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Abstract: This paper proposes the use of enhanced comprehensive learning particle swarm optimiza-
tion (ECLPSO), combined with a Gaussian local search (GLS) technique, for the simultaneous optimal
size and shape design of truss structures under applied forces and design constraints. The ECLPSO
approach presents two novel enhancing techniques, namely perturbation-based exploitation and
adaptive learning probability, in addition to its distinctive diversity of particles. This prevents the
premature convergence of local optimal solutions. In essence, the perturbation enables the robust
exploitation in the updating velocity of particles, whilst the learning probabilities are dynamically
adjusted by ranking information on the personal best particles. Based on the results given by ECLPSO,
the GLS technique takes data from the global best particle and personal best particles in the last
iteration to generate samples from a Gaussian distribution to improve convergence precision. A
combination of these techniques results in the fast convergence and likelihood to obtain the optimal
solution. Applications of the combined GLS-ECLPSO method are illustrated through several success-
fully solved truss examples in two- and three-dimensional spaces. The robustness and accuracy of the
proposed scheme are illustrated through comparisons with available benchmarks processed by other
meta-heuristic algorithms. All examples show simultaneous optimal size and shape distributions of
truss structures complying with limit state design specifications.

Keywords: non-convex optimization; enhanced comprehensive learning; Gaussian local search;
particle swarm optimization; perturbation-based exploitation; adaptive learning probability

1. Introduction

Structural optimization uses computing techniques toward sustainability that achieves
not only economical designs of structures and infrastructures (minimum resource con-
sumption) but also ones with integrity (public safety and functionality). Over the past
decades, this field has gained increasing interest and achievements in scientific research
and engineering applications. Structural optimization has been successfully applied to
the designs of many structures, including trusses, beams, plates, and shells. Among them,
the optimal design of truss structures is generally divided into the three main problems,
namely size, shape, and/or topology optimizations. Specifically, size optimization consid-
ers cross-sectional areas of truss members as variables, whilst shape optimization takes
nodal coordinates as the design variables. Topology optimization determines whether
to remove or maintain discrete elements (volume fraction control) within the domain.
The simultaneous optimization of size and shape provides a more economical design
than its individual (either size or layout) counterparts. The seminal work of Haftka and
Grandhi [1], including the comprehensive reviews [2–5], laid the groundwork for methods
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and applications in shape optimization. The generic formulation of these problems mini-
mizes an objective function (e.g., total volume or weight presenting the cost of a structure),
subjected to the constraints describing design, ultimate (permissible) strength, and/or
serviceability criteria.

Mathematical programming-based approaches [6–8] develop the optimality criteria
techniques for the solutions of general optimization problems that involve the calculation of
implicit gradient functions. This poses difficulties, especially when considering challenging
non-convex (and/or non-smooth) optimization problems. The presence of such conditions
often leads to pitfalls such as the premature convergence of local optimal solutions, and the
performance of standard solution techniques depends on specific parametric initialization.

With the bypassing of differential (gradient) operations in mathematics, meta-heuristic
optimization methods, based on nature-inspired techniques, have been recently developed
to approximate the solutions of optimization programs. For instance, Wu and Chow [9]
utilized a genetic algorithm (GA) for the combined size and layout optimization of truss
structures involving discrete size and continuous configuration variables. Soh and Yang [10]
adopted the GA to perform simultaneous size and shape optimization of steel bridge trusses.
Kaveh and Talatahari [11] carried out a layout optimization using an improved charged
system search (CSS) algorithm. Miguel and Miguel [12] employed the two meta-heuristic
harmony search (HS) and firefly algorithm (FA) methods to process the simultaneous size
and geometry optimization of steel trusses under dynamic constraints. Ho-Huu et al. [13]
proposed a new version of differential evolution (DE) for layout optimization of discrete
size trusses under displacement and stress conditions. Azad et al. [14] employed a modified
big bang-big crunch algorithm to simultaneously solve the size and shape optimization
of truss structures under dynamic excitations. Ho-Huu et al. [15] developed a novel DE
to process the size and shape optimization problems for truss structures with frequency
constraints. Nguyen-Van et al. [16] hybridized the DE and symbiotic organisms search
(SOS) methods to concurrently improve the solution for size and shape truss optimization
under multiple frequency constraints. Inspired by the success of AlphaGo, Luo, et al. [17]
applied a Markov decision process (MDP) model, and a two-stage Monte Carlo tree search
(MCTS) for the optimal truss layout, simultaneously considering topology, geometry, and
bar sizes.

