty in the effective analysis of the multi-span cable force,
experimentally, and the proposed method addresses this problem. This method can re-
strict the relative error of cable force identification within 8%, which meets the precision



Buildings 2022, 12, 1689 16 of 17

requirement of engineering applications. The designed and developed cable force safety
monitoring software can easily determine the tension of single-span and multi-span cables
through a simplified model and multi-frequency fitting.
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