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Abstract: The galloping condition of an iced eight-bundle conductor tower line system, under
different parameters, is studied by using a finite element model of a multi-span iced eight-bundle
conductor tower line system. The galloping frequency, amplitude, traces of multi-span iced eight-
bundle conductors under different wind velocities, span lengths, and initial angles of wind attack are
discussed. The different tower line connection methods are compared, based on existing research on
the relationship between the aerodynamic characteristics of the conductor and galloping conditions.
The results show that the galloping situation of a multi-span iced eight-bundle conductor tower line
system varies greatly depending on the conditions, which has a significant impact on the tower line.

Keywords: iced eight-bundle conductors; tower line; galloping characteristics; numerical simulation

1. Introduction

With the implementation of an energy strategy in China [1]. More and more transmis-
sion lines will cross valleys, rivers, and microclimate areas, and icing is inevitable. Because
the conductor freezes in a low-temperature environment, the cross-section finally forms an
asymmetric circular shape [2], The section shape will provide greater aerodynamic force
for the conductors. Transmission lines will inevitably freeze in winter, and the natural
wind would induce the iced lines to produce low-frequency and largeamplitude galloping
under certain conditions [3]. Conductor galloping may damage conductors or other parts,
or bring immeasurable economic losses such as line and tower breaking [4,5]. The study of
aerodynamic characteristics is the basis of this experiment [6–20].

In recent years, more and more scholars have researched the mechanization of gal-
loping conductors. First of all, scholars have studied the aerodynamic force of conductors.
Li et al. [21] conducted wind tunnel tests to obtain the static aerodynamic parameters
of crescent ice conductors. Rossi et al. [22] proposed a method for estimating wind and
ice loads on conductors. Jafari et al. [23] believe that the aerodynamic characteristics of
cables and conductors are similar, and wind-induced vibration can be studied in the same
way. Huang et al. [24], based on the measured aerodynamic coefficients, identified the
large-scale wind-induced vibration of the conductor and distinguished the areas of gallop-
ing instability. Then, through numerical simulation or theoretical methods, the obtained
aerodynamic force is loaded on a single conductor and multi-bundle conductor to study
the galloping of a conductor. Kim et al. [25] used the commercial software ANSYS flu-
ent to obtain the aerodynamic coefficient of each cross-section and study the vibration
of the conductor, which proposed simplified galloping equations of a single conductor.
Oh et al. [26] used the analysis program RecurDyn to model the transmission line as a
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multi-mass spring damper system to analyze the galloping dynamic phenomenon. In
order to study the large-scale vibration of quad-bundle conductors, Matsumiya et al. [27]
successfully simulated large-scale low-frequency galloping in all directions. Hu et al. [28]
have obtained the simulation result of iced quad-bundle conductors galloping simulation
results by finite element method, and the aerodynamic parameters are simulated and
loaded for the beam element to obtain the influence of environmental parameters on the
line structure of iced four bundle conductors. Liu et al. [1] derived the three-dimensional
partial differential galloping equation of the iced quad-bundle conductor, and simplified
the galloping partial differential equation by two discrete methods. Cai et al. [29] exert
wind loads on each conductor unit through the finite element method (FEM), and the gal-
loping response of iced eight-bundle conductors is discussed. Ding et al. [30] analyzed the
galloping mode, frequency characteristics, amplitude, and galloping traces of multi-span
iced eight-bundle conductors under specific working conditions. Yu et al. [31] analyzed the
oscillation characteristics of iced eight-bundle conductors during the galloping process.

Most scholars have only considered the influence of galloping on single-span bundle
conductors or towers. However, to simulate the galloping law in the real environment,
the influence of the transmission tower on the whole-span system must be considered. To
the knowledge of the authors, the investigation of galloping for eight-bundle conductor
transmission lines has not been reported before. In this paper, the galloping characteris-
tics of multi-span conductor transmission lines are comprehensively investigated by the
proposed numerical method of FEM for sub-conductors in which the critical parameters
can be included. The effects of critical parameters on galloping behaviors are comprehen-
sively analyzed. The purpose of the present research is to develop a useful reference and
theoretical foundation based on the obtained results and provides effective anti-galloping
technology for the eight-bundle conductor 1000 kV UHV transmission lines.

