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Abstract: A two-stage damage identification method for beam structures based on support vector
machine and swarm intelligence optimization algorithms is proposed. First, the frequencies and
mode shapes of the beam structure are obtained using the smooth orthogonal decomposition method,
and the normalized modal curvature is calculated as the input of a pre-trained support vector machine
to determine the damage location. Then, the stiffness loss at the damaged location of the structure is
calculated using swarm intelligence algorithms. The fitness function is the sum of the residual squares
of the frequencies of the damaged structure identified by the smooth orthogonal decomposition
method and the frequencies calculated for each iteration of the intelligent optimization algorithm.
Numerical examples of a damaged simply supported beam structure are used to verify the damage
identification performance of the two-stage method. The accuracy of the support vector machine
model under different damage degrees and noise levels is studied using the Monte-Carlo method,
and an uncertainty of the damage degree prediction value is studied by comparing the particle swarm
optimization algorithm, moth-fire algorithm, and mayfly algorithm.

Keywords: smooth orthogonal decomposition; normalized modal curvature; support vector machine;
swarm intelligence optimization; uncertainty analysis

1. Introduction

With the advancement of urbanization, a large number of buildings and other struc-
tures have been built. These structures inevitably degenerate during service. The continu-
ous accumulation of damage significantly reduces the safety and durability of structures,
and likely causes engineering accidents and personnel/property losses [1,2]. It is of great
practical significance to accurately detect the damage at the initial stage to maintain the
health of the structure and ensure the safety of life and property. In recent decades,
vibration-based damage diagnosis methods have received extensive attention as represen-
tatives of global damage identification technology.

Damage identification based on vibration monitoring data is one of the core prob-
lems in determining the characteristic parameters that are closely related to the structural
dynamic characteristics and sensitivity to damage [3]. In previous studies, changes in vibra-
tion characteristics (such as natural frequency, modal curvature, and flexibility) have been
proven to be useful for damage identification [4]. Compared with the natural frequency, the
mode shape is more sensitive to local damage and robust to noise measurement signals [5].
To improve the sensitivity of the damage index to small damage, Pandey et al. [6] proposed
the concept of the curvature mode shape. The second derivative of the structural mode
shape curve is the modal curvature, which is more sensitive to structural damage than
the mode shape [6] and is widely used in the damage location [6–8]. Because the modal
curvatures corresponding to lower-order modal vibrations are more reliable, Wahab et al.
suggested using low-order modal curvature for damage location [7].
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The damage index is often represented by the difference between the identified modal
curvature and theoretical structural modal curvature in a healthy state. Because the modal
curvature in the healthy state is usually unknown, Ratcliffe et al. [9] proposed a gap-
smoothing method, which uses a third-order polynomial function to reconstruct the modal
curvature reference data from four adjacent data points. However, the gap-smoothing
method also has some limitations [5]: (1) the fitting baseline has poor accuracy at the
boundary; and (2) because of the smoothing effect of local curve fitting, the gap-smoothing
method can only locate high-degree damage.

Machine learning methods have been widely accepted as tools for feature extraction
and damage detection. Aydin and Kisi [10] applied a multi-layer perceptron (MLP) and
a radial basis function (RBF) neural network to identify the structural damage of a Tim-
oshenko beam. The results show that the trained network can be used as a diagnostic
method for beam-like structure health monitoring. Zhang et al. [11] used a one-dimensional
convolutional neural network (CNN) to locate damage to a plate structure based on time-
varying characteristics. This method allows the accurate location of damage in the plate
with fewer sensors. Li et al. [12] used acoustic emission waves as model inputs and neural
networks to monitor rail cracks more accurately and comprehensively. Nguyen et al. [7]
used CNN to convert the first three order modal curvatures into images for training. The
results showed that if the severity of the damage exceeded 30%, the accuracy of this method
would reach 100%.

On the other hand, from the perspective of the model, the damage quantification
problem can be defined as the optimization problem of an objective function. A large
number of studies have also investigated the feasibility of optimization algorithms in the
field of structural damage detection. Mehrjoo et al. [13] used a genetic algorithm (GA)
to effectively determine the location and extent of beam structure cracks. Daei et al. [14]
proposed a continuous ant colony algorithm (ACO) to detect structural damage using
a dynamically measured flexibility matrix. Huang et al. [15] combined particle swarm
optimization (PSO) and cuckoo search (CA), and introduced the hybrid algorithm into the
damage identification performance test of the actual steel–concrete composite bridge I-40 to
effectively distinguish the actual damage and temperature effect. Kang et al. [16] combined
an artificial immune system with a PSO algorithm and proposed an immune-enhanced
particle swarm optimization (IEPSO) algorithm to effectively identify the location and
extent of damage. However, for practical engineering structures, to obtain more accurate
damage information, the structure must be divided into smaller elements, which means
that the search dimension is increased in the optimization algorithm. To overcome the curse
of dimensionality [17,18], one solution is to consider the location and quantification of the
damage as a two-stage problem. References [19,20] verified the feasibility of the two-stage
damage-identification method. Applying the optimization algorithm to the quantitative
analysis of damage based on the determined damage location can significantly reduce the
search dimension and calculation time of the algorithm.