Meta-heuristic algorithms generally consist of a series of trial-and-error processes to
find the optimal solution of optimization problems within the constructed population. The
word “meta” describes beyond or higher level [18,19]. The meta-heuristic algorithm is
classified as a population-based (or trajectory-based) technique, containing two subpop-
ulation exploitation and exploration phases [20,21]. The exploitation ability searches for
solutions in a local area by using information of the good local solution. Meanwhile, the
exploration constructs the search space on global positions to produce the global optimum.
Reaching a good balance between the exploration and exploitation of sample positions is
important for any meta-heuristic method, to escape the premature convergence of local
optima, increasing the likelihood of accurate optima.

As described in no-free-lunch theorems [22], no meta-heuristic method ensures the
optimality of solutions in the presence of non-convex and/or non-smooth conditions often
encountered when solving practical-scale problems. Three underlying drawbacks are
addressed. First, a standard meta-heuristic algorithm is often trapped into local optima
leading to the premature convergence of inaccurate design solutions or even failure to
attend. Second, the final design depends on the preset initial parameters, as well as some
stochastic (random) values constructed during the optimization process, yielding unreliable
(nonrepetitive) design solutions. Third, solving complex problems (in the presence of non-
convex and/or non-smooth variable domains) requires a high number of particles and
numerical simulations. The performance of algorithms is rather problem-dependent. An
approach providing a good optimal design in one application does not necessarily yield an
optimal solution in another.
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Many meta-heuristic algorithms have been introduced with underlying exploitation
and exploration abilities. The particle swarm optimization (PSO) [23], being a swarm-
intelligence approach, emulates the movement or social behavior of a bird flock. The PSO
constructs a set of particles in the population, where their positions are iteratively updated
through the movement (velocity functions) learnt from the global best particle. However,
the premature local optima are often encountered by the standard PSO method, as its
social update components do not sufficiently work. Various new techniques have been
incorporated with the original PSO to enhance its global search ability and overcome local
optimal pitfalls.

Our recent work successfully applied a variant version of the PSO, called comprehen-
sive learning particle swarm optimization (CLPSO), for the design of steel structures [24].
In the CLPSO [25], the learning technique enables cross-positions between the sets of
best swarm particles in each dimensional space, leading to the likelihood of overcoming
locally optimal searches and premature termination of undesired non-optimal but feasible
solutions. The proposed scheme followed a learning probability function that defined the
cooperative responses among swarm populations. However, this strategy did not improve
the exploitation ability to perform deep local searches around the best global position.

To improve the searching mechanism and exploitation ability of standard CLPSO, this
paper proposes an enhanced CLPSO (ECLPSO), combined with a Gaussian local search
(GLS), termed the GLS-ECLPSO method to perform simultaneous size and shape optimiza-
tion of structures under applied forces. The two enhancing techniques [26] underlying
the ECLPSO, namely normative knowledge and new adaptive learning probability, were
incorporated with the CLPSO. The former technique determines whether the algorithm
needs to improve its exploitation ability using perturbation-based exploitation, whilst
the latter replaces the original learning probability with new functions, letting individual
particles learn from ranking information of the personal best positions in search spaces.
The enhanced exploitation and exploration abilities underpinning the ECLPSO, there-
fore, obtain improved optimal solutions, even when considering challenging non-convex
optimization problems.

In addition to the ECLPSO, the GLS applies a bell-curved shape of Gaussian distri-
bution to exploit the particles in a central field, further improving solution optimality.
The GLS adopts information from the global best particle and samples from personal best
particles to better converge on an accurate optimal solution. Random particles are con-
structed around the global best position based on the Gaussian distribution function. We
illustrate applications of the proposed GLS-ECLPSO method using a few optimal size and
shape designs of two- and three-dimensional truss structures. The results show superior
performance in capturing the accurate optimal design for truss structures with modest
computing efforts compared with standard techniques.

