Analysis of Urban Spatial Accessibility of Museums within the Scope of Seoul
Abstract
:1. Introduction
2. Space Syntax and Research Method
2.1. Space Syntax
2.2. Range Settings
2.3. Research Method
3. Analysis and Discussion
3.1. Distribution and Urban Hierarchy of Museums in Seoul
3.2. Correlation between Changes in Museum Accessibility and Urban Accessibility According to Travel Angle and Limit Distance Settings
3.3. Polynomial Curve Fitting Analysis and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ashworth, G.J.; Tunbridge, J.E. The Tourist-Historic City; Belhaven Press: London, UK, 1990. [Google Scholar]
- Edwards, D.; Griffin, T.; Hayllar, B. Urban tourism research developing an agenda. Ann. Tour. Res. 2008, 35, 1032–1052. [Google Scholar] [CrossRef] [Green Version]
- Law, C.M. Urban Tourism: Attracting Visitors to Large Cities; Mansell Publishing Limited: London, UK, 1993; pp. 160–189. [Google Scholar]
- Ryu, C.H.; Kwon, Y.S. Elements that affect foreign tourists’ satisfaction: A case study in Seoul, Korea. Urban Des. Int. 2021, 26, 197–207. [Google Scholar] [CrossRef]
- Yu, Y.H.; Choi, M.G.; Jeong, J.Y. The effect of cultural city factors on urban identity and city brand equity. J. Inf. Technol. Appl. Manag. 2021, 28, 89–108. [Google Scholar] [CrossRef]
- De Carlo, M.; Canali, S.; Pritchard, A.; Morgan, N. Moving milan towards expo 2015: Designing culture into a city brand. J. Place Manag. Dev. 2009, 2, 8–22. [Google Scholar] [CrossRef]
- Xu, Y.; Rollo, J.; Esteban, Y. Evaluating experiential qualities of historical streets in Nanxun Canal Town through a space syntax approach. Buildings 2021, 11, 544. [Google Scholar] [CrossRef]
- PLAZA, B. Evaluating the influence of a large cultural artifact in the attraction of tourism: The Guggenheim Museum Case. Urban Aff. Rev. 2000, 36, 264–274. [Google Scholar] [CrossRef]
- Hyslop, D. Culture, regeneration and community: Reinventing the city. Int. J. Commun. Res. Engagem. 2012, 5, 152–165. [Google Scholar] [CrossRef]
- Van Aalst, I.; Boogaarts, I. From museum to mass entertainment: The evolution of the role of museums in cities. Eur. Urban Reg. Stud. 2002, 9, 195–209. [Google Scholar] [CrossRef]
- Thomas, N. The museum as method. Mus. Anthropol. 2010, 33, 6–10. [Google Scholar] [CrossRef]
- Stephen, A. The contemporary museum and leisure: Recreation as a museum function. Mus. Manag. Curatorship 2001, 19, 297–308. [Google Scholar] [CrossRef]
- Amato, F.; Chianese, A.; Mazzeo, A.; Moscato, V.; Picariello, A.; Piccialli, F. The talking museum project. Procedia Comput. Sci. 2013, 21, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Marty, P.F.; Rayward, W.B.; Twidale, M.B. Museum informatics. Annu. Rev. Food Sci. Technol. 2003, 37, 259–294. [Google Scholar] [CrossRef]
- Suh, Y.K.; Gartner, W.C. Perceptions in international urban tourism: An analysis of travelers to Seoul, Korea. J. Travel Res. 2004, 43, 39–45. [Google Scholar] [CrossRef]
- Zhao, X.L. A Study on Urban Hierarchical Characteristics of Public Libraries-Focused on the Libraries in the Boundary District(gu) of Seoul, Korea. Ph.D. Thesis, Sangmyung University, Seoul, Korea, 2022. [Google Scholar]
- Hwang, K.; Schuetze, T.; Amoruso, F.M. Flood resilient and sustainable urban regeneration using the example of an industrial compound conversion in Seoul, South Korea. Sustainability 2020, 12, 918. [Google Scholar] [CrossRef] [Green Version]
- Yoon, J.; Lee, J. Adaptive reuse of apartments as heritage assets in the Seoul station urban regeneration area. Sustainability 2019, 11, 3124. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.K.; Lee, C.K.; Choi, J.W.; Yoon, S.M.; Hart, R.J. Tourism’s role in urban regeneration: Examining the impact of environmental cues on emotion, satisfaction, loyalty, and support for Seoul’s revitalized Cheonggyecheon stream district. J. Sustain. Tour. 2014, 22, 726–749. [Google Scholar] [CrossRef]
- Schmidt, M. Shaping Seoul: Employing Heritage in the Urban Regeneration Projects Seoullo 7017 and Again Sewoon; Leiden University: Leiden, The Netherlands, 2018. [Google Scholar]
- Shin, H. The punk and the post-developing city: Subculture-led urban regeneration in Seoul? City Cult. Soc. 2019, 19, 100295. [Google Scholar] [CrossRef]
- Jun, M.J.; Ha, S.K. Evolution of employment centers in Seoul. RURDS Rev. Urban Reg. Dev. Stud. 2002, 14, 117–132. [Google Scholar] [CrossRef]
- Kim, M.H.; Moon, J.M. A Study on the correlation between viewing behavior and exhibiting methods in museums-focusing on viewing behavior on weekdays and weekends in medium sized history museums in Korea. J. Asian Archit. Build. Eng. 2013, 12, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Culture, Sports and Tourism, 2018 Survey on International Visitors. Available online: https://www.mcst.go.kr/kor/s_notice/press/pressView.jsp?pSeq=17270 (accessed on 10 May 2022).
