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Abstract: Hong Kong is a typical high-density city in a subtropical climate region, and deep street
canyons are among the main features of its urban planning. How the urban geometry influences the
urban thermal environment in this city has become a hot topic these days. The height-to-width ratio
(H/W) and sky view factor (SVF) are commonly used to indicate the outdoor thermal environment
performance, while previous studies in Hong Kong rarely analysed the importance bias of these two
influencing factors systematically in this context. To fill this research gap, in this paper, we chose
four typical sites in Hong Kong as research objects. Firstly, we conducted a field investigation to
calculate the main influencing factors of urban street geometry (H/W and SVF) and then used field
measurements to collect climatic data, including air temperature, wind speed, and relative humidity,
and finally used regression to analyse the correlation between H/W, SVF, and temperature. The
results indicate the following: (1) There is a greater correlation between H/W and air temperature
than between SVF and air temperature by regression analysis, and H/W is more effective at improving
the thermal environment within urban street canyons. (2) After field measurements, it was found that
H/W at the measurement sites was 0.60 to 6.02, with an average of 2.13. (3) In the study area, H/W
of 2.31–2.48 and 3.35–3.60 had a positive correlation with air temperature, and H/W had a dominant
influence on outdoor air temperature, and H/W of 2.09–2.31 and H/W > 3.60 was inversely related
to air temperature. The conclusions can provide support for urban planning in Hong Kong.

Keywords: thermal environment; urban street canyon; urban geometry; height-to-width ratio (H/W);
sky view factor (SVF)

1. Introduction
1.1. Basic Information of Hong Kong

Hong Kong is a coastal city in southern China, connected to Shenzhen to the north
and the south China Sea (22◦17′ N, 114◦09′ E), and has a humid subtropical climate.
Summer is the hottest and most humid season, while winter is more comfortable. The
summer season usually lasts seven months, from May to November [1]. Therefore, heat
and humidity in the summer is the main weather problem in Hong Kong compared to
winter weather, as it is more likely to cause heat stress in urban areas. In addition, Hong
Kong is also one of the most densely populated cities in the world, with a population
density of 7132.25 people per square kilometre [2], and it has become extremely common to
have residential spaces on narrow streets of 15–25 metres between approximately 40-to-
60-storey buildings (Figure 1) [3]. These conditions have led to the formation of unique
street canyons, making it more difficult for air above the street canyon level to pass through
deeper canyons. The urban heat environment is currently a hot research topic in Hong
Kong, triggered not only by global warming and the urban heat island (UHI) effects but
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also by epidemics, as the city has been severely hit by COVID-19 since 2020 in response to
which the government introduced a mask law requiring people to wear masks when going
out on the streets to reduce the number of infections and protect public health (Figure 2).
This has undoubtedly also led to a higher demand by the public for a warmer environment
on the streets. Therefore, how urban street canyons affect local microclimates and human
thermal comfort during the daytime in summer has become a major planning issue in
Hong Kong.
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1.2. Current Study Situation

Globally, many scholars have studied the thermal environment of urban canyons, com-
paring it with other parameters such as solar path, building coverage, greenery coverage,
and paving materials [6–8]. Studies show that the influential urban geometry factors H/W
and SVF have a significant impact on the thermal environment, while in Hong Kong, the
latest results indicate that current studies are more focused on quantifying and analysing
the SVF effect on the thermal environment. Meanwhile, some scholars have conducted
research on the urban thermal environment using Google Street View (GSV) images [9],
but rarely have they mentioned the effect of H/W on outdoor thermal environment perfor-
mance. Thus, it is necessary to find the correlation between H/W, SVF, and the thermal
environment in order to clearly determine the dependence of the thermal environment of
urban street canyons on urban geometry for future urban planning.

1.3. Research Objectives

In order to fill this research gap, we use urban geometry to study the outdoor thermal
environment in Hong Kong at the street level and selected H/W and SVF as the study
parameters to quantify their impact on the thermal environment and compare them. It is
possible to determine which parameter has a greater impact on the thermal environment
and, according to the regression result, find correlations between the influencing factors
on the urban thermal environment to provide guidance for future urban planning in
Hong Kong.

2. Literature Review
2.1. Effect of Urban Street Canyon Design on Thermal Environment

According to current research, many design aspects of urban street canyons, such
as H/W and SVF, are noted to have a significant impact on the thermal environment of
urban streets [10]. Even though other design factors, such as building coverage, greenery
coverage, building and paving materials, and land use, also partly influence outdoor
thermal comfort, H/W and SVF are considered to be the main influences on the thermal
environment in urban street canyons. A specific analysis of the relationship between H/W
and SVF and the urban thermal environment is available in the relevant literature.

2.1.1. H/W

H/W is the ratio between the height of a building (H) and the width of the street between
buildings (W) in two-dimensional (2D) form and has a great effect on the amount of incident
and outgoing solar radiation and wind distribution within urban street canyons [10–12].

Many scholars have conducted studies related to H/W in the tropics. For example,
in 2005, Erik Johansson studied the influence of the geometry of the Moroccan city of Fez
(33◦158′ N, 4◦159′ W) on the outdoor thermal environment by comparing the effect of H/W
on the microclimate at street level. The results of the study showed that the maximum
diurnal temperature difference between the deepest street canyon (H/W ≈ 10) and the
shallowest street canyon (H/W = 0.6) was, on average, 6 K in summer and could reach
10 K on the hottest days. The average summer temperatures of deep and shallow street
canyons compared to rural sites indicate that the cooling island effect of deep canyons is
quite pronounced during hot summer days. Nighttime temperatures are higher in deep
canyons than in shallow canyons because there is less open sky in deep canyons. The
study also showed that in winter, shaded canyons are more comfortable than deep canyons
because there is more solar access during the day [12].