2. Size and Shape Optimization Problem

This section describes the simultaneous size and shape optimization problem that
minimizes the cost function, described by the total weight W(A, x, y, z) of (planar or
space) truss structures simultaneously subjected to ultimate strength and serviceability
conditions. The structural optimization contains the size (cross-sectional area) variables
A ∈ Rne = [A1, . . . , Ane] of ne members (viz., m ∈ {1, . . . , ne}) and the shape vari-
ables, including the member lengths L ∈ Rne = [L1, . . . , Lne], written as functions of
unknown nodal coordinates, (x, y, z) ∈ Rnn×nn×nn = [(x1, y1, z1), . . . , (xnn, ynn, znn)], for
n ∈ {1, . . . , nn}. The practical design classifies the ng independent groups of members, con-
sisting of similar sizes using technological constraints [27,28], namely Am = ∑

ng
g=1 Qm,gag

for ∀m ∈ {1, . . . , ne}. The self-evident matrix Q ∈ Rne,ng collects binary parameters in-
dicating either the m-th member lying within (viz., Qm,g = 1) or outside (Qm,g = 0) the
g-th group.
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The optimization formulation is therefore written in terms of the unknown (independent)
design area variables a ∈ Rng = [a1, . . . , ang] and nodal coordinates (x, y, z) ∈ Rnn×nn×nn,
as follows:

Minimize W(a, x, y, z) = ∑ne
m=1

(
∑

ng
g=1 Qm,g.ag.ρg

)
.Lm(x, y, z)

Subject to
{

gj(a, x, y, z) ≤ 0 ∀j ∈ {1, . . . , nc}
ag,min ≤ ag ≤ ag,max ∀g ∈ {1, . . . , ng}

(1)

where Lm(x, y, z) is the m-th member length. For each g-th member group, the material
properties define the density ρg, minimum available area size ag,min, and maximum area size
ag,max. The design constraints, gj(a, x, y, z) ≤ 0 for ∀j ∈ {1, . . . , nc}, imply the permissible

stress (e.g., σm ≤ σ
permissible
m ) and serviceability (limited displacement and/or natural

frequency, viz., δn ≤ δlimit
n ) criteria. The static (stress, σm) and kinematic (serviceability, δn)

responses are described as functions of design variables, namely cross-sectional areas (a)
and nodal coordinates (x,y,z).

Whilst the pin-connected trusses form the focus of this study, applications on more
general beam and frame structures can also be considered. In fact, the optimization
problem in Equation (1) remains rigorous, where the constraints gj(a, x, y, z) ≤ 0 describe
the permissible stresses and/or limited displacements at some specified locations. In
contrast to pin-connected trusses, stresses are additionally presented by the generalized
flexural forces at member ends. A similar set of design variables (a,x,y,z) is processed.

The formulation in Equation (1) belongs to a challenging class of nonlinear program-
ming (NLP) problems in the presence of non-convex and non-smooth constraints [1]. This
can be converted to an unconstrained nonlinear equation using the penalty function mea-
suring the constraint violations by:

W ′ = W(a, x, y, z)(1 + C)ε (2)

where C = ∑nc
j=1 max

(
gj(a, x, y, z), 0

)
is a constraint penalty function and ε a positive

penalty scalar. The solution to the unconstrained nonlinear formulation in Equation (2)
presents the optimal size and shape design of structures written in Equation (1). The
ECLPSO method combined with the GLS strategy was developed to provide a solution to
the problem in Equation (2).

3. Enhanced Comprehensive Learning Particle Swarm Optimization
3.1. Comprehensive Learning PSO

Similar to standard PSO algorithms [23], the CLPSO method [25] randomly con-
structs the swarm population of np particles in a stochastic fashion, namely Xp ∈ Rnd =(

Xp,d

∣∣∣∀d ∈ {1, . . . , nd}
)

for p ∈ {1, . . . , np} of the design variables X ∈ Rnd in nd dimen-

sions. The iterative procedures are performed to update the new position Xnext
p ∈ Rnd of

the p-th generic particle by
Xnext

p = Xp + Vnext
p (3)

where the new velocity Vnext
p ∈ Rnd defines changes in the particle position Xp from the

current to next step iteration. The velocity Vnext
p of the p-th particle satisfies the following

random function:

Vnext
p = wpVp + c1.rand1p.

(
Xbest

p − Xp

)
+ c2.rand2p.

