Modern Design Methods on Optimised Novel Aluminium Profiles
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Stocky Cross-Sections
3.1.1. Comparison of FEA against EC9
3.1.2. Comparison of CSM against FEA and EC9
3.1.3. Comparison of DSM against FEA and EC9
3.2. Slender Cross-Sections
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Cross-Section | |||||
---|---|---|---|---|---|
Q1 | 0.96 | 1.09 | 1.14 | 1.10 | 1.00 |
Q2 | 0.86 | 1.11 | 1.29 | 1.10 | 1.01 |
Q3 | 0.97 | 1.11 | 1.14 | 1.10 | 1.01 |
Q4 | 0.97 | 1.11 | 1.14 | 1.10 | 1.02 |
K1 | 0.88 | 1.13 | 1.29 | 1.10 | 1.03 |
K2 | 0.89 | 1.15 | 1.29 | 1.10 | 1.05 |
K3 | 0.96 | 1.24 | 1.29 | 1.10 | 1.13 |
K4 | 1.00 | 1.29 | 1.29 | 1.10 | 1.18 |
S1 | 1.06 | 1.26 | 1.18 | 1.17 | 1.07 |
S2 | 1.08 | 1.28 | 1.18 | 1.13 | 1.13 |
S3 | 1.12 | 1.37 | 1.22 | 1.11 | 1.23 |
S4 | 1.13 | 1.46 | 1.30 | 1.10 | 1.33 |
Cross-Section | CSM-FEA | FEA-EC9 | CSM-EC9 | DSM-EC9 | FEA-DSM |
Q1 | 4% | 9% | 14% | 10% | 0% |
Q2 | 14% | 11% | 29% | 10% | 1% |
Q3 | 3% | 11% | 14% | 10% | 1% |
Q4 | 3% | 11% | 14% | 10% | 2% |
K1 | 12% | 13% | 29% | 10% | 3% |
K2 | 11% | 15% | 29% | 10% | 5% |
K3 | 4% | 24% | 29% | 10% | 13% |
K4 | 0% | 29% | 29% | 10% | 18% |
S1 | −6% | 26% | 18% | 17% | 7% |
S2 | −8% | 28% | 18% | 13% | 13% |
S3 | −12% | 37% | 22% | 11% | 23% |
S4 | −13% | 46% | 30% | 10% | 33% |
Cross-Section | |||||
---|---|---|---|---|---|
Q5 | 1.04 | 1.62 | 1.55 | 1.51 | 1.08 |
K5 | 1.08 | 1.42 | 1.31 | 1.26 | 1.12 |
S5 | 1.13 | 1.48 | 1.31 | 1.26 | 1.17 |
S6 | 1.51 | 4.81 | 3.19 | 2.50 | 1.92 |
Cross-Section | CSM-FEA | FEA-EC9 | CSM-EC9 | DSM-EC9 | FEA-DSM |
Q5 | −4% | 62% | 55% | 51% | 8% |
K5 | −8% | 42% | 31% | 26% | 12% |
S5 | −13% | 48% | 31% | 26% | 17% |
S6 | −51% | 381% | 219% | 150% | 92% |
References
- Tsavdaridis, K.D.; Efthymiou, E.; Adugu, A.; Hughes, J.A. Application of Structural Topology Optimisation in aluminium cross-sectional design. Thin-Walled Struct. 2019, 139, 372–388. [Google Scholar] [CrossRef]
- Bendsoe, M.P.; Sigmund, O. Topology Optimisation; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Mei, L.; Wang, Q. Structural Optimization in Civil Engineering: A Literature Review. Buildings 2021, 11, 66. [Google Scholar] [CrossRef]
- Rozvany, G. Aims, scope, methods, history and unified terminology of computer-aided topology optimization in structural mechanics. Struct. Multidisc. Optim. 2021, 21, 90–108. [Google Scholar] [CrossRef]
- Haber, R.B.; Jog, C.S.; Bendsoe, M.P. A new approach to variable-topology shape design using a constraint on perimeter. Struct. Optim. 1996, 11, 1–12. [Google Scholar] [CrossRef]
- Kim, Y.Y.; Kim, T.S. Topology optimization of beam cross sections. Int. J. Solids Struct. 2000, 37, 477–493. [Google Scholar] [CrossRef]
- Gardner, L. The continuous strength method. Proc. Inst. Civ. Eng.-Struct. Build. 2008, 161, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Gardner, L.; Theofanous, M. Discrete and continuous treatment of local buckling in stainless steel elements. J. Constr. Steel Res. 2008, 64, 1207–1216. [Google Scholar] [CrossRef]
- Afshan, S.; Gardner, L. The continuous strength method for structural stainless steel design. Thin-Walled Struct. 2013, 68, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Gardner, L.; Wang, F.; Liew, A. Influence of strain hardening on the behaviour and design of steel structures. Int. J. Struct. Stab. Dyn. 2011, 11, 855–875. [Google Scholar] [CrossRef]
- Theofanous, M.; Propsert, T.; Knobloch, M.; Gardner, L. The continuous strength method for steel cross-section design at elevated temperatures. Thin-Walled Struct. 2016, 98, 94–102. [Google Scholar] [CrossRef]
- Yun, X.; Xiang, L.; Gardner, L. The continuous strength method for the design of cold-formed steel non-slender tubular cross-sections. Eng. Struct. 2018, 175, 549–564. [Google Scholar] [CrossRef]
- Buchanan, C.; Gardner, L.; Liew, A. The continuous strength method for the design of circular hollow sections. J. Constr. Steel Res. 2015, 118, 207–216. [Google Scholar] [CrossRef] [Green Version]
- BS EN 1999-1-1; Eurocode 9: Design of Aluminium Structures-Part 1-1: General Structural Rules. European Union: Brussels, Belgium, 2009. Available online: https://www.phd.eng.br/wp-content/uploads/2014/11/en.1999.1.1.2007.pdf (accessed on 10 September 2022).