A study was also conducted in the tropical city of Singapore. In this work, the
researchers assessed the impact of urban geometry on outdoor thermal comfort (OTC),
focusing on a new mixed-use high-rise development in the city. The authors analysed
different urban design strategies/scenarios: two block forms, four street orientations (north–
south, east–west, north–east–west, north–west–east), four H/W values (from 1.5 to 3.5),
and three building height scenarios (height-based building alignment). The study was
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based on modelling techniques. Their results showed the best OTC levels on H/W of 2.5–3
and a north–south orientation [13].

Another study simulated 36 scenarios in winter and summer for the municipality of
Campinas in São Paulo, Brazil, located in the mid-latitude tropics. The simulations included
space between buildings, which varied in H/W (avenue, normal, and deep canyons with
H/W = 0.5, H/W = 1.0, and H/W > 2.0) and L/H (short, medium, and long canyons with
L/H = 3.0, L/H = 5.0, and L/H > 7.0). The results show that canyons with higher H/W
values had increased wind speed and shading from buildings, thus affecting pedestrian
thermal comfort, especially in summer. In contrast, in winter, increased H/W had no
significant effect on thermal comfort at the pedestrian level [14]

Muniz-Gäal et al. showed that, in Campinas, the maximum temperature was 1.0 ◦C lower
in the scenario with a higher correlation between canyon height and width (H/W > 1.0) than in
the more open scenario (H/W = 0.4). The increase in H/W led to increased canyon shading and
reduced daily comfort variability and peak physiological equivalent temperature (PET) [15].

Studies by Sun et al. in cold regions of China showed that shallow and weak canyons
(0.5 < H/W < 1.5) were more favourable in cold climates, with the best streets being near
the N–S direction, followed by intermediate directions, while deeper canyons (H/W > 1.5)
were not recommended due to the lack of absorption of sunlight [16].

2.1.2. SVF

The SVF concept was first introduced by Oke in 1981 to assess the urban heat island
effect [17]. More recently, it has been used as a geometric concept to provide a scale of
the visible area of the sky within a street canyon, illustrated by dimensionless values [18].
Previous studies showed that the urban morphology is significantly related to local solar
irradiance and air temperature [3], and in describing urban climate and its spatial variability,
the skyscape factor (SVF) plays a key role.

SVF was used as the main indicator to assess the impact of urban geometry on air
temperature using ENVI-met software for field measurements in the city centre of Curitiba,
Brazil, which is in a tropical region. Two dependent variables were assessed in this study:
diurnal heat island, defined by the temperature difference between the measurement site
and the reference climate station, and ∆MRT-T, calculated from the difference between the
measured hourly mean radiation temperature and the ambient air temperature. It shows
the correlation between SVF and ∆MRT-T, which is higher than the correlation between
SVF and diurnal heat island, with a coefficient of determination (R2) of 0.35, which is higher
than 0.10, indicating that the mean radiation temperature is more closely related to SVF
than to ambient air temperature [18].

He et al. studied the effects of SVF on outdoor thermal conditions and PET in the
Beijing Central Business District (located in Chaoyang District), which has a temperate
climate with highly shaded areas in hot summers and long, cold, windy, dry winters. The
findings indicated that SVF < 0.3 was typically associated with fewer heat conditions in
summer and longer periods of cold discomfort in winter than moderately shaded areas
(0.3 < SVF < 0.5) and lightly shaded areas (SVF > 0.5), and vice versa [19].

Although researchers have demonstrated the importance of SVF to the urban thermal
environment, there was one exception, a study that was conducted in Kano (12◦00’ N, 8◦31’ E),
the largest city in northern Nigeria, a topical region. The city has an average annual temperature
of 30.75 ◦C, usually receives about 49.8 mm of precipitation, and has 62.99 rainy days per
year. The average maximum temperature throughout the year is 36.33 ◦C, and the minimum
temperature reaches 22.52 ◦C. The researchers found there was little relationship between SVF
and temperature distribution. This result implies a generally weak influence of SVF on the
temperature in that city. This suggests that other factors, such as wind, cloud cover, proximity
to bodies of water, and heat release from human activity, may have a greater influence on the
temperature distribution in the region [20].

In addition, SVF has been used as a research parameter when studying the relationship
between subtropical high-density urban geometry and urban microclimate. A UHI study
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was conducted in Hong Kong during the summer months. The results showed that SVF
was highly correlated with diurnal UHI, with R2 values of 0.7 and 0.8. The relationship
between SVF and intra-urban air temperature differences within the street canyons of
Hong Kong during the summer was determined by generating SVF maps of the entire
urban environment using ArcGIS-based software. The study noted that SVF analysis is
valid for urban microclimate studies in Hong Kong. The study also noted that regional
SVF averages are more suitable for quantifying the relationship between urban geometry
and intra-urban daytime temperature differences than point SVF values [3]. Regarding
SVF measurement, an empirical case study was conducted based on a simulated three-
dimensional (3D) urban model of a typical street canyon in Hong Kong. It shows a general
trend in the negative effect of SVF on temperature difference, which suggests that smaller
SVF values generally lead to higher temperature differences, however, the coefficient of
determination is relatively low (R2 = 0.18) [3].

2.1.3. Correlation between H/W, SVF, and Urban Thermal Environment

Past scholarly research has found that in tropical, subtropical, and Mediterranean cli-
mates, temperature cooling in summer is more effective as H/W and SVF increase [21–23].
This shows that H/W and SVF have an effect on the urban thermal environment at the
same time, and which factor is greater for the urban thermal environment was analysed in
the literature.

