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Abstract: This paper presents a numerical study on the nonlinear behaviors of UHPC-filled square
steel tubular (UHPCFST) columns under complex actions. A novel fiber model was developed
considering the local buckling effects of steel tubes. The reliability and robustness of the model
were validated by a large amount of experimental data in the reported literature. Then, the current
design codes were evaluated and discussed on the basis of the collected experimental data, and
a practical calculation method was finally proposed to predict the bending moment capacities
of UHPCFST beam–columns. The results indicate that the proposed fiber model can accurately
predict the nonlinear behaviors of UHPCFST beam–columns, including axial compression, eccentric
compression, pure bending, and hysteretic behaviors. Compared with current design codes, the
practical calculation method presents high precision and can accurately predict the bending moment
capacities of UHPCFST beam–columns.
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1. Introduction

Concrete-filled steel tube members (CFST) have many merits, such as a high bearing
capacity, high stiffness, and excellent ductility [1]. They are usually applied in high-rise
buildings and long-span bridge structures, as shown in Figure 1. Ordinary concrete cannot
meet the high performance demands of the structures due to its shortcomings, such as high
self-weight, poor durability, etc. Compared with ordinary concrete, ultra-high-performance
concrete (UHPC) possesses ultra-high compressive strength, high tensile strength, excellent
durability, and long-term stability [2–5]. It has been gradually applied in engineering
construction. For example, the usage of UHPC can be a great solution for structures such
as concrete silos; bridge decks; and nuclear power plants for blast [6], impact, and high
corrosion. Concrete matrix with ultra-high strength often possesses high brittleness under
compression. To avoid this weakness, UHPC often needs to be confined by steel tubes (or
FRP tubes) to form UHPCFST members. In this way, the sectional size and self-weight of
members can be effectively decreased, and the structural available space can be increased
under the same loading condition. Meanwhile, the bearing capacity and ductility can also
be guaranteed [7,8]. As novel composite structures, UHPCFSTs can adapt the development
of modern structures to the directions of super-rise, long-span, and heavy-load structures.

The width-to-thickness ratio of ordinary CFST column panels is controlled in practical
engineering [9–12] (as shown in Table 1) so that the local buckling of the panels occurs after
the overall buckling. Along with the basic advantages of ordinary CFST [13,14], thin-walled
CFST can also save steel by 20~50% and reduce the cost by 10~40%, and it has a broad
application perspective [9]. However, thin-walled steel tubes under compression—especially
those with a square or rectangular cross-section shape (as shown in Figure 2) with large
width-to-thickness ratios—are prone to local buckling due to the initial defect of the steel
Local buckling has become an important factor influencing the bearing capacities and the
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post-peak ductility of thin-walled CFSTs [15–17]. In fiber models, the common approach
to considering local buckling is to compute the effective distribution width of the steel
tubes according to the sectional stress state [18–21]. It is known that this method needs to
determine the critical buckling stress and ineffective distribution width of the steel tubes in
advance. In addition, the regressive critical buckling stress and the ineffective distribution
width of different types of steel present a large deviation, which brings about inconvenience
for computation.
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Figure 1. Applications of CFSTs in structural engineering.

At present, there is some experimental research on the nonlinear behaviors of rectan-
gular UHPCFST beam–columns, including axial compression, eccentric compression, cyclic,
and fire-resistance behaviors. Although the confinement effect of steel tubes on the core
UHPC is not as obvious as that on ordinary concrete, the local buckling of members is still
inevitable under complex actions. In this work, a fiber model is put forward to the predict
nonlinear behaviors of UHPCFSTs; in the model, the local buckling of the beam–column
is considered by modifying compressive envelops of steel. Along with the effects of local
buckling on the peak load and ductility of UHPCFSTs, the suitability of the current design
codes is also comprehensively discussed. Finally, a practical calculation method is proposed
to predict the bending capacities of UHPCFSTs.

Table 1. The limitations of width-to-thickness ratio in current design codes.

CFST Shape Design Codes
AISC 360 [9] EC4 [10] GB 50936 [11] AIJ [12]

Circle (D/t) λp = 0.15Es/f y, λr = 0.19Es/f y,
λmax = 0.31Es/f y

90 × 235/f y 135 × 235/f y 1.5× 240
F/98

Square (b/t)
λp = 2.26

√
Es/ fy,λp = 3

√
Es/ fy,

λp = 5
√

Es/ fy
52
√

235/ fy 60
√

235/ fy 1.5× 74√
F/98

Note: F = min (f y, 0.7f u); λp, λr, λmax are the limit width-to-thickness ratios for compact, noncompact, and slender
sections, respectively.
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Figure 2. The schematic diagram of local buckling under complex actions.