2. Finite Element Model

A finite element model of an iced eight-bundle conductor tower line system with
a span length of 200 m and 400 m is established, as shown in Figure 1. The model is
8×LGJ-400/50 transmission line is taken as the object. The diameter of the conductor is
30 mm, and the interval between the eight sub-conductors is about 400 mm. The average
the weight of spacer used to restrict the mutual movement between sub conductors is
8.5 kg, and the model is FJZ-400. The two transmission towers in the line section are the
tangent tower and the tension tower, respectively. The height of the tangent tower is 89 m
and the height of the tension tower is 109 m, the height difference between the tangent
tower and tension tower is 11 m. The tower comprises round steel pipes, with materials
Q235 and Q345 and Young’s modulus of 2.06 × 105 MPa, Poisson’s ratio of 0.3, and density
of 7.8 kg/m3. According to the previous research results [21], the accuracy requirement
can be met when the length of the conductor element is about 0.5 m, and the conductor
is selected as the cable element, which is obtained by releasing the bending degrees of
freedom of the nodes of the spatial Euler beam element [31]. The spacer can be simplified
into a regular octagonal frame, simulated by spatial beam elements, and beam elements
also simulate the suspension insulator string. Transmission towers are mainly round steel
pipes. The transmission tower is a typical frame structure. In the design code, the towers
are generally simplified as a space truss structure, and some are simplified as a space beam
structure [32]. According to the structural details of the tower, the numerical model of the
tower can be established. In order to ensure calculation accuracy, the tension tower and
tangent tower are divided into 5387 elements and 3366 elements, respectively.

In order to ensure that the conductors do not interfere with each other and are closer
to the real working conditions of UHV transmission lines, spacers are installed on them at
the same spacing as conductor separation accessories. In order to simulate the most natural
situation, a crescent ice covering with 12 mm thickness is added to the conductor, and its
initial freezing angle is 60◦. In the simulation, the influence of the tower on the whole
test is considered, and the conductor is fixedly connected with the spacer and insulator,
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constraining the conductor’s degree of freedom of the conductor at the corresponding
position. In the connection between the insulator string and transmission tower, the
displacement in three spatial directions is constrained at the connection, and the constraint
of three rotational degrees of freedom is released. The sides of the conductors also constrain
the displacement in three spatial directions, and each rotation direction is released. To
strive to be the closest to the most real connection state of the transmission line during
the modeling process. According to the analysis of the finite element model of the UHV
eight-bundle transmission line and the selection of various working conditions, it is finally
determined that the case with a unit length of 0.5 m can meet the accuracy requirements of
the analysis at the same time. In order to simplify the simulation of the spacer, the regular
octagonal frame structure is used to avoid the angle problem caused by abnormal shape.
The spatial beam element simulates the suspended insulator string and spacer. We use
the Lenovo workstation P320 to simulate various working conditions, with an average
calculation time of 143 h.
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Figure 1. Multi-span iced eight-bundle conductor tower line system finite element model.

Crescent ice is the most representative ice shape that occurs most easily in Southwest
China. Due to the unique meteorological conditions in Southwest China and the diameter
and surface of the conductor, a crescent ice covering with 12 mm thickness is the most
common. During the galloping, the shape of the ice does not change. Galloping occurs
because ice changes the original aerodynamic parameters of the conductor under the
original working condition. There are similar methods in the previous galloping research
of four bundle conductors, such as reference [28]. Two assumptions are made: (1) the icing
condition is set as the common crescent shape ice with a uniform thickness of 12 mm to cover
the whole section; (2) the crescent ice section is equivalent to a circle. The simulation data
is more effective and reliable in the above two ideal equivalent cases. Various mechanical
parameters of the conductor in the model are described in Table 1, and the next step of
the numerical calculation is carried out based on the given mechanical parameters. Where
EA is the axial stiffness, GI is the torsional stiffness, µ is the mass per unit length, J is the
moment of inertia per unit length, and H is the horizontal tension on the conductor.
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Table 1. Physical and mechanical parameters of iced conductor.