Following the idea of two-stage damage identification, this study investigated the
damage identification of beam structures. Based on the analysis of the mapping relationship
between the damage location and modal curvature of the beam structure, a support vector
machine (SVM) is trained to locate the damage. Compared with other data-driven machine
learning methods, the support vector machine can use a limited number of samples to
achieve the best generalization effect [21]; it is also favored by a large number of scholars.
At the same time, studies [21–24] have shown that the SVM performs well in damage
locations, but it is difficult to quantify damage. The swarm intelligence optimization
algorithm can solve this problem well when it is used to identify the degree of damage.
Considering the damage degree as an unknown quantity, this study uses the particle swarm
optimization (PSO), moth-flame algorithm (MFO), and mayfly algorithm (MA) to calculate
the damage degree. Through a large number of simulations and analyses, it is verified
that the intelligent optimization algorithm can calculate the damage degree quickly and
effectively. To further study the robustness of the method, four levels of noise are set for
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comparative analysis: no noise, 0.2% noise, 0.5% noise, and 1% noise. The uncertainty
of the damage degree identification under different noise levels is analyzed using the
Monte-Carlo method.

The remainder of this paper is organized as follows. The second section introduces the
principle of the smooth orthogonal decomposition (SOD) and the SVM and the calculation
method of normalized curvature. In Section 3, the three swarm intelligent optimization
algorithms are introduced in combination with the damage quantification problem, and
the fitness function used in this study is proposed. In Section 4, numerical examples of
simply supported beams with different damage scenarios are used to verify the proposed
method. In Section 5, an uncertainty analysis of the damage degree identification of swarm
intelligence algorithms is carried out using the Monte-Carlo method. Finally, this study
provides a summary in Section 6.

2. Damage Location

Damage identification is a typical inverse mathematical problem. The two-stage
damage identification method divides the damage identification problem into two parts:
damage location and damage quantification. Determining the location of damage is the first
step. Only when the location of the damage is clear can the damage degree of the damaged
part of the structure be identified, and the structure can be better warned, maintained, or re-
placed. In this study, using the SOD method, the observable response data are transformed
into the frequency and mode shape information determined by the structural characteristics
we are concerned about, and the modal curvature is obtained. After normalization, it is
used as the input of the SVM model to predict the damage location.

2.1. Smooth Orthogonal Decomposition (SOD)

In the field of vibration engineering, the SOD is suitable for identifying lightly damped
vibration systems with multiple degrees of freedom [25]. Compared to the proper orthogo-
nal decomposition (POD) method, the SOD method does not require a uniform distribution
of the structural mass and can directly identify natural frequencies.

Let the matrix X denote an n × N ensemble of displacements obtained from N
sampling time points from n sensors. The speed dataset can be represented by V =

.
X. The

displacement covariance matrix and velocity covariance matrix can then be expressed as

RXX =
XXT

N − 1
, RVV =

VVT

N − 1
(1)

The SOD can extract mode shapes and natural frequencies from the following general-
ized eigenvalue problems:

λRXXψ = RVVψ, (2)

where the generalized eigenvalue λ is the smooth orthogonal value, and the generalized
eigenvector ψ represents the smooth orthogonal mode corresponding to λ. The generalized
eigenvalue problem defined in Equation (2) can be expressed in the matrix form as follows:

RXXΨΛ = RVVΨ, (3)

where Λ = diag[λ1, λ2, · · · , λn] and Ψ = [ψ1, ψ2, · · · , ψn]. As the sampling frequency in-
creases, λi approaches the square of the natural frequency ωi, that is, λi = ω2

i , i = 1, 2, · · · , n.
The system modal matrix Φ is the inverse transpose of the smooth orthogonal modal matrix
Ψ, that is, Φ = Ψ−T .

According to the modal superposition principle, we know that

X = ΦQ, V = Φ
.

Q, (4)
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where Q denotes the ensemble data of the modal coordinate responses. The covariance
matrices in Equation (1) are congruent matrices of the covariance matrices of the modal
coordinate responses, as follows:

RXX =
ΦQQTΦT

N − 1
= ΦRQQΦT , RVV =

Φ
.

Q
.

Q
T

ΦT

N − 1
= ΦR .

Q
.

Q
ΦT , (5)

where RQQ = QQT

N − 1 and R .
Q

.
Q
=

.
Q

.
Q

T

N − 1 .
For undamped free vibration systems, the covariance matrices of the modal coordinate

responses are diagonal. Solving the generalized eigenvalue decomposition of Equation (3)
is equivalent to the eigenvalue decomposition of the R−1

XXRVV. By introducing Equation (5),
we obtain

R−1
XXRVV = Φ−TR−1

QQR .
Q

.
Q

ΦT = ΨΛΨ−1 (6)

Using the transpose and symmetry of matrices, Hu et al. improved Equation (6) and
proposed the following new expression [26]:

RVVR−1
XX = ΦR .

Q
.

Q
R−1

QQΦ−1 = Φ̃ΛΦ̃−1 (7)

Thus far, the estimated modal matrix Φ̃ can be directly obtained by the eigenvalue
decomposition of the RVVR−1

XX. The obtained mode shape vectors are normalized to ensure
that their lengths are equal to one.

In practical applications, only low-order modes can be excited with a sufficient energy.
Thus, we cannot identify all mode shape vectors completely. It is also very important to
determine the order n̂ of the identifiable mode shapes. Take the diagonal elements of Rqq =

Φ−1RXXΦ−T and arrange them in descending order λ̂ =
[
λ̂1, λ̂2, · · · , λ̂n̂, λ̂n̂+1, · · · λ̂n

]
.

Because the order of magnitude of the noise eigenvalue is much smaller than the modal
eigenvalue, when λ̂n̂ � λ̂n̂+1, we believe that the order of the exact modal shape is n̂ [20].

In this paper, when λ̂n̂
λ̂n̂+1

> 10, we consider λ̂n̂ � λ̂n̂+1.