- Ashraf, M.; Young, B. Design formulations for non-welded and welded aluminium columns using Continuous Strength Method. Eng. Struct. 2011, 33, 3197–3207. [Google Scholar] [CrossRef]
- Su, M.-N.; Young, B.; Gardner, L. The continuous strength method for the design of aluminium alloy structural elements. Eng. Struct. 2016, 122, 338–348. [Google Scholar] [CrossRef]
- Su, M.-N.; Young, B.; Gardner, L. Testing and Design of Aluminum Alloy Cross Sections in Compression. J. Struct. Eng. 2014, 140, 04014047. [Google Scholar] [CrossRef] [Green Version]
- Su, M.-N.; Young, B.; Gardner, L. Deformation-based design of aluminium alloy beams. Eng. Struct. 2014, 80, 339–349. [Google Scholar] [CrossRef] [Green Version]
- Su, M.N.; Young, B.; Gardner, L. Classification of aluminium alloy cross-sections. Eng. Struct. 2017, 141, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Ampatzis, A.T.; Psomiadis, V.G.; Efthymiou, E. Plastic collapse of hardening spatial aluminium frames: A novel shakedown-based approach. Eng. Struct. 2017, 151, 724–744. [Google Scholar] [CrossRef]
- Georgantzia, E.; Gkantou, M.; Kamaris, G.S.; Kansara, K.D. Ultimate response and plastic design of aluminium alloy continuous beams. Structures 2022, 39, 175–193. [Google Scholar] [CrossRef]
- Schafer, B.W.; Peköz, T. Direct Strength Prediction of Cold-Formed Steel Members using Numerical Elastic Buckling Solutions. In Proceedings of the 14th International Specialty Conference on Cold-Formed Steel Structures, St. Louis, MO, USA, 15–16 October 1998. [Google Scholar]
- Schafer, B.W. Distortional buckling of cold-formed steel columns. In Final Report to the American Iron and Steel Institute; American Iron and Steel Institute: Washington, DC, USA, 2000. [Google Scholar]
- Schafer, B.W. Progress on the direct strength method. In Proceedings of the 16th International Specialty Conference on Cold-Formed Steel Structures, Orlando, FL, USA, 17–18 October 2002; pp. 647–662. [Google Scholar]
- Schafer, B.W. Review: The Direct Strength Method of cold-formed steel member design. J. Constr. Steel Res. 2008, 64, 766–778. [Google Scholar] [CrossRef]
- American Iron and Steel Institute. North American Specification for the Design of Cold-Formed Steel Structural Members; American Iron and Steel Institute: Washington, DC, USA, 2012. [Google Scholar]
- American Iron and Steel Institute. Supplement 2004 to the North American Specification for the Design of Cold-Formed Steel Structural Members, 2001th ed.; AISI-Specifications for the Design of Cold-Formed Steel Structural Members; 131; American Iron and Steel Institute: Washington, DC, USA, 2005. [Google Scholar]
- AS/NZS 4600; Cold-Formed Steel Structures. Standards Australia: Sydney, Australia, 2018.