EA (×106 N) GI (Nm2/rad) M (kg/m) J (×10−4 kg m) H (×103 N)

31.7 1057 1.733 2.69 32.19

3. Analysis of Vibration of Multi-Span Iced Eight-Bundle Conductors Tower Line
System

Firstly, the mode of vibration of conductors is analyzed. The low-order modes and
natural frequencies of the three-span conductor with a span length of 400 m are obtained in
the vertical, horizontal and torsional directions, respectively. Figure 2 shows the mode of
vibration of the low-order of three-span conductor model with a span of 400 m. The low-
order natural frequency values are listed in Table 2. From Table 2, the third span conductor
has the maximum frequency in the same vibration form compared with other spans. The
span length significantly affects the mode of the tower line system. With the increase in
the span length, the frequency of the conductor decreases. In the tower line system with a
span length of 200 m, the first mode of the first span conductor in the vertical direction is a
pseudo shock instead of a single half wave, and the frequency reaches 0.38. With a span
length of 400 m, two frequencies of 0.353 and 0.465 appear in the three half-waves of the
first conductor in the vertical direction.
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Table 2. Low-order mode of three spans iced eight-bundle conductor.

Vibration
Direction Vibration Mode

Frequency (Hz)
200 m 400 m

First Span Second Span Third Span First Span Second Span Third Span

Vertical

Single half
(Pseudo-based) 0.389 0.245 0.245 0.136 0.143 0.141

Double half 0.475 0.472 0.488 0.271 0.269 0.271
Three half 0.737 0.727 0.736 0.353/0.465 0.412 0.458

Horizontal
Single half 0.239 0.237 0.250 0.136 0.136 0.137

Double half 0.478 0.473 0.496 0.273 0.273 0.275
Three half 0.713 0.720 0.747 0.409 0.410 0.412

Torsion
Single half 0.368 0.319 0.401 0.271 0.263 0.291
Single half 0.514 0.517 0.538 0.320 0.323 0.339
Three half 0.774 0.767 0.795 0.443 0.444 0.456

4. Analysis of Galloping Characteristics of Multi-Span Iced Conductor Model under
Wind Load

Numerical models for motion analysis of sub-conductors rely on the quasi-steady
theory (QST) [33–36]. In order to study the galloping feature of iced conductors, the aero-
dynamic characteristics should be obtained. These aerodynamic coefficients are acquired
through wind tunnel experiments. The Re of conductors is less than 1.5 × 105, it belongs to
the sub-critical region. They pointed out that the aerodynamic coefficients acquired by the
quasi-steady wind tunnel experiment could be reasonable descriptions of the conductor
motion phenomena in uniform and turbulent flows.

The main purpose of this section is to conduct a preliminary analysis of the galloping
process of the model. Firstly, the galloping characteristics of the model are analyzed
theoretically. Under the action of wind load, iced conductors are accompanied by certain
lifts and torsions. Therefore, the wind-induced vibration of conductors is a complex
coupling process, aerodynamic coefficients are shown in Figure 3. The specific formulas
related to aerodynamic loads such as drag FD, lift FL, and torque M acting on the conductor
are as follows:

FD = 1
2 CD(α)ρU2d;

FL = 1
2 CL(α)ρU2d;

M = 1
2 CM(α)ρU2d2

(1)

ρ is air density; U is the wind velocity; d is the diameter of the iced sub-conductor.
Cd(α) is the drag coefficient, CL(α) is the lift coefficient, CM(α) is the moment coefficient; the
angle of wind attack α is defined as follows:

α ≈ θ −
(

R
.
θ +

.
V

U

)
(2)

θ is the torsion angle, R is the conductor radius, θ is the torsion angle speed and is the
speed in the vertical direction. The formula of the standard value of wind load on insulator
strings is:

Wi = W0µzµs Ai
W0 = v2/1600

(3)

W0 is the standard value of wind pressure. µz is the wind pressure height variation coef-
ficient; µs is the shape coefficient; Ai is the calculated wind pressure area of insulator strings.