2.2. Modal Curvature

The curvature ϕ′′ is the second derivative of a curve [27]:

ϕ′′ = d2y/dx2 (8)

where y is the displacement mode shape function and x is the position coordinate.
When the measuring points are arranged at equal intervals, each element ϕ

′′
ij in the

modal curvature matrix Φ′′ can be expressed as [27]:

ϕ
′′
ij =

yi(j−1) − 2yij + yi(j+1)

h2 (9)

where yij represents the modal displacement of the j-th measuring point for the i-th mode,
and h represents the distance between the measuring points. Because the measuring points
are arranged at equal intervals, the nominal curvature of all modes is multiplied by the h2:

ϕ
′′
ij = yi(j−1) − 2yij + yi(j+1) (10)

Simultaneously, analogous to the normalization of the mode shape vectors, the modal
curvature is also normalized. We call this process normalizing, which ensures that the required
modal curvature characteristics are guaranteed to be of the same order of magnitude.
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The modal curvature components of the first and last measuring points cannot be
calculated using Equation (10) and can be estimated by the following equation (assuming
there are n measuring points): {

ϕ
′′
11 = 2ϕ

′′
12 − ϕ

′′
13

ϕ
′′
1n = 2ϕ

′′
1(n−1) − ϕ

′′
1(n−2)

(11)

2.3. Support Vector Machine (SVM)

The SVM is a generalized linear classifier that classifies the labeled training sample
dataset. Its learning strategy is to solve the hyperplane of the optimal (maximized) margin
(the minimum distance between the hyperplane and any point of the sample) of the training
sample and binary classification of the training dataset [28,29]. A conceptual example of
an SVM is shown in Figure 1. However, it is unrealistic to expect only two damage
categories for damage locations in practical engineering applications. The damage location
problem is a typical multi-classification problem. When an SVM is applied to multi-
classification problems, it can be considered as a series of binary classification problems,
and the corresponding multi-step binary classification machines should be established.
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Figure 1. Conceptual model of SVM.

Suppose we have a training dataset of damaged structures that has only two dam-
age categories:

Dataset = [X; Y], (12)

where X = [x1, x2, · · · , xn] ∈ Rn is the set of damage characteristic vectors and
Y = [y1, y2, · · · , yn] (yi ∈ {1,−1}) is the label corresponding to the damage eigenvector.
xi represents the vector under the i-th damage condition, which refers to the normalized
curvature under the i-th damage condition. The hyperplane can be defined as:

H(x) = wx + b = 0 (13)

where w is the normal vector that controls the normal direction of the hyperplane and b
controls the marginal size. The xi category can be judged using a hyperplane. If H(x) > 0, it
is determined that it belongs to damage category I. Conversely, if H(x) < 0, it is determined
that it belongs to damage category II. The binary classification can be expressed as the
following discriminant:

ŷ = sgn((w · x) + b) (14)
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where sgn(•) is the sign discriminant function. If (w · x) + b > 0, then ŷ = 1; if (w · x) + b < 0,
then ŷ = −1.

When w is determined, adjusting b can cause some sample points of damage conditions
to fall on wx + b = 1 and wx + b = −1. These characteristic vectors are called the support
vectors. The functional margin from the sample point xi to the hyperplane under any
damage condition can be defined as follows:

di = ŷi H(xi) = |wxi + b| (15)

There is significant uncertainty in the function margin. If the parameters w and b are
synchronously magnified, the hyperplane will not change, but the function margin di will be
magnified. Therefore, it is necessary to normalize w and b to obtain the geometric margin:

d̃ =
|wxi + b|
‖w‖ (16)

The geometric margin that passes through the plane of the two support vectors and
is consistent with the normal direction of the optimal hyperplane, that is, the geometric
interval between wx + b = 1 and wx + b = −1, can be expressed as:

D = 2
|wxi + b|
‖w‖ =

2
‖w‖ (17)

The hyperplane for solving the optimal (maximized) margin of the training sample
can be transformed into the following equivalent convex quadratic problem:

min
w,b

1
2‖w‖

2,

s.t. yi(wxi + b) ≥ 1, i = 1, 2, · · · , n
(18)

The Lagrange function is introduced to solve Equation (18):

L(w, b, α) =
1
2
‖w‖2 −

n

∑
i=1

αi(yi(wxi + b)− 1) (19)

where α = (α1, α2, · · · , αn)
T denotes the Lagrange multiplier vector. According to the

Karush–Kuhn–Tucker condition for the differentiable convex problem, the dual problem of
Equation (19) can be obtained as [30]:

max
α


n

∑
i=1

αi − 1
2

n

∑
i=1

n

∑
j=1

yiyjαiαjxT
i xj


s.t.

n

∑
i=1

αiyi = 0; αi ≥ 0; i = 1, 2, · · · , n

(20)

Assuming that the optimal solution determined by Equation (20) is α∗ =
[
α∗1 , α∗2 , · · · , α∗n

]T,
the two parameters that control the hyperplane can be determined by:

w∗ =

n

∑
i=1

α∗i yixi

b∗ = 1
|M| ∑

m∈M
[ym −w∗xm]

(21)
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where M is the index set of all support vectors and |M| denotes the cardinality of the set M.
However, in practical engineering applications, the data are usually linearly indivisible.