- Museum Knowledge Information System. Available online: https://www.mcst.go.kr/kor/s_notice/press/pressView.jsp?pSeq=17270 (accessed on 10 May 2022).
- Gospodini, A. European cities in competition and the new ‘uses’ of urban design. J. Urban Des. 2002, 7, 59–73. [Google Scholar] [CrossRef]
- Lee, J.Y.; Choi, S.D. Spatial distribution characteristics analysis of cultural infrastructure in Seoul: A focus on distribution of population and density of use. J. Tour. Stud. 2018, 30, 61–80. [Google Scholar] [CrossRef]
- Park, T.S.; Lee, M.Y. Accessibility measure of cultural facilities using urban network analysis. KSCE J. Civ. Eng. 2015, 35, 455–464. [Google Scholar] [CrossRef] [Green Version]
- Hillier, B.; Hanson, J. The Social Logic of Space; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- Ozbil, A.; Gurleyen, T.; Yesiltepe, D.; Zunbuloglu, E. Comparative associations of street network design, streetscape attributes and land-use characteristics on pedestrian flows in peripheral neighbourhoods. Int. J. Environ. Res. Public Health 2019, 16, 1846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, H. Angular-Weighted ERAM Model for Space Analysis. Ph.D. Thesis, Seoul National University, Seoul, Korea, 2006. [Google Scholar]
- Cho, E.K.; Son, K.H. An evaluation of spatial recognition and the accessibility of passenger facilities within Korean high-speed railway stations: Visibility graph analysis. Int. J. Vis. Des. 2013, 6, 33–44. [Google Scholar] [CrossRef]
- Turner, A. From axial to road-centre lines: A new representation for space syntax and a new model of route choice for transport network analysis. Environ. Plan. B Plan. Des. 2007, 34, 539–555. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.R.; Kim, S.G. Problems and directions for improving transportation cards exclusively for foreigners in the metropolitan area. KSCE J. Civ. Eng. 2022, 42, 391–398. [Google Scholar] [CrossRef]
- Kim, J.H.; Jung, Y.D. Analysis of accessibility of individual tourists to destination using social network analysis: Focused on the Ulsan metropolitan city public transit network. J. Tour. Sci. 2018, 42, 209–223. [Google Scholar] [CrossRef]
- Jeong, C.; Jeong, N.S.; Lee, H. Forecasting demand and estimating the economic impact of walk tourists: Focused on Jeju Olle. J. Tour. Sci. 2011, 35, 389–408. [Google Scholar]
- Seo, H.; Park, J.S. A study on satisfaction on walking tourism in Seoul: Applied on expectation disconfirmation theory. J. Tour. Leis. Res. 2019, 31, 61–74. [Google Scholar] [CrossRef]
- Zolfagharkhani, M.; Ostwald, M.J. The spatial structure of yazd courtyard houses: A space syntax analysis of the topological characteristics of the courtyard. Buildings 2021, 11, 262. [Google Scholar] [CrossRef]
- Herthogs, P.; Debacker, W.; Tunçer, B.; De Weerdt, Y.; De Temmerman, N. Quantifying the generality and adaptability of building layouts using weighted graphs: The SAGA method. Buildings 2019, 9, 92. [Google Scholar] [CrossRef]
- Chau, H.W.; Newton, C.; Mei Min Woo, C.; Ma, N.; Wang, J.; Aye, L. Design lessons from three Australian dementia support facilities. Buildings 2018, 8, 67. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Choei, N.Y. An analysis of the heterogeneity in tourists’ route via the space syntax. LHI J. 2020, 11, 39–48. [Google Scholar] [CrossRef]
- Lee, S.H. A Study on the Typology of Spatial Organization in Art Museum by Syntactic Analysis. Ph.D. Thesis, Hanyang University, Seoul, Korea, 2008. [Google Scholar]
- Kim, S.T. A Study on the Multi-Dimensional Space Analysis Model Using 3D Graphic Engine. Ph.D. Thesis, Hanyang University, Seoul, Korea, 2008. [Google Scholar]
- Lee, H.W.; Park, H.K.; Kim, S.T. A study on hierarchy analysis of the floor compositions of geriatric hospital treatment wards. J. Eng. Appl. Sci. 2018, 13, 7826–7833. Available online: https://www.medwelljournals.com/abstract/?doi=jeasci.2018.7826.7833 (accessed on 19 May 2022).