(
Xglobal − Xp

)
(4)

where the acceleration weight c1 attracts Xp toward the best position

Xbest
p ∈ Rnd = (Xbest

p,d

∣∣∣∀d ∈ {1, . . . , nd}) (viz., ones associated with the best objective value
at its own p-th particle for all time steps); c2 is the acceleration weight associated with
searches around the global best position Xglobal ∈ Rnd = (Xglobal

d

∣∣∣∀d ∈ {1, . . . , nd}) ; rand1p
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and rand2p are the random numbers uniformly selected within the interval of [0, 1]; and w
is the inertia weight controlling the excessive momentum in particles.

Comprehensive learning [25] determines the best position Xbest
p in Equation (3) through

the new learning exemplar Xbest
p, f =

(
Xbest

p, f (d)

∣∣∣∀d ∈ {1, . . . , nd}
)

. For the p-th particle, the

learning exemplar Xbest
p, f is initialized at the best location Xbest

p . At the d-th dimension, the

location of the best particle Xbest
p= f (d),d is indicated by the particle index f (d) through the

learning probability searches across all np particles. The exemplar Xbest
p, f then explores for

each d-th dimension its new Xbest
p, f (d) from one of the two best particles

(
Xbest

p, f1(d)
, Xbest

p, f2(d)

)
,

where Xbest
p, f1(d)

6= Xbest
p, f2(d)

. Each of Xbest
p, f1(d)

and Xbest
p, f2(d)

is randomly selected from the

Xbest
p , namely

(
Xbest

p=1,d, . . . , Xbest
p=np,d

)
. The index f (d) is set to either f 1(d) or f 2(d) associated

with the more optimal objective function, min
(

W
(

Xbest
p= f1(d)

)
, W
(

Xbest
p= f2(d)

))
. The new

exemplar at the d-th dimension is updated by Xbest
p, f (d) = Xbest

p= f (d),d. All nd dimensions are

explored to yield the new direction Xbest
p, f of the p-th particle. A schematic expression of

the comprehensive learning strategy constructing the updating position Xbest
p, f of the p-th

particle is depicted in Figure 1.
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Figure 1. Comprehensive learning for the updating position Xbest
p, f .

For each p-th particle, the comprehensive searches permit its best exemplars Xbest
p

to learn from those of other particles in the same dimension. This feature enables the
CLPSO to construct a diverse (better-quality) swarm and have global exploration ability of
search spaces. The CLPSO assists particles in avoiding local optima pitfalls, and therefore,
increases the likelihood of capturing accurate optimal design solutions.

In comprehensive learning, the exemplar at each dimension is randomly selected
according to the learning probability function Pcp, described in Equation (5) [25]. More
explicitly, for each d-th dimension, the learning probability function Pcp determines the new
learning position of the exemplar Xbest

p, f (d) = Xbest
p= f (d),d of the p-th particle, only when the

random number within an interval [0, 1] (called rand) is less than the value of the function
Pcp. Otherwise, the exemplar remains at its best position, namely Xbest

p, f (d) = Xbest
p,d . In a

special case when all exemplars of the p-th particle are at their current best values Xbest
p,d , the

new position Xbest
p, f takes one of its exemplars randomly learnt from another particle Xbest

p at
the same d-th dimension. The comprehensive learning strategy iteratively processes the
best position Xbest

p (i.e., Xbest
p, f = Xbest

p ) of the p-th particle, updated in Equations (2) and (3)
for all nd dimensions.
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The function Pcp takes different values for different particles that do not vary during
the optimization iteration. For instance, the values of Pcp in Equation (5) for np = 20, 30, 40,
and 50 particles are plotted in Figure 2.

Pcp = 0.05 + 0.45

(
exp

(
10(p−1)

np−1

)
− 1
)

(exp(10)− 1)
(5)
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The CLPSO performs comprehensive learning when the objective function does not
consecutively improve for more than refreshing gap, rgap (e.g., rgap = 5), iterations [25]. The
comprehensive searches for the new learning location f (d) are described by the flowchart in
Figure 3.
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3.2. Perturbation-Based Exploitation

To improve the exploitation ability of particles, an enhanced version of the CLPSO [26],
called the ECLPSO, implements a normative knowledge structure, detailed in Table 1.
The normative knowledge adopts a dimensional interval to all personal best positions
of the population. To employ perturbation-based exploitation, a certain condition in the
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normative knowledge is made for the decision of when the exploitation is performed
effectively, and which region is focused.

Table 1. Normative knowledge.