In this case, the kernel SVM is constructed using a nonlinear mapping function:

ŷ = wF(x) + b (22)

where F(x) is a nonlinear mapping function. Similarly, it can be transformed into a convex
quadratic problem:

min
w,b

1
2‖w‖

2

s.t. yi(wF(xi) + b) ≥ 1, i = 1, 2, · · · , n
(23)

The dual problem of Equation (23), similar to Equation (20), can also be constructed
as follows:

max
α


n

∑
i=1

αi − 1
2

n

∑
i=1

n

∑
j=1

yiyjαiαj(F(xi))
TF
(
xj
)

s.t.
n

∑
i=1

αiyi = 0; αi ≥ 0; i = 1, 2, · · · , n

(24)

If the kernel function is defined as k(p, q) = (F(p))TF(q), then Equation (24) can be
expressed as:

max
α


n

∑
i=1

αi − 1
2

n

∑
i=1

n

∑
j=1

yiyjαiαjk
(
xi, xj

)
s.t.

n

∑
i=1

αiyi = 0; αi ≥ 0; i = 1, 2, · · · , n

(25)

For the real Euclidean space, the Mercer condition guarantees the arbitrariness of the
kernel function k(p, q) [31]. In this manner, we map the linearly indivisible data from the
low-dimensional feature space to the high-dimensional feature space. In a high-dimensional
space, the original nonlinear separable data will become linearly separable. In this study,
because the data are linearly separable, we use the simplest linear kernel function, whose
expression is:

k
(
xi, xj

)
= xT

i xj (26)

By substituting Equation (26) into Equation (25), we find that it is the same as in
Equation (20). Therefore, these two parameters are obtained from Equation (21).

3. Damage Quantification

To obtain accurate damage information, a structure must be finely divided into small
elements. It is feasible to consider all of the elements of the entire structure as possible
damage elements to establish a structural damage calculation model. However, the prob-
lem dimension will increase with an increase in the number of structural elements, and the
calculation of swarm optimization algorithms will be extremely complex. In view of the
sparseness of the initial damage of the structure, damage localization and damage quantifi-
cation are considered separately in our work. On the basis that the localization information
has been determined, we perform the damage quantitative analysis for the determined
damage elements to overcome the curse of dimensionality. However, if the damage lo-
calization information is unknown, the search results obtained by swarm optimization
algorithms can easily fall into a local optimum.

3.1. Swarm Intelligence Optimization Algorithm

It is difficult to determine an optimal solution for many practical problems. In particu-
lar, problems classified as NP-hard cannot be solved using classical optimization methods
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in a limited amount of time [32]. To determine the damage degree of the structure, an
absolute exact solution exists, but cannot be solved analytically. The approximate solution
is particularly important for the evaluation of the structural state. To quantify damage when
the damage location is known, we use three swarm optimization algorithms to calculate
the damage degree. These algorithms include the PSO, MFO, and MA. The convergence
trend and calculation error of these three swarm optimization algorithms are compared in
this study.

3.1.1. PSO

The PSO is a swarm intelligence optimization algorithm that simulates bird foraging.
The solution to the problem is expressed by the position of the particle in the space. The
update of the position and state of each particle is related to the social experiences of the
particle groups. Based on the information sharing between particles, it can update itself
without complex derivative calculations. At the same time, the PSO is not sensitive to the
nature of the objective function and can easily jump out of the local optimal value [33],
which can be applied to various random fitness functions. When the PSO is applied to
quantify the damage, the damage degree of the damaged element is characterized by the
position coordinates of each particle. The degree of damage of the damage element is
calculated by updating the position state of the particles in the solution space. The pseudo
code for the damage degree identification based on the PSO is shown in Algorithm 1.

Algorithm 1: Pseudo code of damage degree identification based on the PSO

Initialize particle swarm position xi and velocities vi (i = 1, 2, · · · , N)
Calculate the overall stiffness matrix
Calculate fitness function
Evaluate fitness results
Find personal best pbest and global best gbest
Do while stopping criteria are not met

Update velocities and position of particle swarm
Calculate the overall stiffness matrix
Calculate fitness function
Evaluate fitness results
Update pbest and gbest

End while
Postprocess results and visualization.

3.1.2. MFO

The MFO is a population intelligent optimization algorithm proposed by Australian
scholar Mirjalili in 2015 [34]. This is a natural heuristic algorithm that simulates the
moth using a lateral orientation to find the light source at night. The moths are actually
individuals moving in the search space, and the flames are the best positions that the
corresponding moths can reach. Each moth is surrounded by a flame. Once a better solution
is obtained, it is updated to the position of the flame in the next generation. Therefore, the
moths will never lose their best solutions [35]. At the same time, an adaptive mechanism is
proposed to reduce the number of flames adaptively with an increase in iteration times, so
that the algorithm can converge better and faster. Compared with other algorithms, the
MFO algorithm has the advantages of a simple structure, easy implementation, and fewer
parameters [36]. When the MFO is applied to the damage degree optimization model, the
damage degree of the damage element is characterized by the position coordinates of the
moths. The damage degree of the damage element is calculated by updating the position
state of the moths rotating around the flames in the solution space. The pseudo code for
the damage degree identification based on the MFO is shown in Algorithm 2.



Buildings 2022, 12, 1950 9 of 24

Algorithm 2: Pseudo code of damage degree identification based on the MFO

Initialize moth position xi and flame position yi (i = 1, 2, · · · , N)
Calculate the overall stiffness matrix
Calculate moth and flame fitness function
Evaluate moth and flame fitness results
Establish the corresponding relationship between moth and flame according to fitness value
Do while stopping criteria are not met

Update moth position according to flame position
Calculate the overall stiffness matrix
Calculate moth fitness function
Evaluate moth fitness results
Reduce the number of flames
Evaluate flame and moth fitness values
Update flame position and flame fitness
Establish the corresponding relationship between moth and flame according to fitness value

End while
Postprocess results and visualization.