WS is the calculation formula of wind load acting on the transmission tower:

Ws = W0µzµsβz As (4)
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βz is the wind load adjustment coefficient of the transmission tower; As is the wind pressure
area of the component, and the calculation formula of the wind vibration coefficient is:

βz(z) = 1 + ξε1ε2 (5)

ξ is the pulsation amplification coefficient; ε1 is considered the influence coefficient
of wind pressure fluctuation and wind pressure height; ε2 is the influence coefficient of
structure shape.
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wind attack (ice thickness: 12 mm).
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5. Galloping Characteristics of Conductors of Tower Line System

Firstly, the galloping process of three spans of iced eight-bundle conductors with a
span length of 200 m and 400 m under wind velocity of 8 m/s are numerically simulated,
respectively. Figure 4 shows the spectrum diagram of each span midpoint of the phase C
conductor. It can be seen that simulated data of galloping of each span of the conductor is
basically stable.
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span length: 200 m: (a) Spectrum diagram of the first span conductor; (b) Spectrum diagram of the
second span conductor; (c) Spectrum diagram of the third span conductor.

The vibration form of the conductor of a span length of 200 m can be seen in Figure 3,
The low-order vertical vibration form of the first span is a pseudo base wave, rather than
a single half wave, and the frequency approach is 0.389 Hz. The vibration frequencies of
the other two spans are close to the natural frequency of 0.245 Hz in Table 2, that is, the
conductor galloping form is a single half wave. In the horizontal direction, the vibration
frequency of the three spans is also close to its lower order natural frequency of 0.239 Hz,
0.237 Hz, and 0.250 Hz.

As can be seen in Figure 5, the vertical and horizontal orientation of the second and
third spans of the conductor of a span length of 400 m merely excite the vibration of a single
low-order mode. Vertical direction frequency is close to 0.143 Hz and 0.141 Hz, respectively,
and close to 0.136 Hz in both directions horizontally. The vibration form is a single half
wave of low order. While the first span excites the three vibrations of mode, all of these
are three half waves in different forms, frequencies are close to 0.353 Hz and 0.465 Hz.
For vibration in the torsion direction in each span, it is obvious that violent torsion has



Buildings 2022, 12, 1893 8 of 16

occurred. Among them, multiple peak values appeared in three torsion spectrum diagrams.
It is shown that in the excited multi-order vibration of the conductor on the torsion, each
peak value is close to the torsional low-order natural frequency, The vibration form is
three half waves. Each span response has the same frequency characteristics. The results
show that the wave response frequency characteristic of the conductor is complicated,
but the vibration mode is unchanged. Compared with Ding’s [30] results, we choose the
third span as the comparison object, because the third span conductors are connected to
the tower by the tangent method in both models. Under the same working condition,
as shown in Figure 6a–c, after considering the transmission tower, the frequency of the
conductor in vertical and horizontal directions is obviously smaller than that without the
tower, this is the impact of transmission tower stiffness. The conductor excites multiple
natural frequencies in the torsional, indicating that multiple vibrations are multiple, which
is more consistent with the real environment.
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span is the largest. Compared with the conclusion of Ding et al. [30], due to the three 

rotational degrees of freedom being released, the horizontal amplitude and torsion angle 

are larger than the model results of the model that six degrees of freedom are restricted, 

and the vertical amplitude is slightly larger. 

In this model, the connections methods between the conductor and the tower are set 

to the following two different states: one end of the conductor of the first span and second 

span are connected with the tension tower, while the other end of the conductors of the 

second span and third span are suspended with the tangent tower by a V-type insulator 

string. The tension tower can support the transverse tension of some conductors; the con-

ductor is directly suspended on the tangent tower by insulated parts and cannot bear 

transverse tension. Two suspension methods are shown in Figure 7. Taking the typical 

working condition with a wind velocity of 8 m/s and initial angle of wind attack of 60° as 

an example, the conductors galloping amplitude at the midpoint of three spans of phase 

A are shown in Figure 8, respectively. The third span conductor is not connected with the 

tension tower, and compared to the results of the first span conductor, the horizontal and 

vertical amplitude is much more than the first span conductor’s galloping amplitude, the 

reason can be summed down to, the end of the first span conductor received a large lateral 

tension. Therefore, it can be concluded that the suspension methods of the conductor have 

a great influence on the galloping mode of the conductor, and the conductor connected 