2. Modeling Framework for UHPCFST Beam–Column

In this work, the fiber model, as shown in Figure 3, was adopted for computing the
nonlinear behaviors of UHPCTST beam–columns.
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Figure 3. The fiber model considering local buckling. (a) Small b/t (b) Medium b/t (c) Large b/t.

In order to simplify the calculation model, several assumptions were made, as follows:

(1) Plain section assumption.
(2) The bond-slip in the interface between the UHPC and the steel tube was neglected.
(3) The sine curve with a half wave for the lateral deflection curve of the beam–column.

In this work, considering that there would be large gaps in the interface after the local
buckling of steel tubes (as shown in Figure 2); the slippage between the UHPC and the
steel tube was neglected. On the basis of the plain section assumption, the strain in any
place can be obtained:

εi = ε0 + ϕyi (1)

where ε0 is the strain at the central axial, yi is the distance between the center of ith fiber and
the central axial, and ϕ is the sectional curvature. Hence, on the basis of the constitutive
models of UHPC and steel as well as loading history, the internal forces such as axial load
Nin and bending moment Min are expressed as:
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Nin =
k

∑
i=1

σci Aci +
m

∑
i=1

σsi Asi (2)

Min =
k

∑
i=1

σci Aciyi +
m

∑
i=1

σsi Asiyk (3)

where σci and σsi are the stresses of UHPC and steel, Aci and Asi are areas of the UHPC and
steel fibers, and k and m are the total numbers of fibers.

2.1. Constitutive Model of Materials
2.1.1. UHPC

The confinement effect needs to be considered in the fiber model. To date, many
constitutive models of confined concrete have been proposed [1,22–25], some of which
do not consider the confinement effect of square steel tubes, and some of the objects are
circular steel tubes; most importantly, these models are usually aimed at ordinary concrete
and may not be applicable to UHPC due to the mechanical property differences.

In this work, the constitutive model of confined UHPC proposed by Cai et al. [15] was
adopted. As shown in Figure 3, the model contains skeleton curves and hysteretic criteria.
The expressions of the skeleton curve are as follows:

The ascending branch OA:

σc = fcc[
r(ε/εcc)

r− 1 + (ε/εcc)
r ], r =

Ec

Ec − fcc/εcc
for ε ≤ εcc (4)

The descending branch AB and horizontal branch BC:

σc = fcy + ( fcc − fcy) exp[−( ε− εcc

α
)

ς

], fcy = 0.81 fcc − 48 (5)

where f cy is the residual stress; ζ is the parameter that is taken as 4.0; α = 0.005 + 0.0075ξ; ξ

is the confinement index; ξ =
As fy
Ac fc

; and εcc and f cc are the peak strain and stress of confined
UHPC, which are shown as follows:

εcc/εc = 4.67 exp[−24( fcc/ fc − 1)] + 1.57, fcc/ fc = 1 + 0.051 exp(38.3 fel/ fc) (6)

where f el is the equivalent lateral confining pressure; εc is the peak compression strain of
UHPC without confinement, which is given by An and Fehling [26]. The expression is
shown as Equation (7):

εc = 0.00083 fc
0.276 (7)

In this work, the contribution of UHPC in the tensile region to the axial force and
moment was also considered; the tensile stress–strain model of UHPC proposed by
Hu et al. [27] was adopted, and the expressions are shown in Figure 3.

The hysteretic criteria incorporate unloading and reloading branches. In the present
work, the residual plastic strain proposed by Mander et al. [28] was adopted, as shown in
Figure 3. It should be noted that a straight line was adopted instead of curves in unloading
and reloading branches.

2.1.2. Structural Steel

In the present work, the stress–strain envelope curve of steel under tension was still
assumed as a bilinear hardening model with a hardening stiffness of 0.01 Es. As for the
compressive skeleton curve, the local buckling effect was considered. The compressive
stress–strain models proposed by Sakino et al. [29], as shown in Figure 4, were adopted.