3.1.3. MA

The MA is a population intelligent optimization algorithm proposed by Zervoudakis
and Tsafarakis in 2020 [37], which simulates the flight courtship behavior and mating
process of mayflies. The mayflies are divided into males and females. They can update the
position of the mayflies and solve the problem by a series of social behaviors (flying, mating,
bearing, and replacing). In the process of courtship flight, the male and female mayflies
exhibit different social behaviors, but their behaviors depend on the social experience of
individuals and groups. This algorithm can be regarded as an improvement of the PSO,
which combines the advantages of the PSO, GA, and firefly algorithm (FA). When the MA
is applied to the damage degree optimization model, the damage degree of the damage
element is represented by the position coordinates of the mayflies. The damage degree
of the damage element is calculated by updating the position states caused by a series of
social behaviors of the mayflies in the solution space. The pseudo code for the damage
degree identification based on the MA is shown in Algorithm 3.

Algorithm 3: Pseudo code of damage degree identification based on the MA

Initialize the male mayfly population xi(i = 1, 2, · · · , N) and velocities vm
i (i = 1, 2, · · · , N)

Initialize the female mayfly population yj(j = 1, 2, · · · , M) and velocities v f
j (j = 1, 2, · · · , M)

Calculate the overall stiffness matrix
Calculate fitness function
Evaluate fitness results
Find personal best pbest and global best gbest
Do while stopping criteria are not met

Update velocities and solutions of males and females
Calculate the overall stiffness matrix
Calculate fitness function
Evaluate fitness results
Rank the mayflies
Mate the mayflies
Calculate the overall stiffness matrix according to offspring
Calculate fitness function
Evaluate fitness results
Evaluate offspring
Separate offspring into male and female randomly
Replace worst solutions with the best new ones
Update pbest and gbest

End while
Postprocess results and visualization.
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3.2. Fitness Function

The traditional fitness function is usually the sum of the residual square of the natural
frequency calculated by optimization algorithms and the identified natural frequency. The
following fitness functions were used in References [20,38]:

Fitness =

n

∑
i

(
ωr

i −ωt
i
)2/(ωr

i )
2 (27)

where ωr
i is the calculated value of the i-th order frequency obtained in each iteration

of the optimization algorithms, ωt
i is the identified i-th order natural frequency value of

the structure, and n is the order of the modes involved in the calculation. The calculated
natural frequencies of each order are as close to the natural frequencies of each order of
the structure as possible during the optimization process. As the objective of optimization,
the identified natural frequencies of each order of the structure must be very accurate
to ensure calculation accuracy under the fitness function. However, the energy of each
mode excited by a structure is typically different. Generally, the energy of the low-order
mode is higher and that of the high-order mode is lower, which may affect the accuracy of
the SOD method in identifying the modal parameters of each order. To reduce the error
caused by the parameters of the identified low-energy mode participating in the calculation,
the weighting coefficient αi is added to the traditional fitness function. However, the
frequencies of each order usually differ greatly in value, and the denominator in the fitness
function is small for low-order frequencies. When the residual values of the calculated
natural frequencies and the identified modal frequencies of each order are the same, the
low-order frequencies are not stable compared with the high-order frequencies. To mitigate
this effect, the fitness function is obtained by adding the weighting coefficient βi to the
fitness function. The fitness function is given by:

Fitness =

n̂

∑
i

(
αi ∗ βi ∗ (ωr

i −ωc
i )

2/(ωr
i )

2
)

(28)

where ωc
i is the natural frequency of the structure extracted by the SOD method; αi =

λ̂i
∑n̂

i=1 λ̂i
,

and βi =
ωc

i
∑n̂

i=1 ωc
i
, where the values of n̂ and λ̂i are the same as those in Equation (7).

3.3. Damage Identification Steps

The frequencies obtained by the SOD method are used to compute the fitness function
of the swarm optimization algorithms. The damage location method based on the SOD-
SVM is used to identify the damage elements of the beam structure, and the number of
identified damage elements is taken as the dimension of the solution space in the swarm
optimization algorithms. Compared with directly considering the stiffness of all structural
elements as the unknown quantity of the intelligent algorithms, the two-stage method
significantly reduces the number of unknown quantities. Therefore, it is conducive to
accelerating the convergence speed of the algorithms and improving the optimization
accuracy. The damage identification algorithm is shown in Figure 2.
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Figure 2. Schematic diagram of the damage identification.

4. Numerical Example

The beam structure is divided into 20 elements, and the model is established and
simulated using finite element analysis software. The beam model is shown in Figure 3.
The span of the simply supported beam is 2.0 m and the section size is 0.1 m× 0.02 m, the
Young’s Modulus is E = 210 GPa, the density is ρ = 7850 kg/m3, and the Poisson’s ratio is
γ = 0.3.
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Figure 3. Undamaged simply supported beam model.

The local damage of this simply supported beam is simulated by reducing the elastic
modulus of a specific element [20], as follows:

Ed
i = (1− di)E (29)

where Ed
i represents the elastic modulus of the i-th damaged element, and di represents the

percentage of stiffness reduction of the i-th element (represented as the degree of damage in
this study). Gaussian white noise is used as random excitation, and the transient dynamic
analysis of the model is carried out to obtain the displacement and velocity response data of
each node. At the same time, in order to study the noise robustness of the proposed damage
identification method, 0.2%, 0.5%, and 1% noise are added to the extracted displacement
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and velocity response data, respectively. The signal is contaminated by white noise in
terms of:

noise = nlevel × normrnd(0, σ, [ssize]) (30)

Xn = X + noise (31)

where nlevel = 0.2%, 0.5%, or 1% indicates the noise level, σ is the covariance of the original
signal, Ssize is sequence length of the original signal, normrnd(•) is a subroutine to generate
normal distribution random numbers, X represents the original signal, and Xn indicates
the signal polluted by white noise.