Dimension 1 2 . . . nd

Present dimensional lower bound P1 P2 . . . Pnd
Present dimensional upper bound P1 P2 . . . Pnd

The two lower Pd and upper Pd bounds to all personal best positions Xbest
p at the d-th

dimension are defined by:

Pd = min
{

Xbest
1,d , Xbest

2,d , . . . , Xbest
np,d

}
(6)

Pd = max
{

Xbest
1,d , Xbest

2,d , . . . , Xbest
np,d

}
(7)

The perturbation-based exploitation improves the exploitation and accuracy of the
CLPSO algorithm. This is applied to the standard CLPSO when the conditions stated in
Equation (8) are satisfied. Then, the velocity is updated by Equation (9), now incorporating
the perturbation-based exploitation term [26].{

Pd − Pd ≤ α
(
Xmax

d − Xmin
d
)

Pd − Pd ≤ β
(8)

Vnext
p = wPbEVp + c1.rand1p.

(
Xbest

p, f + η
(

Γ− Xbest
p, f

)
− Xp

)
+ c2.rand2p.

(
Xglobal − Xp

)
, (9)

where Xmax
s and Xmin

s are the maximum and minimum positions at the d-th dimension,
respectively; α is the relative ratio (which equals to 0.01); β is the small absolute bound
(which is set as 2); η is the perturbation coefficient (which is constructed randomly from a
normal distribution with the mean value of 1 and standard deviation of 0.65); and wPbE is
the inertia weight (which is set as 0.5).

Each p-th particle moves toward Xbest
p, f with a perturbation term of η

(
Γ− Xbest

p, f

)
, where

Γ =
Pd−Pd

2 at the d-th dimension. The perturbation term can be considered in two ways.

First, it is obvious that
Pd−Pd

2 ≤ Pd+Pd
2 − Xbest

p, f ≤
Pd−Pd

2 , and the perturbation term is
proportional to a normative interval size of Pd − Pd. The smaller the interval size, the
smaller the perturbation. Second, for the global optimal at the d-th dimension (i.e., X∗p is

often close to the normative interval center of
Pd+Pd

2 ), the perturbation term is proportional

to the distance between Xp and
Pd+Pd

2 , namely Xbest
p, f being closer to the interval center.

As a result, the velocity in Equation (9) adaptively determines the local search granu-
larity based on the interval size as well as the distance between exemplar position and the
interval center of the dimension. As Equation (9) pulls each particle toward some position
other than the position of the d-th dimension, a better solution can be expected around
the interval. When the description in Equation (8) is not satisfied, the standard velocity
given in Equation (4) is adopted. The perturbation-based exploitation process is depicted
in Figure 4.
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3.3. Adaptive Learning Probability

Learning probabilities primarily capture an exemplar index in the CLPSO algorithm.
Based on the particle index, these do not generally vary during the design iteration. The
static learning probability often causes some difficulties in converging to an optimal so-
lution. The ECLPSO method proposes a new adaptive learning probability function that
is dynamically adjusted according to ranking information from a set of personal best par-
ticles [26]. The new adaptive learning probabilities in Equation (10) are adopted for the
replacement of Equation (5) from the standard CLPSO:

Pcp = Lmin + (Lmax − Lmin)

exp
(

10(Kp−1)
np−1

)
− 1

exp(10)− 1
(10)

where
Lmax = Lmin + 0.25 + 0.45 log(nd+1)(Miter + 1) (11)

Lmin is a positive scalar of 0.05 and Miter is the number of dimensions (i.e., when Equation (8)
is satisfied before or during an iteration iter). Similar to Equation (5), the new function in
Equation (10) incorporates the ranking parameter Kp that is defined by sorting the personal
best fitness value in an ascending order. When the particle presents the best fitness value
compared with others, its rank reads the value of 1 (Kp = 1). On the other hand, its rank
reads the total number of population np (Kp = np) when the particle shows the worst
fitness value.

To avoid premature solution convergence, an adjustment to Lmax in Equation (11) is
required to for a good balance between exploration and exploitation of search spaces. More
explicitly, a small Lmax value provides good exploration, whilst a large value supports
exploitation procedures. In Equation (11), Lmax = 0.3 reads the minimum value, when
Miter = 0. Otherwise, Lmax = 0.75 takes the maximum value, when Miter = nd. The
presence of adaptive learning probability therefore enhances the exploitative ability of
the population and accelerates solution convergence. This yields the main computational
advantage of the ECLPSO, which overcomes the poor exploitation problem in standard
CLPSO schemes.