In the tropical climate of Constantine, Algeria, researchers assessed the effect of
SVF on microclimate within a street canyon. In this study, the researchers set up seven
sites to collect climate data and calculated SVF values and H/W for these sites. The air
temperature at these sites directly indicated that lower SVF and higher H/W values led
to colder conditions. The results of the study showed that the relationship between air
temperature and SVF was lower than expected, with a lower coefficient of determination
(R2) based on an entire 24-h period. A higher coefficient of determination between SVF and
air temperature was found between 12:00 and 18:00 (R2 = 0.46) [21].

Deevi and Chundeli conducted a study in 2020 using regression of SVF and H/W, and
they investigated the factors influencing the outdoor thermal comfort of a street canyon.
User-perception surveys and empirical measurements using TESTO 480 and TESTO 870
thermal imagers were carried out at six selected grid points along the 600 m long, 12 m
wide Besant Road, a semi-motorised commercial street in Vijayawada, Andhra Pradesh,
India. SVF was the predominant physical parameter influencing thermal comfort in existing
streets, while H/W slightly influenced the overall comfort condition. It was noted that SVF
can be modified more easily than H/W [22].

Another study evaluated the thermal comfort of different spaces in five types of street
microclimates in urban and rural Chongqing. The results showed that SVF had a more
significant impact on the thermal environment of the streets than H/W. Among the various
types of streets, B-N with one open side (SVF = 0.474) had the worst thermal environment,
with an average universal thermal climate index (UTCI) of 44.7 ◦C. The two-sided closed
B2-B2 (SVF = 0.052) had a better thermal environment, with an average UTCI of 35.5 ◦C.
The R2 value of 0.88 reflected a greater linear correlation between UTCI and SVF than H/W,
with an R2 value of only 0.04 [23].

2.2. Review Conclusion

According to the above findings, the conclusions of the review are summarised as follows:
1© In terms of climate regions, previous research was mainly conducted in the tropics

and in cold climate zones [12,13,16], with very limited research in subtropical areas.
2© Most of the research showed that SVF has a greater effect on temperature than

H/W [19].
3© Current studies in Hong Kong are mostly focused on the effect of SVF on the urban

thermal environment and rarely mention the H/W effect [22,23].
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3. Research Methodology

In order to find out the influence of street canyon design factors on the urban thermal
environment, several variables had to be collected. Firstly, urban geometry data were
collected through field surveys and used primarily to calculate H/W. Secondly, SVF was
calculated using ArcGIS-based software. Then, data measurement instruments were used
to monitor the open space around the research site, and the data were compared with the
Hong Kong Observatory data to verify the accuracy of the instruments. On this basis, fixed-
point field measurements were made using the instruments to obtain climate data such
as temperature, relative humidity, and wind speed. After obtaining the urban geometry
design factor and the thermal environment evaluation index, the correlation between
the independent and dependent variables was determined through regression analysis,
and the dependence of the urban street canyon thermal environment on urban geometry
was indicated by the coefficient of determination (R2) value, while the range of optimal
urban geometry data for the Hong Kong region in summer was derived by combining the
monitored temperature with the urban geometry data obtained from the research.

3.1. Software Method for Calculating H/W
3.1.1. Calculation

In this step, the height and width of buildings on both sides of the street were measured
using models of four site blocks provided by the Government of Hong Kong (HKSAR), as
shown in Figure 3.
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Figure 3. SketchUp models of four site blocks. (a) SketchUp models of site 1 block. (b) SketchUp
models of site 2 block. (c) SketchUp models of site 3 block. (d) SketchUp models of site 4 block.

3.1.2. Validation

We visited four neighbourhoods and selected two main streets and two secondary
streets in the study area: Mong Kok Road, Nathan Road, Shanghai Street, and Temple Street.
The H/W data of these four streets were measured in the field and compared with the H/W
values calculated from the SketchUp model data provided by the Government of Hong
Kong. The results of the comparison are shown in Table 1, with an error of ≤0.02. It can
therefore be concluded that the H/W calculated from the urban geometry data measured
by the SketchUp model is somewhat accurate and can be used as research data.

Table 1. Comparison of H/W by field measurement and SketchUp model measurement.

Measurement Method Mong Kok Rd Nathan Rd Shanghai St Temple St

H/W field
measurement 0.73 2.55 1.45 1.38

SketchUp model with
H/W measurement 0.72 2.54 1.45 1.39
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3.2. GIS-Based Software Method for Calculating SVF
3.2.1. Calculation

In this paper, SVF is regarded as an urban geometry factor to evaluate its effect on
the thermal environment. An ArcGIS-based computer program was used to calculate the
SVF value of four selected urban areas, which has been proven efficient for calculating SVF
in high-rise and high-density subtropical cities such as Hong Kong [8]. In this study, SVF
was calculated by the SOLWEIG model [24] based on a shadow-casting algorithm and then
imported into ArcGIS to generate the SVF map. The GIS-based software method uses a
building database of 3D models and reconstructs the urban environment in the computer’s
memory, which is greatly affected by the availability of the building database. It has been
widely adopted in recent studies and has the advantage of rapid calculation of continuous
SVF, even for large areas [24]. Figure 4a,b show several sky views of the Mong Kok area,
illustrating typical street canyons of Hong Kong with limited openness to the sky.
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3.2.2. Validation

ArcGIS-based software methods that are currently used in the field of architecture have
become more authoritative for computing SVF. The method was validated by Chen et al. as
follows: They tested two parameterised models proposed by Oke [3] and calculated SVF
by the fisheye lens photo and ArcGIS analysis methods. Then they compared the results
between the two methods, which showed that the calculations by both methods were generally
satisfactory. They took six photos of areas in Hong Kong with densely built buildings and
scarce vegetation and used the fisheye lens calculation method and then ArcGIS to calculate
SVF in the same area. The difference between the two results was small (error < 0.05), much
smaller than the difference found by Gal et al. The experimental data from Chen show that
GIS data analysis has good accuracy and is feasible to use in Hong Kong [3].