4.1. Single Damage Condition

The damage degree of each element of the established simply supported beam from
1% to 90% (increasing by 1%) is simulated separately, the first-order mode of each damage
model is extracted, and the modal curvature is calculated. Through the above operations,
we obtain 20× 90 = 1800 groups of data. Another 90 groups of data calculated for the
undamaged beam are added to the dataset, and a total of 1890 groups of data are used as the
dataset. Using a 75–25 split, the training and verification sets contained 1417 and 473 groups
of data, respectively. The SVM model is trained using these data. The damage location
of the above datasets is identified using the SVM. The results show that the recognition
accuracy of the damage location of the training and verification sets reaches 100%. It can be
seen that the SVM can make a good judgment on the location of a single point of damage
in the simulated cases.

To further determine the accuracy and robustness of the SVM model, 10%, 15%,
20%, and 25% damage is preset for each element of the simply supported beam. White
noise excitation is used to excite the damage model for transient dynamic analysis, and
the displacement and velocity response data are obtained. White noise with different
degrees is added to the responses (the noise levels are 0.2%, 0.5%, or 1%). The mode
shapes and natural frequencies of the structure are extracted using the SOD. As shown
in Figure 4, for the eighth element with 20% damage, under the influence of 0.5% noise
degree, we can determine and extract the modal parameters of the n̂ = 3 mode order.
The frequencies identified by the SOD and those extracted using ANSYS are compared in
Table 1. The results show that under different noise levels, the differences between the first
three frequency identification values and the extracted values are within 0.15%, indicating
that the SOD method can accurately identify the frequencies of a single damaged simply
supported beam.
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Figure 4. Eigenvalue diagram of Rqq for single damaged simple supported beam.
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Table 1. Frequency calculation value of the SOD and ANSYS extracted value (single damage condition).

Damage Condition Frequency Order Ansys Noise Level SOD Error

Element 8 takes 20% damage

1 57.945

Without 57.954 0.015%
0.2% 57.924 0.037%
0.5% 57.901 0.077%
1% 57.870 0.130%

2 231.92

Without 231.913 0.003%
0.2% 231.874 0.020%
0.5% 231.942 0.010%
1% 232.173 0.109%

3 520.72

Without 521.216 0.095%
0.2% 520.983 0.050%
0.5% 520.942 0.043%
1% 520.439 0.054%

The modal energies of each excitation order are often different. To accurately evaluate
the performance of the established SVM model, the test set is composed of the identified
modal shape curvatures with the largest modal energy, which is the first-order modal
parameter obtained by the SOD method. The statistical verification results for the test set
are shown in Figure 5. The results show that the localization accuracy of the SVM for the
damage location increases with an increase in the damage degree. The more serious the
damage, the easier it is to detect. When the damage is 10% and the noise level reaches
1%, the accuracy of the SVM model is more than 85%. When the noise level is reduced
to 0.5%, the recognition accuracy reaches 97.56%, which is significantly improved. When
the noise level drops to 0.2%, the position recognition accuracy reaches 100%, even if the
local damage is 10%. When the degree of damage reaches 15%, the accuracy is still above
95%, even in the case of high-level noise. At the same time, when the damage degree
reaches 20%, even under the influence of 0.5% noise, the localization accuracy reaches
100%. The statistical results show that the damage location method based on the SOD-SVM
can effectively identify the damage location under a single damage condition. After the
location of the damage element is determined, the subsequent damage degree optimization
model is reduced to a one-dimensional search problem.
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The eighth element is chosen as the damaged element to illustrate the performance
of the searching algorithm. After the SVM determines that the damage element is the
eighth element, the stiffness loss ratio of the eighth element is set as an unknown parameter
and the first three frequencies are substituted into the fitness function. The search range
of the stiffness loss ratio of the element is set to [0, 1]. The fitness evolution of the three
swarm intelligent optimization algorithms with an increase in the iteration number is
shown in Figure 6. It can be observed that after the dimension is reduced, all three
algorithms can converge quickly. The results of the stiffness loss ratio of the damaged
element calculated by the three algorithms under different noise levels are listed in Table 2.
The results demonstrate that swarm intelligence algorithms have good accuracy in the
damage identification of simple supported beams with single damage. It should also be
noted that the greater the noise level, the greater the deviation in the predicted damage
degree. At a noise level of 1%, the maximum error is 8.70%.
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Figure 6. Fitness of algorithms under single damage condition. (a) Without noise; (b) 0.2% noise;
(c) 0.5% noise; and (d) 1% noise.
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Table 2. Element stiffness reduction ratio (single damage condition).