4. Gaussian Local Search Strategy

The nature of the Gaussian distribution, unlike uniformity, is a bell-curved shape. It
exploits more weights in the central field and improves the chance of finding accurate
optimal solutions. The Gaussian (called normal) distribution denoted by N

(
µ, σ2) is

characterized by the mean µ and variance σ2 values, as follows:

f (x) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
, (σ > 0) (12)

The present ECLPSO method applies the GLS strategy to define the deep local
searches around Xglobal = (Xglobal

d

∣∣∣∀d ∈ {1, . . . , nd}) and Xbest
p = (Xbest

p,d

∣∣∣∀d ∈ {1, . . . , nd}) .

The GLS maps out the positions Xnext
p , within the interval of [Xmin

d , Xmax
d ] at the d-th

dimension. A series of the new locations Xnext
p are constructed based on the Gaussian

probability density function to test the global best Xglobal . In essence, the best global Xglobal

remains rigorous when its objective function W(Xglobal) continues to present the most
optimum, viz., W(Xglobal) ≤ W(Xnext

p ). Otherwise, the new global best position is updated
by Xglobal = Xnext

p , associated with W(Xglobal) > W(Xnext
p ).
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The exemplars Xnext
p generated using the Gaussian probability density function in

Equation (12), with the mean µ = Xglobal and variance σ2 =
∣∣∣Xglobal − Xbest

p

∣∣∣ values for 1000
random samples, are depicted in Figure 5, where

Xnext
p
∼= N

(
µ, σ2

)
= N

(
Xglobal ,

∣∣∣Xglobal − Xbest
p

∣∣∣) (13)
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p constructed around Xglobal .

The figure graphically illustrates the GLS strategy that constructs a series of samples
Xnext

p with a normal distribution around Xglobal .
The ECLPSO method is turned into the GLS scheme when the current iteration iter

reaches 80% of the total number of iterations (max_iter), namely iter ≥ 0.8 ×max_iter. The
positions Xnext

p given in Equation (13) replace the velocities Vnext
p and the positions Xnext

p to
construct the next position. The GLS scheme performs precise local searches around the
global best Xglobal , and therefore enhances the exploitative ability underlying the ECLPSO.
The total number of iterations, max_iter, is preset to a sufficiently large value that ensures
convergence to accurate optimal solutions.

5. Optimization Procedure

The combined ECLPSO and GLS, or GLS-ECLPSO, method, is summarized by the
flowchart in Figure 6. The pseudocode is provided in the following section.

STEP 0: Initial swarm population

• Construct the initial swarm population Xp for p ∈ {1, . . . , np}.
• Perform the comprehensive learning searches.

STEP 1: Enhanced CLPSO

• Determine the velocities Vnext
p in Equation (9) if the conditions in Equation (8) satisfy;

otherwise, the velocities Vnext
p read Equation (4).

• Update the new positions Xnext
p in Equation (3) and associated objective functions

W(Xnext
p ).

• Determine the best position Xbest
p of the p-th particle. If there is no improvement in

W(Xbest
p ) for more than rgap consecutive swarm iterations, perform the comprehensive

learning searches for the new p-th best position Xbest
p .

• Determine the global best position Xglobal over the entire swarm population.
• Reiterate the ECLPSO processes in STEP 1. When iter ≥ 0.8 ×max_iter, perform the

GLSs at STEP 2.

STEP 2: Gaussian local searches

• Perform the GLSs to construct the samples Xnext
p in Equation (13) using the Gaussian

distribution function in Equation (12).
• Test the global best position Xglobal . If W(Xglobal) > W(Xnext

p ), update Xglobal = Xnext
p .
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• Repeat STEP 2 until iter = max_iter.
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6. Illustrative Examples

The applications of the proposed GLS-ECLPSO method are illustrated for the optimal
size and shape designs of planar and spatial truss structures. Four examples [13,29–37],
consisting of different geometries and sizes, have generally been adopted to validate the
accuracy and robustness of various meta-heuristic algorithms. These were formulated as
the challenging non-convex and non-smooth NLP problems in Equation (1). The presence
of permissible (buckling) stress and serviceability conditions with discrete area variables
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posed the major difficulty in processing such a problem. For each example, the solutions
(including the total design weight, total number of analyses. and statistical values) col-
lected from 25 independent GLS-ECLPSO solves were reported and compared with those
available in the literature. The proposed GLS-ECLPSO algorithm was encoded as a Python
code, made available for download at https://github.com/thuchula6792/GLS-ECLPSO
(accessed on 6 September 2022).