3.3. Field Measurement

Most of the current methods used in research on the thermal environment of outdoor
streets are software simulations, but we found that simulation experiments could simplify
the model, such as simplifying the scale and complexity of the neighbourhood. However,
there is no fixed standard for the degree of model simplification within this discipline,
and different degrees of simplification will produce different errors in the experimental
results, so the resulting parameters will not fully reflect the real situation of the thermal
environment. Field measurements and simulations have a sequential relationship and
should be used repeatedly to verify problems after they have been identified, so field
measurements are essential in this study.
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3.3.1. Measurement Method

The equipment used to collect climate data for this study was a TESTO 400 (Figure 5),
which measures temperature, relative humidity, and wind speed with an accuracy of
±0.1 ◦C, ±1.5% RH, and ±0.1 m/s, respectively. The TESTO 400 is ISO certified for use
in this research. It is placed in a specified research area during the experiment, and the
measurement data are used for subsequent studies.
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3.3.2. Validation

The research team placed the TESTO 400 instrument in an open space near the mea-
surement area to collect climate data of temperature, humidity, and wind speed for a period
of 24 h on 30 October 2021 ( Table 2). The average values measured by the instrument
were compared with the daily averages of the Hong Kong Observatory for the day, and the
difference in results were 0.3 ◦C for temperature, 2% for humidity, and 0.15 m/s for wind
speed, which were all within the low margins of error. This demonstrated the accuracy of
measurement data from this instrument.

Table 2. Statistics on measurement, weather station, and error data.

Data Date Measurement
Period Temperature (◦C) Humidity

(%) Wind Speed (m/s)

Hong Kong Observatory 30 October 2021 00:00–00:00 (24 h) 24.3 75 3.25
On-site measurement 30 October 2021 00:00–00:00 (24 h) 24 73 3.40

Data error 30 October 2021 00:00–00:00 (24 h) 0.3 2 0.15

3.4. Analysis Method

Regression analysis, which is a statistical process for estimating the relationship
between variables, was used to predict the effects of urban street design factors on the
thermal environment. The main independent variables evaluated in this paper were H/W
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and SVF, and the dependent variable was air temperature. By determining the value of the
correlation coefficient (R2), the correlation between the thermal environment inside urban
street canyons and the urban geometry design factors (H/W and SVF) could be determined.
By comparing the magnitude of the correlation, the urban geometry design factors suitable
for the study could be identified, and then the optimum factor for the summer period in
the Hong Kong region could be analysed by combining the field measurement data and the
actual situation. This was then combined with the field measurement data and the actual
conditions in order to analyse the optimal H/W or SVF for the summer period and make
recommendations for enhancing the urban outdoor environment in Hong Kong.

4. Case Study
4.1. Information Monitored in the Field
4.1.1. Basic Information of Selected Site

As Hong Kong is a densely packed city, deep street canyons are common, which
means that less solar radiation will penetrate into narrow urban streets; however, they will
also trap short- and long-wave radiation and reduce turbulent heat loss [25]. Four typical
street canyon areas were selected as the target sites in this study to investigate the effect of
urban street canyon geometry on urban thermal environment. Sites 1 and 2 are located in
Mong Kok, where most buildings are commercial buildings, and sites 3 and 4 are located in
Yau Ma Tei, where more buildings are residential. The general locations of the four sites are
shown in Figures 6 and 7, and they show their Google Street Views of different streets at
the four sites.
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4.1.2. Measurement Time, Parameters, and Distribution of Measurement Points (MP)

The fixed field survey was carried out at four street canyons in Mong Kok and Yau Ma
Tei. Four sites with a total area of 300 m × 300 m were set up to cover each street in the
selected area, with a total of 66 measurement points. The measurement period was 1 to 5
November 2021: site 1 on 1 November, site 2 on 2 November, site 3 on 3 November, and
site 4 on 5 November. The measurement factors were temperature, humidity, and wind
speed (Table 3). On-site measurement was carried out according to the different sites, with
the sampling time of the data logger set at 2 s and the average measurement time for each
site set at 5 min. The time interval between two adjacent measurement points was 5 min,
and the average of temperature, wind speed, and humidity at each point was calculated as
the reference data for this study.

Table 3. Measurement parameters.

Date Study Site Measurement Period Measurement Parameters

1 November 2021 1 13:00–15:30

Temperature Humidity Wind speed2 November 2021 2 13:00–15:25
3 November 2021 3 13:00–15:45
5 November 2021 4 13:00–15:50
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The field measurement point distribution plan is shown in Figure 8. Each street has an
average of two measurement points, one or two of which will be placed in the open space
to cover the four sites. There were 16 measurement points at site 1, 15 at site 2, 17 at site 3,
and 18 at site 4, for a total of 66 measurement points (Figure 8).
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4.2. Basic Data Analysis
4.2.1. Calculation Results of H/W

The H/W of each street in the four study sites was calculated, and the values are given
in Table 4. Urban street canyons in Hong Kong are usually asymmetrical, with the height
of the buildings on either side of the street varying considerably depending on the location
of the measurement point. The building heights were averaged over H1 and H2, then H/W
was analysed in this paper.
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Table 4. H/W of urban streets at four study sites.