Damage Condition Noise Level Algorithm Calculated Value Error

Element 8 takes 20% damage

Without noise
PSO 19.64% 1.80%
MFO 19.64% 1.80%
MA 19.64% 1.80%

0.2%
PSO 20.51% 2.55%
MFO 20.51% 2.55%
MA 20.51% 2.55%

0.5%
PSO 20.87% 4.35%
MFO 20.87% 4.35%
MA 20.87% 4.35%

1%
PSO 21.74% 8.70%
MFO 21.74% 8.70%
MA 21.74% 8.70%

4.2. Multiple Damage Condition

Two-element damage is used to represent multi-element damage. The structural
damage of each element of the simply supported beam from 10% to 90% (increased by 10%)
is simulated separately, the first-order mode of each damage model is extracted, and the
modal curvature is calculated. Through the above operations, we can obtain 15,390 groups
of data. Another 81 groups of data for calculated undamaged and 1620 groups of data for
single damage of each element are added to the dataset, and a total of 17,091 groups of
data are used as the dataset. Using a 75–25 split, the training and verification set had 12,818
and 4273 groups of data, respectively. The SVM model is trained using these data. The
damage location of the above datasets is identified using the SVM. The results show that
the recognition accuracy of the damage location of the training set is 100%, and that of the
verification set is 99.91%. It can be seen that the SVM can also make a good judgment on
the location of multiple damages in the simulated cases.

Similarly, 10%, 15%, 20%, and 25% damages are preset for each of the two elements
of the simply supported beam. White noise excitation is used to excite the damage model
for transient dynamic analysis, and displacement and velocity response data are obtained.
White noise with different degrees is added to the responses (the noise levels are 0.2%,
0.5%, or 1%). As shown in Figure 7, for the fifth element with 30% damage and the tenth
element with 20% damage, under the influence of 1% noise degree, we can determine and
extract the modal parameters of the n̂ = 2 mode order. The frequencies identified by the
SOD and those extracted using ANSYS are compared in Table 3. The results show that
under different noise levels, the differences between the first three frequency identification
values and the extracted values are within 0.15%, which indicates that the SOD method can
accurately identify the frequencies of multiple damaged simply supported beams.

Table 3. Frequency calculation value of the SOD and ANSYS extracted value (multiple damage condition).

Damage Condition Frequency Order Ansys Noise Level SOD Error

Element 5 takes 30% damage and
element 10 takes 20% damage

1 57.341

Without 57.362 0.036%
0.2% 57.316 0.044%
0.5% 57.328 0.023%
1% 57.284 0.100%

2 228.67

Without 228.684 0.006%
0.2% 228.819 0.065%
0.5% 228.976 0.134%
1% 228.935 0.116%
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Figure 7. Eigenvalue diagram of Rqq for simple supported beam with multiple damage.

Similarly, the test set is composed of the identified modal shape curvatures with the
largest modal energy, which is the first-order modal parameter obtained using the SOD
method. The statistical verification results for the test set are shown in Figure 8. The results
show that the localization accuracy of the SVM for the damage location increases with
an increase in the damage degree. The more serious the damage, the easier it is to detect.
When the damage is 10% and the noise level reaches 1%, the accuracy of the SVM model
is only 60%; however, when the noise level is reduced to 0.5%, the recognition accuracy
reaches 93.2%, which is significantly improved. When the noise level drops to 0.2%, the
position recognition accuracy reaches 98%, even if the local damage is 10%. When the
damage degree reaches 20%, the accuracy is still above 83.2% even in the case of high-level
noise. When the damage degree reaches 25%, the accuracy is still above 91.2%, even in the
case of high-level noise. At the same time, when the damage degree reaches 20%, even
under the influence of 0.5% noise, the localization accuracy reaches 99%. The statistical
results show that the damage location method based on the SOD-SVM can effectively
identify the damage location under multiple damage conditions. After the location of the
damage elements is determined, the subsequent damage degree optimization model is
reduced to a two-dimensional search problem.
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To illustrate the performance of the search algorithm, the fifth and tenth elements are
selected as the damaged elements. After the SVM determines that the damage elements
are the fifth and tenth elements, the stiffness loss ratios of the fifth and tenth elements are
set as unknown parameters, and the first two frequencies are substituted into the fitness
function. The search range of the stiffness loss ratios of the element is set to [0, 1]. The
fitness evolution of the three swarm intelligent optimization algorithms with an increase in
the iteration number is shown in Figure 9. It can be observed that after the dimension is
reduced, all three algorithms can converge quickly. The results of the stiffness loss ratio
of the damaged element calculated by the three algorithms under different noise levels
are listed in Table 4. The results demonstrate that swarm intelligence algorithms have
good accuracy in the damage identification of simple supported beams with single damage.
It should also be noted that the greater the noise level, the greater the deviation in the
predicted damage degree. At a noise level of 1%, the maximum error is 10.20%.
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Table 4. Element stiffness reduction ratio (multiple damage condition).

Damage Condition Noise Level Element Number Algorithm Calculated Value Error

Element 5 takes
30% damage and
element 10 takes

20% damage

Without noise

5
PSO 29.95% 0.17%
MFO 29.95% 0.17%
MA 29.95% 0.17%

10
PSO 19.53% 2.35%
MFO 19.53% 2.35%
MA 19.53% 2.35%

0.2%

5
PSO 29.25% 2.50%
MFO 29.25% 2.50%
MA 29.25% 2.50%

10
PSO 20.99% 4.95%
MFO 20.99% 4.95%
MA 20.99% 4.95%

0.5%

5
PSO 28.97% 3.43%
MFO 28.97% 3.43%
MA 28.97% 3.43%

10
PSO 21.89% 9.45%
MFO 21.89% 9.45%
MA 21.89% 9.45%

1%

5
PSO 28.63% 4.57%
MFO 28.63% 4.57%
MA 28.66% 4.47%

10
PSO 22.04% 10.20%
MFO 22.04% 10.20%
MA 22.03% 10.15%

5. Uncertainty Analysis of Identification Results of Swarm Intelligence
Optimization Algorithm

Swarm intelligence algorithms typically result in deviations. Algorithm research usu-
ally requires multiple operations. The uncertainty of the results is affected by many factors.
To comprehensively evaluate the advantages and disadvantages of the algorithms, the
identification results, including the mean, variance, and standard deviation, are analyzed
using a statistical method. For the damage degree calculation model, we also need to
perform statistics on the calculation results to provide more reliable guidance for structural
health assessment.