- Xu, Y.; Rollo, J.; Jones, D.S.; Esteban, Y.; Tong, H.; Mu, Q. Towards sustainable heritage tourism: A space syntax-based analysis method to improve tourists’ spatial cognition in Chinese historic districts. Buildings 2020, 10, 29. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Ren, A.; Chen, L.; Zheng, X. Measurement and spatial difference analysis on the accessibility of road networks in major cities of China. Sustainability 2019, 11, 4209. [Google Scholar] [CrossRef] [Green Version]
- Noichan, R.; Dewancker, B. Analysis of accessibility in an urban mass transit node: A case study in a Bangkok transit station. Sustainability 2018, 10, 4819. [Google Scholar] [CrossRef] [Green Version]
- Park, G.S.; Kim, M.S.; Choi, J.P. A study on the application of distance-weighting to ERAM model. JAIK 2014, 30, 119–126. [Google Scholar] [CrossRef]
- Yun, D.S.; Ko, J. Analysis of Daegu citizens’ subway use characteristics and access area of subway station. J. Korean Reg. Sci. Assoc. 2006, 22, 251–274. [Google Scholar]
- Kim, K.W.; Lee, D.H.; Choi, J.M.; Oh, I.S. Comparing the service coverages of subways and buses and estimating the walking distances of their users. KSCE J. Civ. Eng. 2010, 30, 541–552. [Google Scholar]
- Yi, C.H.; Jang, S.M.; Lee, S.G. Defining the spatial range of a subway catchment area by walking in consideration of moving distance within station building. J. Korea Plan. Assoc. 2013, 48, 235–248. [Google Scholar]
- Analysis of Taxi Data in Seoul, Korea Policy Briefing. Available online: https://www.korea.kr/news/pressReleaseView.do?newsId=155819695 (accessed on 1 July 2022).
- Hong, K.J. A Study on the Viewing Distance for Landscape Impact Assessment. Master’s Thesis, Seoul National University, Seoul, Korea, 2010. [Google Scholar]
- 2021 Overview of National Cultural Infrastructure, Ministry of Culture, Sports and Tourism. Available online: https://www.mcst.go.kr/kor/s_policy/dept/deptView.jsp?pSeq=1563&pDataCD=0417000000&pType=02 (accessed on 5 July 2022).
- Continuous Cadastral Map of Seoul, National Spatial Data Infrastructure Portal. Available online: http://www.nsdi.go.kr/lxportal/?menuno=3085 (accessed on 5 May 2022).