Site No. Street Name Points
Building Height (m)

Street Width (m) H/WLeft (H1) Right (H2)

1

Portland St
P8 41.60 23.10

15.48
2.09

P10 43.60 55.40 3.20

Nathan Rd
P12 45.20 70.80

30.63
1.89

P16 48.10 69.10 1.91

Sai Yeung Choi St South P11 32.40 33.20
18.00

1.82
P14 67.60 54.40 3.39

Mong Kok Rd P3 39.40 5.00
30.41

0.73
P9 21.20 23.80 0.74

Fife St
P5 20.90 28.70

11.06
2.24

P13 16.80 67.70 3.82

Argyle St P7 57.40 53.00
30.60

1.80
P15 69.10 72.10 2.31

Shanghai St P4 28.70 81.40
19.76

2.79
P6 23.70 20.10 1.11

2

Portland St
P11 82.00 15.00

15.51
3.13

P13 27.60 21.60 1.59

Shantung St P6 13.20 31.70
15.86

1.42
P12 15.60 63.00 2.48

Nathan Rd
P8 85.30 71.10

30.63
2.55

P9 85.10 80.10 2.70

Sai Yeung Choi St South P5 17.60 37.00
18.39

1.48
P7 85.30 26.60 3.04

Tung Choi St P2 24.30 29.90
18.26

1.48
P3 21.70 29.40 1.40

Soy St P4 37.10 71.00
16.58

3.26
P14 85.10 26.00 3.35

Nelson St
P1 30.60 23.10

12.08
2.22

P10 74.40 71.10 6.02

3

Waterloo Rd
P6 78.30 24.10

30.55
1.68

P17 42.70 33.00 1.24

Nathan Rd
P15 39.60 46.30

30.59
1.40

P16 18.30 45.10 1.04

Portland St
P5 30.00 53.00

15.71
2.64

P7 120.10 25.00 4.62

Shanghai St P3 23.10 29.80
18.22

1.45
P11 34.10 30.30 1.77

Reclamation St
P1 43.70 23.40

15.94
2.10

P12 4.00 19.40 0.73
Man Ming Ln P10 8.10 15.70 9.19 1.29
Hi Lung Ln P14 22.00 20.90 9.21 2.33

4

Temple St P5 13.00 21.20
12.42

1.38
P14 53.10 6.90 2.42

Woosung St P6 21.20 15.10
12.46

1.46
P13 50.80 72.70 4.96

Parkes St
P8 28.00 13.00

15.64
1.31

P11 33.90 6.90 2.54

Pilkem St
P9 18.80 14.10

15.92
1.03

P10 7.00 12.20 0.60

Shanghai St P3 62.40 20.40
15.43

2.68
P16 28.80 3.80 1.06

Kwun Chung St P2 17.10 10.10
12.55

1.08
P17 13.10 19.80 1.31

Austin Rd
P12 48.30 10.00

25.59
1.14

P15 44.30 97.80 2.78

Bowring St P4 51.60 62.10
15.80

3.60
P7 26.00 31.60 1.82

Figure 9a shows the H/W at measurement points of site 1, with maximum and
minimum values of 3.82 and 0.74, or a difference of 3.08. Figure 9b shows the H/W at
measurement points of site 2, with maximum and minimum values of 6.02 and 1.40, or
a difference of 4.62. Figure 9c shows the H/W at measurement points of site 3, with
maximum and minimum values of 4.62 and 0.73, or a difference of 3.89. Figure 9d shows
the H/W at measurement points of site 4, with maximum and minimum values of 4.96 and
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0.60, or a difference of 4.36. The lowest variation of H/W was at site 1, and the highest was
at site 2.
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4.2.2. Result of SVF Calculation

The SVF maps of the four study sites are shown in Figure 10. The SVF values were
calculated by SOLWEIG [24] and then imported into ArcGIS.
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The SVF value for each point was calculated by the average value of a 5 m × 5 m
rectangle with the measurement point at the centre, because the areal SVF average was
proved to be more adequate to quantify the relationship between urban geometry and
daytime intra-urban temperature differences than point SVF [3]. The calculated SVF values
of study sites are summarised in Table 5.

Table 5. SVF values of urban streets at four study sites.

Site No. Urban Space Street Name MP SVF

1 Street canyon

Portland St
P8 0.2206

P10 0.2868

Nathan Rd
P12 0.4157
P16 0.2490

Sai Yeung Choi St South P11 0.2394
P14 0.2608

Mong Kok Rd P3 0.6761
P9 0.3408

Fife St
P5 0.3648

P13 0.2936

Argyle St P7 0.5236
P15 0.3535

Shanghai St P4 0.2901
P6 0.3252

2 Street canyon

Portland St
P11 0.1926
P13 0.2092

Shantung St P6 0.2708
P12 0.2201

Nathan Rd
P8 0.2243
P9 0.2810

Sai Yeung Choi St South P5 0.1989
P7 0.1754

Tung Choi St P2 0.2646
P3 0.2412

Soy St P4 0.2600
P14 0.2904

Nelson St
P1 0.1823

P10 0.0925
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Table 5. Cont.