Figure 5. Midpoint spectrum diagram of each span of conductor under wind velocity of 8 m/s with
span length: 400 m: (a) Spectrum diagram of the first span conductor; (b) Spectrum diagram of the
second span conductor; (c) Spectrum diagram of the third span conductor.
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6. The Influence of Different Parameters on Galloping of Tower Line Systems
6.1. The Influence of Different Suspension Methods of Conductor on Galloping

This section studies the galloping of conductors under the condition that the conductor
adopts different suspension methods. The galloping displacement of different positions is
different at the same time. In the overall state, the vertical displacement is slightly larger
than the horizontal displacement, and the vertical vibrations are more obvious. The vertical
displacement of the third span is the largest, but the torsional angle of the second span is
the largest. Compared with the conclusion of Ding et al. [30], due to the three rotational
degrees of freedom being released, the horizontal amplitude and torsion angle are larger
than the model results of the model that six degrees of freedom are restricted, and the
vertical amplitude is slightly larger.

In this model, the connections methods between the conductor and the tower are set
to the following two different states: one end of the conductor of the first span and second
span are connected with the tension tower, while the other end of the conductors of the
second span and third span are suspended with the tangent tower by a V-type insulator
string. The tension tower can support the transverse tension of some conductors; the
conductor is directly suspended on the tangent tower by insulated parts and cannot bear
transverse tension. Two suspension methods are shown in Figure 7. Taking the typical
working condition with a wind velocity of 8 m/s and initial angle of wind attack of 60◦ as
an example, the conductors galloping amplitude at the midpoint of three spans of phase A
are shown in Figure 8, respectively. The third span conductor is not connected with the
tension tower, and compared to the results of the first span conductor, the horizontal and
vertical amplitude is much more than the first span conductor’s galloping amplitude, the
reason can be summed down to, the end of the first span conductor received a large lateral
tension. Therefore, it can be concluded that the suspension methods of the conductor have a
great influence on the galloping mode of the conductor, and the conductor connected with a
tangent tower will produce a relatively large amplitude. After the horizontal comparison of
the conductor galloping situation, it can be found that the horizontal vibration displacement
of the conductor is more uniform, while the vertical vibration displacement appears in the
fault-type movement traces, and the movement is more uneven and unstable. It is found
that different suspension modes have an obvious influence on amplitudes. From the results
of Figure 8, it is found the conductor in phase A is under a large wind load in the whole
system, and the galloping amplitude and torsion are more unstable.
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Figure 8. The amplitude of phase A of each span conductor under different suspension methods: 

(a) First span midpoint displacement time history; (b) Second span midpoint displacement time 

history; (c) Third span midpoint displacement time history. 

Figure 7. Schematic diagram of the conductor suspension methods: (a) Suspension method of tension
tower; (b) Suspension method of tangent tower.
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Figure 8. The amplitude of phase A of each span conductor under different suspension methods: 

(a) First span midpoint displacement time history; (b) Second span midpoint displacement time 

history; (c) Third span midpoint displacement time history. 

Figure 8. The amplitude of phase A of each span conductor under different suspension methods:
(a) First span midpoint displacement time history; (b) Second span midpoint displacement time
history; (c) Third span midpoint displacement time history.

6.2. The Influence of Wind Velocity on Conductor Galloping

Flexible structures in flowing fluid may exhibit vortex-induced vibration (VIV), which
depends on the flow velocity in fundamental or a higher-order mode [37]. The influence of
wind velocity on conductor galloping is one of the most direct and obvious factors among
all the parameters studied. Wind load generally affects the galloping state of the model
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by affecting the aerodynamic force on the conductor, and different wind velocities have
different effects. This section mainly studies the impact of wind velocity in combination
with some data obtained from research. The galloping response of the conductor span
length of 200 m is calculated, when the wind velocity increases from 4 m/s to 12 m/s, and
the initial angle of wind attack is 60◦. The model galloping results obtained are shown in
Table 3 and Figure 9a–c.

Table 3. Galloping amplitude of each span conductor at wind velocity of 8 m/s.