5.1. Uncertainty Analysis of Single Damage Condition

As shown in Figure 10, 20% damage is preset for the eighth element of the simply
supported beam model. The displacement and velocity response data are obtained under
random excitations of the structure using the Monte-Carlo method. The response data
are polluted by noise at four levels (no noise, 0.2% noise, 0.5% noise, and 1% noise). The
natural frequency (including the weight) of each order and damage location are obtained
using the SOD-SVM. Then, the searching algorithms (PSO, MFO, and MA) are used for
the damage degree calculations. To clearly compare the calculation results of the three
intelligent optimization algorithms, the natural frequency order used in the calculation
is fixed at 2. The error distributions of the calculation results of these algorithms are
shown in Figure 11. It can be observed that the number of outliers of calculation error
is very small, but the number of outliers increases with the increase of noise. And the
identification error dispersion increases with the level of noise. This illustrates that the
prediction uncertainty of the structural damage degree optimization model increases with
an increase in measurement noise. However, the prediction errors are low, which suggests
that swarm intelligence optimization algorithms can effectively predict the damage degree
under single damage conditions after dimensionality reduction.
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Figure 11. Damage degree calculation error of single damage condition. (a) Without noise; (b) 0.2% noise;
(c) 0.5% noise; and (d) 1% noise.

5.2. Uncertainty Analysis of Multiple Damage Condition

As shown in Figure 12, the fifth element of the simply supported beam model is preset
with 30% damage, and the tenth element is preset with nine levels of damage degrees (10%,
20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%). The displacement and velocity response
data are obtained by random excitations of the beams under the abovementioned nine
working conditions using the Monte-Carlo method. The response data are polluted by
noise at four levels (no noise, 0.2% noise, 0.5% noise, and 1% noise). The natural frequency
(including weight) of each order and damage locations are obtained by the SOD-SVM,
and the algorithms (PSO, MFO, and MA) are used for multiple calculations. Similarly, the
natural frequency order involved in the calculation is fixed at 2. The means and standard
deviations of the results calculated using the three algorithms are shown in Figures 13–15.
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The calculated mean values are close to the theoretical damage values, and the standard
deviations are relatively small. This suggests that, for the multiple damage condition
damage degree optimization model, swarm intelligence optimization algorithms can obtain
calculation values with stable values and acceptable uncertainties. At the same time, when
the damage degree is relatively small (less than or equal to 40%), the noise will make the
calculation result of the group optimization algorithm on the damage degree larger, and the
greater the noise is, the smaller the calculation result will be. This is disadvantageous to the
calculation of damage degree accuracy, but it is beneficial to the safety maintenance of the
structure. The standard deviations of the nine working conditions with increasing damage
degrees are counted. It can be seen that the standard deviation shows a descending trend
with an increase in the damage value; thus, the calculation uncertainty decreases with an
increase in the damage degree.
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Figure 13. Damage degree calculation value of multiple damage condition based on the PSO.
(a) Without noise; (b) 0.2% noise; (c) 0.5% noise; and (d) 1% noise.
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Figure 14. Damage degree calculation value of multiple damage condition based on the MFO.
(a) Without noise; (b) 0.2% noise; (c) 0.5% noise; and (d) 1% noise.
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Figure 15. Damage degree calculation value of multiple damage condition based on the MA. (a) With-
out noise; (b) 0.2% noise; (c) 0.5% noise; and (d) 1% noise.

6. Conclusions

In this study, a two-stage damage identification method for beam structures based
on an SVM and swarm intelligence algorithms is studied, and the method is verified by
a simple supported beam example. First, the normalized modal curvature is calculated,
the mapping relationship between the damage location and modal curvature of the beam
structures is established, and the SVM model for the damage location is trained. Based on
the pre-trained SVM damage location model, the SOD method is introduced to identify
the mode shape of the damaged structure. The modal curvature, which is used as the
input data of the SVM model for damage location, is calculated using the second-order
central difference of the identified mode shapes. The SOD-SVM damage location method is
affected by noise when the degree of damage is low. Nevertheless, at a noise level of 0.5%
and below, it can accurately locate the damage, even in the case of small damage. In the
second step, the stiffness loss of the damaged element located by the SVM is considered
as the optimization objective of the swarm intelligence algorithms. Combined with the
frequencies obtained by the SOD method, the three swarm intelligent algorithms (PSO,
MFO, and MA) are used to calculate the stiffness loss of the damaged element. The results
show that all three swarm intelligence algorithms can converge quickly. Even in the case of
strong noise pollution, the deviation in the calculated damage is still small (mean deviation
within 3%). The Monte-Carlo method is used to calculate the degree of damage under the
influence of different noise levels. It is found that the greater the noise, the more dispersed
the calculation of damage degree and the greater the uncertainty; the greater the degree
of damage, the more accurate the value of the damage calculation results, and the smaller
the uncertainty. In summary, the method proposed in this study can accurately identify
damage to beam structures. Even under the influence of noise, this method is reliable. In the
future, it is necessary to study the application of this algorithm in the damage identification
of complex structures.
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