Site No. Urban Space Street Name MP SVF

3 Street canyon

Waterloo Rd
P6 0.3240

P17 0.3424

Nathan Rd
P15 0.3139
P16 0.4821

Portland St
P5 0.3926
P7 0.2013

Shanghai St P3 0.3034
P11 0.2468

Reclamation St
P1 0.3775

P12 0.5913
Man Ming Ln P10 0.3463
Hi Lung Ln P14 0.3821

4 Street canyon

Temple St P5 0.2457
P14 0.1791

Woosung St P6 0.2064
P13 0.1905

Parkes St
P8 0.2948

P11 0.2321

Pilkem St
P9 0.2345

P10 0.2441

Shanghai St P3 0.2590
P16 0.1881

Kwun Chung St P2 0.3764
P17 0.2699

Austin Rd
P12 0.5619
P15 0.2321

Bowring St P4 0.3175
P7 0.2777

Figure 11a shows SVF at measurement points of site 1, with maximum and minimum
values of 0.6761 and 0.2206, or a difference of 0.4555. Figure 11b shows SVF at measurement
points of site 2, with maximum and minimum values of 0.2904 and 0.0925, or a difference
of 0.1979. Figure 11c shows SVF at measurement points of site 3, with maximum and
minimum values of 0.5913 and 0.2013, or a difference of 0.3900. Figure 11d shows SVF at
measurement points of site 4, with maximum and minimum values of 0.5619 and 0.1791, or
a difference of 0.3828. The smallest change in SVF was at site 2, and the largest was at site 1.
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4.2.3. Result of Field Measurement

Table 3 lists urban climate data, including temperature (T), relative humidity (RH),
and wind speed (V), corresponding to the measurement points of every street at the four
study sites, along with average values for these parameters.

By collating field measurement data from Table 4, we categorised humidity, tempera-
ture, and wind speed into four levels, A, B, C, and D, with temperature ranges of 30–31 ◦C,
29–30 ◦C, 28–29 ◦C, and 27–28 ◦C; humidity of 72–78%, 66–72%, 60–66%, 54–60%; and wind
speed of 1.2–1.6 m/s, 0.8–1.2 m/s, 0.4–0.8 m/s, and 0–0.4 m/s, respectively. Combined
with the field measurements, the spatial distribution of temperature, humidity, and wind
speed in each urban street canyon is shown in the figures as follows.

The temperature distribution of measurement points at site 1 is shown in Figure 12a.
There are seven measurement points at temperature level C and six at level D. Figure 12b
shows the temperature distribution of measurement points at site 2, with eleven measure-
ment points at temperature level C and three points at level D. Figure 12c shows that there
are eight measurement points at level C and a few at level B and level D. The temperature
distribution of measurement points at site 4 shows eleven at level B and three at level C
in Figure 12d. Overall, the distribution of temperature level at site 4 is dominated by A,
B, and C, with the highest average temperature, while site 2 is dominated by C, with the
lowest average temperature.
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Figure 12. Temperature distribution of measurement points at different sites. (a) Temperature
distribution of measurement points at site 1 on 1 November 2021. (b) Temperature distribution of
measurement points at site 2 on 2 November 2021. (c) Temperature distribution of measurement
points at site 3 on 3 November 2021. (d) Temperature distribution of measurement points at site 4 on
5 November 2021.

Figure 13a shows that wind speed at site 1 is mainly at level B, distributed over eight
measurement points. Figure 13b shows that there are five measurement points at site 2
with level B wind speed and five at level C. There are two points at site 3 with level A wind
speed, five with level B, and five with level C (Figure 13c). There is a maximum of ten
measurement points with level C wind speed and three with level B at site 4 (Figure 13d).
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Figure 13. Wind speed distribution of measurement points at different sites. (a) Wind speed dis-
tribution of measurement points at site 1 on 1 November 2021. (b) Wind speed distribution of
measurement points at site 2 on 2 November 2021. (c) Wind speed distribution of measurement
points at site 3 on 3 November 2021. (d) Wind speed distribution of measurement points at site 4 on 5
November 2021.
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As can be seen in Figure 14, there are eight measurement points at site 1 with level B
humidity, five with level C, and only one with level D (Figure 14a). Figure 14b shows that
there is one measurement point at site 2 with level A humidity, eleven with level B, and
two with level C. The distribution at site 3 shows that there are five measurement points
with level A humidity and seven with level B (Figure 14c). Figure 14d shows that there are
ten measurement points with level C humidity and six with level D at site 4. It can be seen
that the overall humidity is higher at site three and lower at site 4.
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Figure 14. Humidity distribution of measurement points in different sites. (a) Humidity distribution
of measurement points in site 1 on 1 November 2021. (b) Humidity distribution of measurement
points in site 2 on 2 November 2021. (c) Humidity distribution of measurement points in site 3 on 3
November 2021. (d) Humidity distribution of measurement points in site 4 on 5 November 2021.

4.3. Regression Analysis

Table 6 provides a reliable record of the outdoor temperature, wind speed, humid-
ity and the H/W and SVF values at each measurement point, which is used as a data
resource for the subsequent calculation of the correlation between H/W and SVF values
and temperature respectively, and for comparing the correlation in this study.
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Table 6. Summary of thermal environmental parameter and SVF and H/W.

Site NO. Urban
Space Name MP H/W SVF Ta (◦C) RH (%) V (m/s)

1
Street

canyon

Portland St
P8 2.09 0.2206 28.44 64.30 0.22

P10 3.20 0.2868 27.82 66.59 0.81

Nathan Rd
P12 1.89 0.4157 28.89 64.01 1.03
P16 1.91 0.2490 28.83 63.73 0.85

Sai Yeung Choi St South P11 1.82 0.2394 28.24 67.64 0.58
P14 3.39 0.2608 28.02 66.53 0.67