Indicator | Interpretation | |
---|---|---|
Integration | Global integration | A region with high integration means that movement is relatively easy among the overall regions to be analyzed. |
Local integration | Calculated by considering only a few space depths from each space, generally three space depths. | |
Intelligibility | The systemicity of the space is evaluated using an index derived from the correlation between the global and local integration. |
Type | Interpretation | Type | Interpretation |
---|---|---|---|
MD | Average spatial depth | Ks | The number of spaces in Step S |
TSDi | Total spatial depth in space i | Dn | Correction factor |
S | The number of steps taken through space i | d(i, k) | The depth from space i to space k |
m | The number of steps from space i to the deepest space | n | The total number of nodes |
K | The total number of spaces |
Type | Interpretation |
---|---|
A(r) | The relative interval value of the absolute value |
N | The number of axial lines |
Nx | The absolute sequence number of the corresponding axial line |
Nx | Nmin ≤ Nx ≤ Nmax |
Nmin | The minimum value of the axial line sequence number |
Nmax | The maximum value of the axial line sequence number |
Type | Global Integration | Local Integration |
---|---|---|
Axial line | 167,059 | |
Max | 0.569 | 6.001 |
Min | 0.090 | 0.333 |
Avg | 0.381 | 1.574 |
Pearson Correlation | I | I_3 | R250_I | R500_I | R750_I | R1000_I | R1250_I | R1500_I | R1750_I | R2000_I |
---|---|---|---|---|---|---|---|---|---|---|
I | 1 | |||||||||
I_3 | 0.541 ** | 1 | ||||||||
T1024_R250 | 0.116 | 0.399 ** | 1 | |||||||
T1024_R500 | 0.248 ** | 0.417 ** | 0.790 ** | 1 | ||||||
T1024_R750 | 0.313 ** | 0.438 ** | 0.693 ** | 0.919 ** | 1 | |||||
T1024_R1000 | 0.393 ** | 0.398 ** | 0.633 ** | 0.872 ** | 0.945 ** | 1 | ||||
T1024_R1250 | 0.448 ** | 0.407 ** | 0.578 ** | 0.814 ** | 0.900 ** | 0.980 ** | 1 | |||
T1024_R1500 | 0.492 ** | 0.396 ** | 0.538 ** | 0.765 ** | 0.853 ** | 0.947 ** | 0.986 ** | 1 | ||
T1024_R1750 | 0.526 ** | 0.386 ** | 0.503 ** | 0.711 ** | 0.797 ** | 0.902 ** | 0.953 ** | 0.983 ** | 1 | |
T1024_R2000 | 0.529 ** | 0.371 ** | 0.491 ** | 0.684 ** | 0.765 ** | 0.870 ** | 0.924 ** | 0.960 ** | 0.974 ** | 1 |
Kinds | Global Integration | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T1024 and R500 ** | T1024 and R750 *** | T1024 and R1000 *** | T1024 and R1250 *** | T1024 and R1500 *** | T1024 and R1750 *** | T1024 and R2000 *** | |||||||||||||||
DF | M | E | T | M | E | T | M | E | T | M | E | T | M | E | T | M | E | T | M | E | T |
2 | 177 | 179 | 2 | 177 | 179 | 2 | 177 | 179 | 2 | 177 | 179 | 2 | 177 | 179 | 2 | 177 | 179 | 2 | 177 | 179 | |
Sum of squares | 0.892 | 10.687 | 11.579 | 1.308 | 11.459 | 12.767 | 2.293 | 11.488 | 13.780 | 3.036 | 11.486 | 14.522 | 3.782 | 11.435 | 15.218 | 4.519 | 11.446 | 15.966 | 4.634 | 11.294 | 15.928 |
Mean square | 0.446 | 0.060 | 0.654 | 0.065 | 1.146 | 0.065 | 1.518 | 0.065 | 1.891 | 0.065 | 2.260 | 0.065 | 2.317 | 0.064 | |||||||
F | 7.385 | 10.105 | 17.661 | 23.390 | 29.271 | 34.944 | 36.314 |
Kinds | Local Integration | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T1024 and R250 *** | T1024 and R500 *** | T1024 and R500 *** | T1024 and R500 *** | T1024 and R1250 *** | T1024 and R1500 *** | T1024 and R1750 *** | T1024 and R2000 *** | |||||||||||||||||