Wind
Velocity Phase Vibration Direction (m) First Span Second Span Third Span

4 m/s

A
Vertical 2.04 2.70 1.99

Horizontal (m) 1.02 1.69 1.25

B
Vertical (m) 2.14 2.56 2.69

Horizontal (m) 1.25 1.55 1.43

C
Vertical (m) 1.99 2.66 1.75

Horizontal (m) 1.17 2.35 1.01

8 m/s

A
Vertical (m) 7.64 9.56 7.51

Horizontal (m) 7.67 3.45 7.47

B
Vertical (m) 7.96 10.07 9.64

Horizontal (m) 6.61 7.41 9.21

C
Vertical (m) 9.09 10.08 8.35

Horizontal (m) 7.74 7.41 6.56

12 m/s

A
Vertical (m) 14.40 11.95 15.12

Horizontal (m) 6.11 6.16 6.55

B
Vertical (m) 13.09 14.61 14.59

Horizontal (m) 5.91 6.08 10.80

C
Vertical (m) 14.36 15.74 15.31

Horizontal (m) 6.61 6.18 13.38
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Figure 9. Trace diagram of Conductor displacement: (a) Trace diagram of the midpoint displacement
at wind velocity 4 m/s; (b) Trace diagram of the midpoint displacement at wind velocity 8 m/s;
(c) Trace diagram of the midpoint displacement at wind velocity 12 m/s; (d) Ding’s trace diagram of
the midpoint displacement at wind velocity 8 m/s.
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Meanwhile, the wind velocity has a great influence on the galloping amplitude and
trace of the conductor. Compared with Ding’s [30] results, in the same case, after consider-
ing the transmission tower, as shown in Table 4, the galloping amplitude of the conductor
is slightly larger. The time history displacement curve of the conductor is more like a fish
bone. As shown in Figure 9d, the galloping trace is more chaotic. As the wind velocity
increased from 4 m/s to 12 m/s, the galloping amplitude increased significantly. It is
worth noting that the horizontal displacement of each span is basically less than the vertical
displacement, and the trace diagram of each span is mainly elliptical, which can show that
the vibration situation is mainly vertical direction vibration. Under wind velocity of 8 m/s,
the galloping trace of the conductor becomes chaotic, with the shape of 8. According to
Table 3, under the wind velocity of 12 m/s, the horizontal displacement of the conductor is
even less than the results under the wind velocity of 8 m/s, while the vertical displacement
is much greater than the results under the wind velocity of 8 m/s. It can be considered
that the energy is mainly excited by the conductor in the vertical direction under the wind
velocity of 12 m/s.

Table 4. Galloping amplitude comparison of each span conductor at wind velocity of 8 m/s.

NO.
Vertical (m) Horizontal (m)

Test Data Ding’s Data Test Data Ding’s Data

First span 9.09 7.92 7.74 2.95
Second span 10.08 8.05 7.41 3.41
Third span 8.35 8.64 6.56 3.42

6.3. The Influence of Initial Angle of Wind Attack on Galloping

In the real environment, the range of angle of wind attack is generally not more than
60◦, and the conductor will not gallop below 30◦. Additionally, 30◦ and 60◦ are selected as
the most representative angles. The vibration of a conductor with a span length of 200 m is
simulated under the different initial angles of wind attack. Four typical cases are selected:
one’s wind velocity is 8 m/s, angle of wind attack is 60◦; two’s wind velocity is 4 m/s,
angle of wind attack is 60◦; three’s wind velocity is 8 m/s, angle of wind attack is 30◦;
four’s wind velocity is 4 m/s, angle of wind attack is 30◦; as specific study parameters.
Select the same midpoint of the conductor for comparison, and the resulting conductor
galloping situation is shown in Figure 10.

It can be seen from the above galloping amplitude that the angle of attack has a great
influence on the vibration of the conductor. Compared with the amplitude of the angle
of attack of 30 and 60 under the wind velocity of 8 m/s, respectively, especially when
the angle of attack is increased to 60, and the amplitude of the conductor is significantly
increased. Comparing working cases 2 and 3, we can see that the amplitude of case 2
is greater than case 3, so the angle of wind attack has a greater impact on the galloping
amplitude than wind velocity. Comparing working cases 1 and 2, the wind velocity has a
great impact on the starting galloping time of the conductor. As the wind velocity increases,
the earlier the conductor starts to gallop. With the increase in the angle of wind attack,
the nonlinear galloping ability of the conductor is more obvious, the galloping becomes
more intense, compared with the small angle of wind attack, the amplitude is more chaotic
under the larger angle of wind attack. Using the Den Hartog and Nigol theory [38,39]
and this data simulation, we can conclude that the initial wind attack angle may gallop
within the 60 range, and the angle of wind attack is also one of the significant factors of
conductor galloping.
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Figure 10. Galloping situation of conductor under different wind velocities and different initial angle
of attack.