- Zhu, J.H.; Young, B. Aluminium alloy tubular columns–Part II: Parametric study and design using direct strength method. Thin-Walled Struct. 2006, 44, 969–985. [Google Scholar] [CrossRef]
- Zhu, J.H.; Li, Z.Q.; Su, M.N.; Young, B. Behaviour of Aluminium Alloy Plain and Lipped Channel Columns. Thin-Walled Struct. 2019, 135, 306–316. [Google Scholar] [CrossRef] [Green Version]
- Dassault Systèmes, D. ABAQUS 6.14 Analysis User’s Manual. 2014. Available online: http://130.149.89.49:2080/v6.14/pdf_books/ANALYSIS_4.pdf (accessed on 10 September 2022).
- Dinis, P.; Camotim, D. Post-buckling behaviour and strength of cold-formed steel lipped channel columns experiencing distortional/global interaction. Comput. Struct. 2011, 89, 422–434. [Google Scholar] [CrossRef]
- Landesmann, A.; Camotim, D.; Basaglia, C. Distortional Post-Buckling Behaviour and Strength of Cold-Formed Steel Columns: How does the Cross-Section Geometry Affect it? In Proceedings of the Annual Stability Conference, Structural Stability Research Council, St. Louis, MO, USA, 16–20 April 2013. [Google Scholar]
- Soimoiris, G. Buckling of Frames and Columns with Initial Imperfection. Master’s Thesis, National Technical University of Athens, Department of Computational Mechanics, Athens, Greece, 2011. [Google Scholar]
- Höglund, T. Design of Members, Royal Institute of Technology. In TALAT–Training in Aluminium Technologies 2301; European Aluminium Association: Stockholm, Sweden, 2008. [Google Scholar]
- Seif, M.; Schafer, B.W. Local buckling of structural steel shapes. J. Constr. Steel Res. 2010, 66, 1232–1247. [Google Scholar] [CrossRef]
- Zhu, J.H.; Young, B. Numerical investigation and design of aluminium alloy circular hollow section columns. Thin-Walled Struct. 2008, 46, 1437–1449. [Google Scholar] [CrossRef]
- Zhu, J.H.; Young, B. Tests and Design of Aluminium Alloy Compression Members. J. Struct. Eng. ASCE 2006, 132, 1096–1107. [Google Scholar] [CrossRef]
- Gardner, L.; Fieber, A.; Macorini, L. Formulae for Calculating Elastic Local Buckling Stresses of Full Structural Cross-Sections. Structures 2019, 17, 2–20. [Google Scholar] [CrossRef]
- Georgantzia, E.; Gkantou, M.; Kamaris, G.S. Numerical Modelling and Design of Aluminium Alloy Angles under Uniform Compression. Civil. Eng. 2021, 2, 632–651. [Google Scholar] [CrossRef]
Cross-Section | B (mm) | H (mm) | tw (mm) | tf (mm) | L (mm) | Material | ρ (ton/mm3) | E (GPa) | ν | fp (MPa) | fmax (MPa) | εmax |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SV1 | 70 | 54.9 | 4.08 | 4.08 | 209.9 | Al 6063-T6 | 2.7 × 10−9 | 70 | 0.3 | 160 | 195 | 0.106 |
SV2 | 100 | 100 | 5.00 | 5.00 | 300.0 | Al 6063-T6 | 2.7 × 10−9 | 70 | 0.3 | 160 | 195 | 0.106 |
SV3 | 100 | 100 | 7.50 | 5.00 | 300.0 | Al 6063-T6 | 2.7 × 10−9 | 70 | 0.3 | 160 | 195 | 0.106 |
Cross-Section | B (mm) | H (mm) | tw (mm) | tf (mm) | L (mm) | R |
---|---|---|---|---|---|---|
Q1 | 100 | 100 | 5 | 5 | 300 | - |
Q2 | 100 | 100 | 7 | 7 | 300 | - |
Q3 | 100 | 100 | 7 | 5 | 300 | - |
Q4 | 100 | 100 | 5 | 7 | 300 | - |
Q5 | 100 | 100 | 3 | 3 | 300 | - |
K1 | 100 | 100 | 7 | 7 | 300 | 15 |