DF | M | E | T | M | E | T | M | E | T | M | E | T | M | E | T | M | E | T | M | E | T | M | E | T |
2 | 177 | 179 | 2 | 177 | 179 | 2 | 177 | 179 | 2 | 177 | 179 | 2 | 177 | 179 | 2 | 177 | 179 | 2 | 177 | 179 | 2 | 177 | 179 | |
Sum of squares | 1.939 | 9.187 | 11.126 | 2.055 | 9.524 | 11.579 | 2.446 | 10.321 | 12.767 | 2.206 | 11.574 | 13.780 | 2.463 | 12.059 | 14.522 | 2.456 | 12.762 | 15.218 | 2.430 | 13.536 | 15.966 | 2.261 | 13.667 | 15.928 |
Mean square | 0.970 | 0.052 | 1.028 | 0.054 | 1.223 | 0.058 | 1.103 | 0.065 | 1.232 | 0.068 | 1.228 | 0.072 | 1.215 | 0.076 | 1.131 | 0.077 | ||||||||
F | 18.684 | 19.096 | 20.975 | 16.869 | 18.078 | 17.030 | 15.888 | 14.642 |
Plot | Global Integration | ||||||
---|---|---|---|---|---|---|---|
Equation | y = Intercept + B1* X^1 + B2* X^2 | ||||||
Type | T1024 and R500 | T1024 and R750 | T1024 and R1000 | T1024 and R1250 | T1024 and R1500 | T1024 and R1750 | T1024 and R2000 |
Intercept | 0.134 ± 0.068 | 0.172 ± 0.070 | 0.103 ± 0.070 | 0.092 ± 0.070 | 0.081 ± 0.070 | 0.066 ± 0.070 | 0.062 ± 0.070 |
B1 | 0.694 ± 0.287 | 0.554 ± 0.297 | 0.826 ± 0.297 | 0.833 ± 0.297 | 0.844 ± 0.297 | 0.894 ± 0.297 | 0.963± 0.295 |
B2 | −0.440 ± 0.256 | −0.249 ± 0.265 | −0.418 ± 0.265 | −0.369 ± 0.265 | −0.330 ± 0.265 | −0.333 ± 0.265 | −0.392 ± 0.263 |
Residual sum of squares | 10.687 | 11.459 | 11.488 | 11.486 | 11.435 | 11.446 | 11.294 |
R-Square (COD) | 0.077 | 0.102 | 0.166 | 0.209 | 0.249 | 0.283 | 0.291 |
Adj. R-Square | 0.067 | 0.092 | 0.157 | 0.200 | 0.240 | 0.275 | 0.283 |
Plot | Local Integration | |||||||
---|---|---|---|---|---|---|---|---|
Equation | y = Intercept + B1* X^1 + B2* X^2 | |||||||
Type | T1024_R250 | T1024_R500 | T1024_R750 | T1024_R1000 | T1024_R1250 | T1024_R1500 | T1024_R1750 | T1024_R2000 |
Intercept | 0.021 ± 0.059 | 0.105 ± 0.060 | 0.159 ± 0.063 | 0.224 ± 0.066 | 0.256 ± 0.068 | 0.279 ± 0.070 | 0.287 ± 0.072 | 0.296 ± 0.072 |
B1 | 0.754 ± 0.241 | 0.557 ± 0.245 | 0.404 ± 0.255 | 0.225 ± 0.270 | 0.128 ± 0.276 | 0.104 ± 0.284 | 0.154 ± 0.292 | 0.193 ± 0.293 |
B2 | −0.385 ± 0.212 | −0.188 ± 0.216 | −0.016 ± 0.225 | 0.127 ± 0.238 | 0.230 ± 0.243 | 0.251 ± 0.250 | 0.206 ± 0.257 | 0.159 ± 0.258 |
Residual sum of squares | 9.187 | 9.524 | 10.321 | 11.574 | 12.059 | 12.762 | 13.536 | 13.667 |
R-Square (COD) | 0.174 | 0.177 | 0.192 | 0.160 | 0.170 | 0.161 | 0.152 | 0.142 |
Adj. R-Square | 0.165 | 0.168 | 0.182 | 0.151 | 0.160 | 0.152 | 0.143 | 0.132 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Moon, J. Analysis of Urban Spatial Accessibility of Museums within the Scope of Seoul. Buildings 2022, 12, 1749. https://doi.org/10.3390/buildings12101749
Zhao X, Moon J. Analysis of Urban Spatial Accessibility of Museums within the Scope of Seoul. Buildings. 2022; 12(10):1749. https://doi.org/10.3390/buildings12101749
Chicago/Turabian StyleZhao, Xiaolong, and Jungmook Moon. 2022. "Analysis of Urban Spatial Accessibility of Museums within the Scope of Seoul" Buildings 12, no. 10: 1749. https://doi.org/10.3390/buildings12101749
APA StyleZhao, X., & Moon, J. (2022). Analysis of Urban Spatial Accessibility of Museums within the Scope of Seoul. Buildings, 12(10), 1749. https://doi.org/10.3390/buildings12101749