In the equivalent constitutive model, the effect of local buckling of steel tubes was
reflected by reducing the strength of the steel. The models were divided into 3 categories
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according to the width-to-thickness ratio coefficient ws. It is known that the models in
Figure 4a,c are appropriate for steel tubes with small and large width-to-thickness ratios,
and local buckling occurs after and before the yielding of steel tubes, respectively. The
model in Figure 4b is appropriate for steel tubes with medium width-to-thickness ratios
whose local buckling occurs exactly at yielding point B. The parameters are shown in
Table 2.
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Figure 4. The compressive stress–strain model of steel. (a) Small width-to-thickness ratio (b) Medium
width-to-thickness ratio (c) Large width-to-thickness ratio.

Table 2. The parameters of equivalent compressive stress–strain model of steel (Sakino et al. [29]).

Key Points
√

ws≤1.54 1.54<
√

ws<2.03 2.03≤√ws

B
σB fy/(0.698 + 0.128ws) fy fy/(0.698 + 0.07ws)
εB

(
6.06/w2

s − 0.801/ws + 1.1
)
εy εy σB/Es

T
σT (1.19− 0.207

√
ws)σB (1.19− 0.207

√
ws)σB (1.19− 0.207

√
ws)σB

εT εB + 3.59εy 4.59εy 4.59σB/Es

Note: B and T are peak and residual stress points, ws is the coefficient of width-to-thickness ratio, ws = (b/t)2εy.

Previous experimental research [30] indicated that the compressive unloading stiffness
of the steel tube after buckling is obviously less than the initial elastic modulus Es, which is
mainly attributed to the gradual loss of axial stiffness after the local buckling. In order to
quantitatively describe this relationship, the compressive unloading stiffness Euc proposed
by Dhakal [31] was adopted, as shown in Equation (8):

Euc/Es = ( fs,min/ ft,min)
2 (8)

where f s,min and f t,min are the stresses at the minimum strain point on the compressive
envelope with and without local buckling considered, respectively.

As for tensile behavior, the unloading stiffness Eut gradually decreases with an increase
in the maximum plastic tensile strain. Referring to research by Dodd [32], the relationship
between the tensile unloading stiffness Eut and the maximum plastic tensile strain εs, max is
given by:

Eut/Es = 0.82 +
1

5.55 + 1000εs,max
(9)

The complete constitutive models of UHPC and steel are shown in Figure 3. It should
be noted that in computing the cyclic behavior of the UHPCFST beam–column, the stresses
of UHPC and steel are also related to the loading history, except for strains.

3. Model Verification

In order to verify the universality of the proposed model, many experimental results of
UHPCFST beam–columns in the reported literature were referenced for further verification.

In the modeling, an increment procedure was adopted, and an iterative algorithm
was applied to meet the balance conditions between internal and external forces. The
calculation flow diagram is shown in Figure 5.
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3.1. Axial Behavior of UHPCFST Stub Columns

Chen et al. [33] and Xiong et al. [34] experimentally investigated square UHPCFST stub
columns subjected to axial compression. In the present work, the axial force–strain (N-ε)
curves of partial specimens with local buckling considered and ignored were calculated
using the fiber model, and the comparisons between the predicted results and the test
results are shown in Figures 6 and 7.
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Figure 6. The comparisons of predicted N-ε curves with test results (Chen et al. [33]). (a) SS1-2
(b) SS1-3.
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As illustrated in Figures 6 and 7, the axial loads of the specimens exactly reached the
maximum value when the stress of the UHPC reached its peak value f cc. The calculated
ascending branch slopes of specimens SS1-2 and SS1-3 were larger than the test results.
This may be attributed to the interfacial slip between the UHPC and steel tubes. In addition,
because of the hardening effect of steel and the reinforcing effect of the steel tube on the core
UHPC, the axial load rapidly decreased after reaching the peak value and subsequently
remained stable in the post-peak stage, which accounted for about 50~70% of the peak load
and was related to the friction between the surfaces as well as the confinement effect of the
steel tubes.

For the specimens SS1-2 and SS1-3 with a b/t of 50 in Figure 6, the local buckling
occurred before the peak value, that is to say, local buckling occurred in the elastic stage.
In this case, neglecting local buckling slightly overestimated the peak load and obviously
overestimated the post-peak ductility of the UHPCFST columns. The predicted N-ε curves
with local buckling considered were closer to the test results.