K2 | 100 | 100 | 7 | 7 | 300 | 20 |
K3 | 100 | 100 | 7 | 7 | 300 | 30 |
K4 | 100 | 100 | 7 | 7 | 300 | 35 |
K5 | 100 | 100 | 3 | 3 | 300 | 10 |
S1 | 100 | 100 | 4 | 4 | 300 | - |
S2 | 100 | 100 | 5 | 5 | 300 | - |
S3 | 100 | 100 | 6 | 6 | 300 | - |
S4 | 100 | 100 | 7 | 7 | 300 | - |
S5 | 100 | 100 | 3 | 3 | 300 | - |
S6 | 100 | 100 | 2 | 2 | 300 | - |
Cross-Section | NRd EC9 | NRd FEA | PCSM | PDSM | ||||
---|---|---|---|---|---|---|---|---|
Q1 | 276.4 | 302.1 | 315.6 | 303.1 | ||||
Q2 | 378.8 | 37.1% | 420.7 | 39.3% | 488.8 | 54.9% | 415.4 | 37.0% |
Q3 | 328.7 | −13.2% | 365.8 | −13.0% | 375.4 | −23.2% | 360.5 | 13.2% |
Q4 | 328.7 | 0.0% | 365.9 | 0.0% | 375.4 | 0.0% | 360.5 | 0.0% |
Q5 | 108.1 | 23.8% | 175.4 | 26.1% | 168.0 | 39.9% | 162.7 | 23.8% |
K1 | 406.9 | 461.4 | 525.1 | 446.2 | ||||
K2 | 428.7 | 5.4% | 493.5 | 6.9% | 553.3 | 5.4% | 470.2 | 5.4% |
K3 | 491.1 | 14.6% | 607.5 | 23.1% | 633.9 | 14.6% | 538.6 | 14.6% |
K4 | 531.7 | 8.3% | 685.3 | 12.8% | 686.2 | 8.3% | 583.1 | 8.3% |
K5 | 138.5 | −32.9% | 196.5 | −34.5% | 181.6 | −38.5% | 174.7 | 28.4% |
S1 | 356.6 | 448.8 | 422.1 | 417.7 | ||||
S2 | 448.6 | 25.8% | 573.2 | 27.7% | 529.0 | 25.3% | 507.5 | 21.5% |
S3 | 533.5 | 18.9% | 729.3 | 27.2% | 654.0 | 23% | 593.6 | 17.0% |
S4 | 613.1 | 14.9% | 898.2 | 23.2% | 796.0 | 22.4% | 675.7 | 13.8% |
S5 | 215.5 | −64.8% | 318.7 | −64.5% | 282.5 | −64.5% | 271.6 | −59.8% |
S6 | 43.6 | −79.8% | 209.9 | −34.1% | 139.0 | −50.8% | 109.2 | −59.8% |
Cross-Section | λp | Cross-Section | λp | Cross-Section | λp |
---|---|---|---|---|---|
Q1 | 0.50 | K1 | 0.36 | S1 | 0.63 |
Q2 | 0.36 | K2 | 0.36 | S2 | 0.50 |
Q3 | 0.50 | K3 | 0.36 | S3 | 0.42 |
Q4 | 0.50 | K4 | 0.36 | S4 | 0.36 |
Q5 | 1.25 | K5 | 0.84 | S5 | 0.84 |
S6 | 1.25 | ||||
Cross-Section | λc | Cross-Section | λc | Cross-Section | λc |
Q1 | 0.08 | K1 | 0.08 | S1 | 0.10 |
Q2 | 0.08 | K2 | 0.08 | S2 | 0.10 |
Q3 | 0.08 | K3 | 0.08 | S3 | 0.10 |
Q4 | 0.09 | K4 | 0.09 | S4 | 0.10 |
Q5 | 0.08 | K5 | 0.08 | S5 | 0.09 |
S6 | 0.08 | ||||
Cross-Section | λl | Cross-Section | λl | Cross-Section | λl |
Q1 | 0.45 | K1 | 0.31 | S1 | 0.58 |
Q2 | 0.31 | K2 | 0.31 | S2 | 0.45 |
Q3 | 0.45 | K3 | 0.31 | S3 | 0.37 |
Q4 | 0.45 | K4 | 0.31 | S4 | 0.31 |
Q5 | 0.79 | K5 | 0.79 | S5 | 0.79 |
S6 | 1.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinopoulou, E.; Tsavdaridis, K.D.; Efthymiou, E. Modern Design Methods on Optimised Novel Aluminium Profiles. Buildings 2022, 12, 1904. https://doi.org/10.3390/buildings12111904
Marinopoulou E, Tsavdaridis KD, Efthymiou E. Modern Design Methods on Optimised Novel Aluminium Profiles. Buildings. 2022; 12(11):1904. https://doi.org/10.3390/buildings12111904
Chicago/Turabian StyleMarinopoulou, Eva, Konstantinos Daniel Tsavdaridis, and Evangelos Efthymiou. 2022. "Modern Design Methods on Optimised Novel Aluminium Profiles" Buildings 12, no. 11: 1904. https://doi.org/10.3390/buildings12111904
APA StyleMarinopoulou, E., Tsavdaridis, K. D., & Efthymiou, E. (2022). Modern Design Methods on Optimised Novel Aluminium Profiles. Buildings, 12(11), 1904. https://doi.org/10.3390/buildings12111904