6.4. The Influence of Different Span Lengths on Galloping

This section studies the influence of different span lengths on the galloping of the
conductor in the whole tower line system. The galloping characteristics of each phase
midpoint are selected as the research object. The table summarizes the midpoints of each
phase galloping amplitude data for the different span lengths.

As can be seen from Table 5, compared with the galloping results of 200 m and 400 m
span length, the galloping amplitude becomes more intense with the span length increasing
under the same working cases, and the maximum value is the vertical displacement of
phase A in span length of 400 m, reaching 15.57 m. The vertical galloping amplitude excited
at a span length of 400 m under wind velocity 4 m/s is much greater than the horizontal
amplitude, while it is noteworthy that the vertical amplitude at 400 m span length increases
with increasing suspension height, while the opposite horizontal amplitude decreases with
increasing suspension height. The reason can be attributed to that that the conductor of
phase A is subjected to a greater aerodynamic load and that the suspension position of the
conductor of phase A is more unstable relative to the other positions of the tower body.

Table 5. Galloping amplitude of conductor with different span lengths in different wind velocity.

Wind Velocity Phase Vibration Direction 200 m 400 m

4 m/s

A
Vertical (m) 2.70 8.49

Horizontal (m) 1.69 3.98

B
Vertical (m) 2.56 7.55

Horizontal (m) 1.55 3.49

C
Vertical (m) 2.66 8.07

Horizontal (m) 2.35 2.60
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Table 5. Cont.

Wind Velocity Phase Vibration Direction 200 m 400 m

8 m/s

A
Vertical (m) 9.56 15.57

Horizontal (m) 3.45 8.29

B
Vertical (m) 10.07 13.95

Horizontal (m) 7.41 9.20

C
Vertical (m) 10.08 13.08

Horizontal (m) 7.41 10.12

7. Conclusions

The galloping situation of the tower line coupling system is analyzed by finite ele-
ment simulation. The galloping characteristics of the conductor under the wind velocity,
suspension mode, span length, and angle of wind attack are compared and analyzed.
Finally, based on the galloping characteristics of the model, the motion mode, frequency
characteristics, vibration amplitude, and trace of the conductor are analyzed:

(1) Wind velocity has a great impact on the galloping behavior of the system model.
With the increased wind load input energy, the conductor galloping becomes more intense.
The multiple peak values of the torsion spectrum appear, indicating that a variety of low-
order vibrations are excited at the same time. The low-order vibration form in the first
midpoint vertical vibration at the span length of 200 m is a pseudo base wave rather than
a single half wave, while multiple peaks are excited in the vertical vibration spectrum of
the first span with a span length of 400 m. Each span response has the same frequency
characteristics. The results show that the frequency response characteristic of the conductor
is complicated, but the vibration mode is unchanged.

(2) As the increasing of angle of wind attack, the nonlinear galloping ability of the
conductor becomes more obvious and the galloping becomes more intense, compared
with the small angle of the wind attack, the galloping amplitude is more chaotic under the
larger angle of wind attack. Using the Den Hartog theory and this data simulation, we can
conclude that the initial angle of wind attack may gallop within the 60◦ range. The angle of
wind attack has a greater impact on the galloping amplitude than the wind velocity.

(3) The different connection methods of the conductor and the tower body will also
have a certain influence on the transmission line, and the vertical amplitude of the con-
ductor connected by the tangent tower suspension method is the largest. As the span
length increases, the amplitude of each span also increases, while the frequency relatively
decreases. At a large span length and higher wind velocity, the vertical amplitude increases
with the increase in the suspension height. On the contrary, the horizontal amplitude
decreases with the increase of the suspension height, and the energy is mainly excited by
the conductor in the vertical direction.

The purpose of the present research is to develop a useful reference and theoretical
foundation based on the obtained results and provides effective antigalloping technology
for the eight-bundle conductor 1000 kV UHV transmission lines.
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