6.1. Example 1: 15-Bar Cantilever Truss

The first example considered a 15-bar planar truss structure [29], subjected to a vertical
load (10 kips) at node 8, as shown in Figure 7. The structure was discretized into 15 pin-
connected members and 8 nodes (ng = 23; ne = 15; and nn = 8). All structural members
were subjected to the stress limits of ±25 ksi in tension and compression.
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Figure 7. Example 1: 15-bar planar truss.

The material properties adopted had a density of 0.1 lb-in−3 and modulus of elasticity
of 104 ksi. Member sizes were solely selected from a discrete set of available areas, and
nodal coordinate variables were (xn, yn) ∈ R2 for ∀n ∈ {1, . . . , 8}, as detailed in Table 2.
For practical designs, a symmetric layout was imposed as a design criterion in the op-
timization problem. The NLP problem in Equation (1) consisted of 23 design variables
X ∈ R23 = (a, x, y), namely 15 unknown member sizes (in2-unit) and 8 unknown nodal x-y
coordinates (in-unit).

Table 2. Example 1: design variables and constraints.

Objective Function: W(a, x, y, z) = ∑15
m=1

(
∑23

g=1 Qm,g.ag.ρg

)
.Lm(x, y, z)

Stress constraints:
{

σm ≤ 25 (ksi) in tension
σm ≥ −25 (ksi) in compression , for all m ∈ {1, 2, . . . , 15}

Size variables: ag, for all g ∈ {1, 2, . . . , 15}
Shape variables: x2 = x6 , x3 = x7 , y2 , y3 , y4 , y6 , y7 , y8

Layout conditions:

100 ≤ x2 ≤ 140
220 ≤ x3 ≤ 260
100 ≤ y2 ≤ 140
100 ≤ y3 ≤ 140
50 ≤ y4 ≤ 90
−20 ≤ y6 ≤ 20
−20 ≤ y7 ≤ 20
20 ≤ y8 ≤ 60

Discrete area variables: ag ∈

{0.111, 0.141, 0.174, 0.220, 0.270, 0.287, 0.347, 0.440,
0.539, 0.954, 1.081, 1.174, 1.333, 1.488, 1.764, 2.142, 2.697,

2.800, 3.131, 3.565, 3.813, 4.8055.952, 6.572, 7.192, 8.525, 9.300,
10.850, 13.330, 14.290, 17.170, 19.180} (in 2)

Young modulus: E = 104 (ksi)

Material density: ρ = 0.1 (lb/in 3)

https://github.com/thuchula6792/GLS-ECLPSO
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The proposed GLS-ECLPSO algorithm was performed on the total 20 particles (i.e.,
np = 20; max_iter = 300), and successfully obtained the optimal solution of the truss. As
detailed in Table 3, the computed minimum total weight of W(a) = 74.1723 lb presented
the least value, compared with the reference methods [13,29–31]. The optimal layout of the
designed truss, which varied from its original shape, is depicted in Figure 8.

Table 3. Example 1: optimal size and shape design solutions.

Variables GA [30] FA [31] PSO [29] CPSO [29] TLBO [32] D-ICDE [13] GLS-ECLPSO
(Present)