However, for specimens S2 and S3 with a b/t of 18.8 in Figure 7, the local buckling
occurred in the plastic stage and had little influence on the predicted N-ε curves, which
indicates that for specimens with a small b/t, local buckling can be neglected.

3.2. Eccentric Behavior of UHPCFST Columns

The behavior of square UHPCFST columns under eccentric compression was experi-
mentally investigated by Zhang et al. [35]. The sectional size was 120 mm × 120 mm × 4 mm
(b/t = 30), and the length of the column was 600 mm. The calculated behaviors of specimens
SS-4-S-30 and SS-4-S-50 were compared with the experimental results, as shown in Figure 8.

It was found that the steel tube was first yielded in compression at relatively low load
levels because of the relatively small value of the strength ratio f y/f c; the axial peak load
was directly obtained once the point of peak stress (f cc) was slightly exceeded. The axial
loads of the UHPCFST columns subsequently exhibited continuous reduction due to the
stress degradation of UHPC and the P-∆ second-order effect. In addition, the comparison
of SS4-S-30 and SS4-S-50 indicated that with an increase in eccentric distance, the tension
yield of steel tubes occurred before the peak load, which means that the nonlinear behavior
in the tensile regions of steel tubes develops faster.
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Figure 8. The comparisons of predicted N-∆ curves with test results (Zhang et al. [35]). (a) SS4-S-30
(b) SS4-S-50.

In addition, local buckling for this series (b/t = 30) had little influence on the peak
load and post-peak ductility and could be neglected.

3.3. UHPCFST Beams Subjected to Bending

Huang et al. [36] and Guler et al. [37] experimentally researched the flexural behavior
of UHPCFST beams. In this work, the load-deflection (F-∆) at mid-span and moment-
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curvature (M-ϕ) curves were calculated using the fiber model; the comparisons of the
predicted results with the test results are shown in Figures 9 and 10.
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Figure 9. The comparisons of predicted F-∆ curves with test results (Huang et al. [36]).
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Figure 10. The comparisons of predicted M-ϕ curves with test results (Guler et al. [37]).

For specimen PB-100 in Figure 9, the tension yield occurred first. Because of the small
value of b/t (24), the local buckling occurred at high curvatures, and the local buckling had
little influence on the flexural behavior of the UHPCFST beam. Furthermore, the slope of
the predicted F-∆ curve was slightly larger than the test result; this may be attributed to the
bond-slip between the steel tube and the UHPC interface in the loading process.

However, for the hollow steel tube (BH-2.5-1) with a width-to-thickness ratio of 32 in
Figure 10, the predicted M-ϕ curve with local buckling ignored did not show a descending
branch, whilst the predicted curve considering local buckling was closer to the test result.
This is due to the fact that although the width-to-thickness ratio was not large, the hollow
steel tube without infill UHPC was more prone to local buckling under compression.

3.4. UHPCFST Columns Subjected to Cyclic Loading

The pseudo-static test is an effective method to evaluate the cyclic behavior of UH-
PCFST beam–columns because the bearing capacity, ductility, stiffness, and dissipated
energy are reflected in hysteretic curves. In this work, the lateral load–displacement (P-∆)
hysteretic curves of UHPCFST columns were computed and compared with the experi-
mental results by Cai [38], as shown in Figure 11. The skeleton curves with local buckling
ignored are also plotted in Figure 11.

As shown in Figure 11a–c, the b/t remained at a constant value of 50. It was observed
that the influence of local buckling on specimen S-3-0-1 with zero axial compression ratio
was very small. However, as n increased to 0.15 and 0.45, neglecting the local buckling
of the steel tubes obviously overestimated the peak load and post-peak ductility of the
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UHPCFST columns. For specimen S-3-0.45-1, the calculated peak load with local buckling
ignored was 113.4 kN; the error was up to 17% compared with the tested value of 96.9 kN.
This is attributed to the fact that the partial cross-section areas of steel tubes were out of
work after local bucking, which weakened the bending resistance and the confinement
effect on the core UHPC.
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Figure 11. The comparisons of predicted P-∆ hysteretic curves with test results (Cai [38]).
(a) S−3−0−1 (b) S−3−0.15−1 (c) S−3−0.45−1 (d) S−5−0.15−1 (e) S−3−0.15−1.2 (f) S−3−0.15−1.4.