Mong Kok Rd P3 0.73 0.6761 28.87 65.64 0.85
P9 0.74 0.3408 29.07 63.91 1.00

Fife St
P5 2.24 0.3648 27.98 66.66 0.96

P13 3.82 0.2936 27.80 68.07 0.98

Argyle St P7 1.80 0.5236 27.99 67.75 0.94
P15 2.31 0.3535 27.38 69.41 1.20

Shanghai St P4 2.79 0.2901 27.79 66.73 0.71
P6 1.11 0.3252 28.70 65.02 0.59

2
Street

canyon

Portland St
P11 3.13 0.1926 28.13 71.44 0.54
P13 1.59 0.2092 28.54 68.40 0.99

Shantung St P6 1.42 0.2708 28.38 68.15 1.01
P12 2.48 0.2201 28.36 70.61 1.07

Nathan Rd
P8 2.55 0.2243 28.74 67.51 0.83
P9 2.70 0.2810 28.93 69.14 0.61

Sai Yeung Choi St South P5 1.48 0.1989 28.54 65.53 0.41
P7 3.04 0.1754 27.80 65.22 0.38

Tung Choi St P2 1.48 0.2646 28.46 69.62 0.35
P3 1.40 0.2412 28.57 69.03 0.31

Soy St P4 3.26 0.2600 27.51 69.79 0.99
P14 3.35 0.2904 28.07 71.58 0.77

Nelson St
P1 2.22 0.1823 28.39 68.18 0.64

P10 6.02 0.0925 27.40 72.15 0.85

3
Street

canyon

Waterloo Rd
P6 1.68 0.3240 28.14 73.43 1.06

P17 1.24 0.3424 28.65 72.33 0.78

Nathan Rd
P15 1.40 0.3139 28.88 70.81 0.82
P16 1.04 0.4821 29.00 70.80 0.91

Portland St
P5 2.64 0.3926 28.46 71.69 0.94
P7 4.62 0.2013 27.45 75.87 1.56

Shanghai St P3 1.45 0.3034 28.41 70.91 0.74
P11 1.77 0.2468 28.28 71.92 0.43

Reclamation St
P1 2.10 0.3775 27.92 71.65 1.56

P12 0.73 0.5913 28.40 72.06 0.74
Man Ming Ln P10 1.29 0.3463 29.26 71.31 0.97
Hi Lung Ln P14 2.33 0.3821 28.07 74.30 0.43

4
Street

canyon

Temple St P5 1.38 0.2457 29.42 61.81 0.72
P14 2.42 0.1791 28.49 61.24 1.45

Woosung St P6 1.46 0.2064 29.14 62.96 1.02
P13 4.96 0.1905 27.75 63.54 0.75

Parkes St
P8 1.31 0.2948 29.23 61.80 0.49

P11 2.54 0.2321 30.14 59.68 0.65

Pilkem St
P9 1.03 0.2345 29.47 60.01 0.75

P10 0.60 0.2441 29.95 58.61 0.72

Shanghai St P3 2.68 0.2590 28.51 64.76 1.13
P16 1.06 0.1881 29.60 55.02 0.72

Kwun Chung St P2 1.08 0.3764 29.35 62.48 0.97
P17 1.31 0.2699 29.47 56.40 0.40

Austin Rd
P12 1.14 0.5619 29.73 58.71 1.22
P15 2.78 0.2321 29.55 57.80 0.67

Bowring St P4 3.60 0.3175 28.76 64.45 0.51
P7 1.82 0.2777 29.22 64.50 1.26



Buildings 2022, 12, 1836 20 of 24

4.3.1. Regression between H/W and Temperature

The relationship between air temperature and H/W of the four study sites is shown
separately in Figure 15 based on the different climate conditions of the four field mea-
surement periods. Through regression analysis of measurement point data, the linear
correlation of air temperature and H/W for each site was generated. All four study sites
show that H/W has a negative effect on air temperature (2 m above ground level) within
street canyons, with the coefficient of determination (R2) ranging from 0.5232 to 0.5463
(Table 7). Site 2 shows the highest correlation, and site 4 has the relatively lowest correlation
between air temperature and H/W. In general, H/W is an efficient parameter to use in
evaluating the effect of shading of urban street canyons on the thermal environment.

Buildings 2022, 12, x FOR PEER REVIEW 20 of 24 
 

  

(a) (b) 

  

(c) (d) 

Figure 15. Relationship between air temperature (2 m above ground) and H/W of different sites. (a) 

Relationship between air temperature (2 m above ground) and H/W of site 1. (b) Relationship be-

tween air temperature (2 m above ground) and H/W of site 2. (c) Relationship between air temper-

ature (2 m above ground) and H/W of site 3. (d) Relationship between air temperature (2 m above 

ground) and H/W of site 4. 

Table 6. Summary of H/W and temperature correlation at each site. 

Site No. Regression Equation R2 α (%) 

1 ΔT = −0.4125 × H/W + 29.152 0.5365 5 

2 ΔT = −0.2639 × H/W + 28.954 0.5326 5 

3 ΔT = −0.3583 × H/W + 29.076 0.5463 5 

4 ΔT = −0.3807 × H/W + 29.978 0.5232 5 

4.3.2. Regression between SVF and Temperature 

The relationship between air temperature and SVF of the four study sites is shown 

separately in Figure 16. Through regression analysis of measurement point data, the linear 

correlation of air temperature and SVF for each site was generated. Regression equations 

of all four sites show a slightly positive effect of SVF on air temperature, which means that 

air temperature increases with increased SVF (Figure 16). However, the correlation of SVF 

and air temperature is quite low, with the relatively highest determination coefficient (R2) 

of 0.2120 for site 2 and the relatively lowest R2 of 0.0523 for site 1 (Table 7). Compared with 

the correlation of air temperature and H/W, SVF has a relatively weaker effect on temper-

ature. 

Figure 15. Relationship between air temperature (2 m above ground) and H/W of different sites.
(a) Relationship between air temperature (2 m above ground) and H/W of site 1. (b) Relationship
between air temperature (2 m above ground) and H/W of site 2. (c) Relationship between air
temperature (2 m above ground) and H/W of site 3. (d) Relationship between air temperature (2 m
above ground) and H/W of site 4.