As shown in Figure 11d–f, n remained at a constant value of 0.15. It was found
that for specimen S-5-0.15-1 with a width-to-thickness ratio of 30, local buckling had no
significant effects. However, as b/t increased to 55 and 60, neglecting the local buckling
also overestimated the peak load and post-peak ductility of the UHPCFST columns, which
led to insecurity in the seismic design of structures. It was noted that there were some
deviations in the unloading and reloading branches between the predicted results and test
results, which were closely related to the pinched characteristics of the Clough model.

On the whole, the axial compression ratio (n) and width-to-thickness ratio (b/t) are
the most important factors affecting the local buckling of members. On the one hand,
the increase in the axial load significantly increased the stress levels; on the other hand,



Buildings 2022, 12, 1882 10 of 17

the critical stress for local buckling was significantly reduced with the increase in the
width-to-thickness ratio.

4. Proposed Practical Method for Moment Bearing Capacity

According to the authors’ survey, 40 rectangular UHPCFST specimens under combined
axial compression and bending were collected to evaluate the current design codes and
propose a new calculation method. The experimental database is listed in Table 3.

Table 3. Database of UHPCFSTs subjected to combined axial compression and bending.

Source b (mm) L (mm) t (mm) f c (MPa) f y (MPa) ξ Numbers

Zhang [35] 120 600~1200 4~6 145.9 430~460 0.47~0.69 6
Yan [39] 120 600 6.6~7 141.2 435.6~442.1 0.73~0.99 12

Huang [36] 120 500 5 125.6 1030.6 1.56 3
Cai [38] 100~210 700~1000 3~18 110.3~128.1 371~486 0.37~3.51 19

4.1. Comparisons with Current Provisions Codes

Currently, there are several design codes to calculate the bending moment capacities
of CFSTs, such as AISC-LRFD [40], EC4 [10], GB50936 [11], and AIJ [12]. In the present
work, the bending moment capacities of the specimens in Table 3 calculated by different
design codes were compared with test results, as shown in Figure 12; the average value
(AV) and standard deviation (SD) were also computed and are shown in each figure.
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Figure 12. The comparisons of moment bearing capacities calculated by different design codes with
test results. (a) AISC-LRFD (b) EC4 (c) GB50936 (d) AIJ.

It was observed that these design codes underestimate the bending moment capacities
of UHPCFST columns to some extent, especially AISC, whose AV value was only 0.442.
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This is mainly because AISC neglects the contribution of the infilled concrete to the moment
of the composite section, although it considers the stability of slender columns. EC4 and AIJ,
based on plastic distribution, predicted relatively accurate results but were also inclined
to be conservative in predicting the bending moment capacities of UHPCFST columns.
The calculated AV values were 0.863 and 0.869, respectively. In addition, they also ignore
the confinement effect of square steel tubes on the core concrete. On the basis of unified
theory, GB50936 specifies that the confinement index (ξ) is within the range of 0.5~2.0, and
once ξ exceeds this range, the composite strength f sc shows a large deviation, as shown in
Figure 12c.

4.2. Proposed Calculation Method

Through the analysis above, a practical method for predicting the bending moment
capacities of UHPCFSTs needs to be proposed. In the present work, the N-M interaction
curve of the UHPCFST beam–column was established by constructing a quadratic parabola,
as shown in Figure 13. The expression is shown in Equation (10):

M
Mu

= (1− N
Nuc

)(1− N
Nut

) (10)

where Mu is the pure bending bearing capacity, Nuc is the axial compression bearing
capacity, and Nut is the axial tensile bearing capacity. It can be seen in Equation (10)
that once Mu, Nuc, and Nut are determined, the N-M interaction curve can be uniquely
determined.
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(1) Axial compression bearing capacity Nuc

Similarly, the current design codes are also not appropriate for predicting the axial
compression bearing capacity of UHPCFST columns [33,39]. In this work, the test data
of 37 rectangular UHPCFST columns subjected to axial compression were collected; the
experimental database is listed in Table 4.

Table 4. The database of rectangular UHPCFST columns subjected to axial compression.

Source b (mm) L (mm) t (mm) f c (MPa) f y (MPa) ξ Numbers

Xiong [34] 150 450 8~12.5 147~164 565~846 1.2~2.15 15
Chen [33] 150 450 2~7.6 113~131 307~372 0.23~1.28 6
Yan [41] 150 450 4.9~18.5 89.2~128.1 444.6~668.8 1.41~5.27 16
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According to the ultimate equilibrium theory and considering the confinement effect
of rectangular steel tubes, Nuc was established by regression analysis (Figure 14), and the
expression is shown in Equation (11):

Nuc = fc Ac(1 + 1.11ξ) (11)

The calculated results of axial compression bearing capacities using Equation (11)
were compared with the experimental values, as shown in Figure 15. It was observed that
Equation (11) possesses high precision, with an AV value of 0.998.
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(2) Pure bending bearing capacity Mu

Similarly, 17 rectangular UHPCFST beams under pure bending were collected; the
experimental database is listed in Table 5.

On the based of unified theory, the expression of Mu is given by:

Mu = γm fscWsc (12)

where f sc is the strength of the composite section, f sc = Nuc/Asc, and Asc is the total section
area. Wsc is the sectional bending modulus; γm is the plastic coefficient of the cross-section,
which is obtained by regression analysis (Figure 16). The expression is given by:

γm = 1.2 + 0.45 ln(ξ + 0.1) (13)
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Table 5. The database of rectangular UHPCFST members subjected to pure bending.

Source b (mm) L (mm) t (mm) f c (MPa) f y (MPa) ξ Numbers

Li [42] 150 1600 4~8 101.3~102.8 350~535 0.39~1.21 4
Xiong [43] 200 2400 12~12.5 180–183 465~756 0.79~1.22 3
Guler [37] 80 1200 2.51~4 130.7–134.1 268~288 0.31~0.47 9

Cai [38] 150 950 3 110.3 486 0.375 1

The predicted results of pure bending bearing capacities using Equation (12) were
compared with the experimental values, as shown in Figure 17. It can be seen that the
errors were almost within the range of 15%.
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(3) Axial tensile bearing capacity Nut

Lai et al. [44] experimentally researched the axial tensile behavior of RPC-filled steel
tube columns and established the axial tensile bearing capacity Nut; the expression is shown
as follows:

Nut = (1.1 + 0.4αs)As fy + 0.9Ac ft (14)

where αs is the steel ratio, as = As/Asc, and f t is the tensile strength of UHPC.
The bending moment capacities of UHPCFST columns in the reported literature

(Table 3) were predicted using Equation (10) and compared with the test results, as shown
in Figures 18 and 19. It can be seen that the predicted values agree well with the test results,
and the proposed practical method presents high precision, with an AV value of 1.04.
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Figure 18. The comparison of N-M interaction curves calculated by practical method with test values.
(Zhang et al. [35], Huang et al. [36], Cai [38], Yan et al. [39]).
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Figure 18. The comparison of N-M interaction curves calculated by practical method with test values. 
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5. Conclusions

In the present work, the modified stress–strain models of steel were integrated into
the fiber model to consider the local buckling of steel tubes. The nonlinear behaviors of
UHPCFST beam–columns under complex actions were comprehensively analyzed and
discussed using the fiber model. The correctness and robustness of the fiber model were
verified on the basis of many experiments in the reported literature. Then, the current
design codes, such as AISC, EC4, GB50936, and AIJ, were evaluated on the basis of a large
amount of available experimental data. Finally, a practical method was proposed to predict
the bending moment capacities of UHPCFST beam–columns. According to the analysis
and discussions presented in this work, the following conclusions can be drawn:

1. The axial compression ratio (n) and width-to-thickness ratio (b/t) are two significant
factors that affect the local buckling of steel tubes. Neglecting the local buckling of
thin-walled steel tubes overestimates the post-peak ductility of the UHPCFST beam–
column; the overestimation of the peak load is up to 17%. However, when b/t is less
than 30, the local buckling can be neglected.

2. EC4 and AIJ design codes predict relatively accurate bending capacities of UHPCFSTs
with AV values of 0.863 and 0.869; even ξ is within the suitable range of 0.5~2.0, and
the AV value provided by the GB50936 is only 0.799.

3. A practical method was proposed in this work to calculate the bending moment
capacities of UHPCFSTs by constructing a quadratic parabola. Compared with the
experimental results in the published literature, the proposed method possesses high
precision with an AV value of 1.04.

The static and cyclic behaviors of UHPCFSTs were analyzed in this work. Considering
that UHPCFSTs are subjected to complex actions, fire and impact resistance need to be
further investigated using the fiber model, and the corresponding formulas to calculate
bearing capacity need to be established in future work.
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