Table 7. Summary of H/W and temperature correlation at each site.

Site No. Regression Equation R2 α (%)

1 ∆T = −0.4125 × H/W + 29.152 0.5365 5
2 ∆T = −0.2639 × H/W + 28.954 0.5326 5
3 ∆T = −0.3583 × H/W + 29.076 0.5463 5
4 ∆T = −0.3807 × H/W + 29.978 0.5232 5

4.3.2. Regression between SVF and Temperature

The relationship between air temperature and SVF of the four study sites is shown
separately in Figure 16. Through regression analysis of measurement point data, the linear
correlation of air temperature and SVF for each site was generated. Regression equations of
all four sites show a slightly positive effect of SVF on air temperature, which means that air
temperature increases with increased SVF (Figure 16). However, the correlation of SVF and
air temperature is quite low, with the relatively highest determination coefficient (R2) of
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0.2120 for site 2 and the relatively lowest R2 of 0.0523 for site 1 (Table 8). Compared with the
correlation of air temperature and H/W, SVF has a relatively weaker effect on temperature.
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(a) Relationship between air temperature (2 m above ground) and SVF at site 1. (b) Relationship
between air temperature (2 m above ground) and SVF at site 2. (c) Relationship between air temper-
ature (2 m above ground) and SVF at site 3. (d) Relationship between air temperature (2 m above
ground) and SVF at site 4.

Table 8. Summary of SVF and temperature correlation at each measurement point.

Site No. Regression Equation R2 α (%)

1 ∆T = 0.9695 × SVF + 27.938 0.0523 5
2 ∆T = 3.8822 × SVF + 27.412 0.2120 5
3 ∆T = 1.6861 × SVF + 27.805 0.1206 5
4 ∆T = 1.7361 × SVF + 28.769 0.0716 5

By combining the graph of the relationship between point measurement temperature
and H/W (Figure 17), it can be seen that outdoor temperature and H/W are not exactly
linearly correlated. When H/W = 2.31, the outdoor temperature reaches a minimum of
27.38 ◦C, and when H/W = 2.54, the outdoor temperature reaches a maximum of 30.14 ◦C.

The research period was the summer season in Hong Kong. Due to the high population
density and high summer temperature in Hong Kong, it is appropriate to reduce the outdoor
temperature. Combining the analyses, H/W of 2.09–2.48 and H/W > 3.6 are the most
suitable values for Hong Kong in summer (Figure 17).
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5. Conclusions and Further Study

This paper investigates the relevance of the urban street canyon thermal environment
to urban geometry factors and the extent to which different urban geometry factors affect
the microclimate of urban streets in a subtropical, high-density city, Hong Kong. Field
measurements were conducted in early November 2021 to obtain climate data, including
temperature, wind speed, and relative humidity, for urban street canyons located in Mong
Kok and Yau Ma Tei. Through a review of the literature, it was obtained that H/W and SVF
are the main factors influencing urban street geometry, leading to the following conclusions.

5.1. Conclusions
1© The regression analysis showed a negative correlation between H/W and daytime air

temperature at the four sites, with a mean coefficient of determination (R2) of 0.5347.
SVF can also be used to indicate the level of shading within street canyons, which
showed a positive correlation with air temperature during the measurement period.
However, the correlation between SVF and air temperature is low, with a mean R2 of
0.1141, which is much lower than the correlation between H/W and air temperature.
In summary, H/W has a greater effect on the thermal environment than SVF, which
also suggests that H/W is a more effective parameter for urban planners to use in
improving the thermal environment within urban street canyons and thermal comfort
at the pedestrian level.

2© The field research sites are located in typical high-density neighbourhoods in Hong
Kong; combining H/W obtained from the field survey, it can be seen that H/W varies
greatly between areas due to differences in functional organisation and road levels;
the lowest H/W was 0.60, and the highest was 6.02, giving a variance of 5.42. Further
analysis of the data showed that H/W in this typical area lies between 0.60 and 6.02,
with an average of 2.13.

3© Combining the graph of the relationship between point measurement temperature
and H/W, it can be seen that outdoor temperature and H/W are not exactly linearly
correlated, with the outdoor temperature reaching a minimum of 27.38 ◦C with H/W
of 2.31 and a maximum of 30.14 ◦C with H/W of 2.54. Combining the analysis of
the graphs, it can be seen that outdoor temperature is lower with H/W values of
2.31–2.48 and 3.35–3.60, and the temperature rises as H/W increases. The reason for
this phenomenon is presumably because, within this range, H/W is the dominant
factor affecting the outdoor air temperature in the city, so the temperature rises at the
same time H/W increases. When H/W is 2.09–2.31 and H/W > 3.60, the outdoor air
temperature is low and tends to decrease. It is assumed that within this H/W range,
building shading is the dominant factor, and as building heights rise, solar radiation
received by the street decreases throughout the day due to the mutual shading of
buildings, and the temperature tends to decrease gradually.
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5.2. Further Research

Our further research should focus on studying a single variable factor of the effect of
street H/W on the thermal environment under typical summer conditions in Hong Kong.
Field measurements should be carried out during the hot summer months, and climate
data should be collected from each measurement point simultaneously as much as possible
to control for variables. In addition, different weather conditions, such as sunny and cloudy,
can also have an effect on temperature, which also needs to be considered. In addition
to urban geometry, other factors such as greenery, building materials, road albedo, and
anthropogenic heat can have different effects on the thermal environment, which also need
to be studied and analysed in further work.
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