A1 1.081 0.954 0.954 1.174 1.081 1.081 0.954
A2 0.539 0.539 1.081 0.539 0.954 0.539 0.539
A3 0.287 0.220 0.270 0.347 0.141 0.141 0.220
A4 0.954 0.954 1.081 0.954 1.081 0.954 0.954
A5 0.539 0.539 0.539 0.954 0.539 0.539 0.539
A6 0.141 0.220 0.287 0.141 0.347 0.287 0.220
A7 0.110 0.111 0.141 0.141 0.111 0.111 0.111
A8 0.110 0.111 0.111 0.111 0.174 0.111 0.111
A9 0.539 0.287 0.347 1.174 0.141 0.141 0.440
A10 0.440 0.440 0.440 0.141 0.270 0.347 0.440
A11 0.539 0.440 0.270 0.440 0.220 0.440 0.440
A12 0.270 0.220 0.111 0.440 0.141 0.270 0.270
A13 0.220 0.220 0.347 0.141 0.440 0.270 0.220
A14 0.141 0.270 0.440 0.141 0.347 0.287 0.220
A15 0.287 0.220 0.220 0.347 0.141 0.174 0.220
X2 101.5775 114.967 106.0521 102.287 100.004 100.031 100.9857
X3 227.9112 247.040 239.0245 240.505 241.047 238.701 242.8470
Y2 134.7986 125.919 130.3556 112.584 118.823 132.847 134.2018
Y3 128.2206 111.067 114.273 108.043 100.083 125.367 119.9010
Y4 54.8630 58.298 51.9866 57.795 50.000 60.307 50.8212
Y6 −16.4484 −17.564 1.8135 −6.429 3.141 −10.665 −17.1359
Y7 −13.3007 −5.821 9.1827 −1.800 −9.699 −12.245 −4.1215
Y8 54.8572 31.465 46.9087 57.798 46.896 59.993 50.7841

Best weight (lb) 76.6854 75.55 82.2344 77.615 76.652 74.682 74.1723
Constraint violation (%) 0.0 N/A 0.0 0.0 N/A 0.0 0.0

No. of analyses 8000 8000 4500 4500 N/A 8000 6000
SD N/A 2.96 N/A N/A 2.42 N/A 3.22

Note: GA = genetic algorithm; FA = firefly algorithm; PSO = particle swam optimization; CPSO = cellular
automata and particle swarm optimization; TLBO = teaching-learning-based optimization; D-ICDE = discrete
improved constrained differential evolution.
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Figure 8. Example 1. optimal shape solution.

All 25 independent designs strictly complied with the imposed constraints. The
maximum stress developed was 24.9964 ksi, as shown in Figure 9. The statistical values in
Table 3 show that the proposed GLS-ECLPSO captured the most minimum weight with a
small standard deviation (namely, SD = 3.22 lb).
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Figure 9. Example 1: permissible and designed member stresses.

The convergence of designed total weights, defined by the unconstrained nonlinear
function in Equation (2), was plotted in Figure 10 for both the best and mean values to
the optimal solutions. This illustrated that the GLS-ECLPSO quickly converged to the
minimum weight of the structure as it approached the first 200 iterations of the maximum
preset 300 iterations.
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6.2. Example 2: 18-Bar Planar Truss

The 18-bar planar truss [29] in Figure 11 was applied by the vertical forces of 20 kips
at nodes 8, 6, 4, 2, and 1. The structure was modeled as 18 pin-connected members with
11 nodes (i.e., ng = 12; ne = 18; and nn = 11). The material properties adopted had a density
of 0.1 lb-in−3 and modulus of elasticity of 104 ksi. The member sizes were solely selected
from the available set of discrete areas. Similar area conditions of members within the
groups are specified in Table 4. The structure was designed under buckling constraints,
with a buckling coefficient of K = 4 in compression and a permissible tensile stress of 25 ksi.
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Table 4. Example 2: design variables and constraints.

Objective Function: W(a, x, y, z) = ∑ne=18
m=1

(
∑

ng=12
g=1 Qm,g.ag.ρg

)
.Lm(x, y, z)

Stress constraints:
{

σm ≤ 25 (ksi) in tension
σm ≥ −25 (ksi) in compression , for all m ∈ {1, 2, . . . , 18}

Buckling constraints: |σm| ≤ KEAm/Lm
2, for all m ∈ {1, 2, . . . , 18}

Size variables:
A1 = A4 = A8 = A12 = A16 , A2 = A6 = A10 = A14 = A18 ,
A3 = A7 = A11 = A15 , A5 = A9 = A13 = A17

Shape variables: x3 , y3 , x5 , y5 , x7 , y7 , x9 , y9

Discrete area variables: ag ∈ Rng = {2.00, 2.25, 2.50, . . . , 21.25, 21.50, 21.75} (in 2)

Layout conditions:

775 ≤ x3 ≤ 1225
525 ≤ x5 ≤ 975
275 ≤ x7 ≤ 725
25 ≤ x9 ≤ 475
−225 ≤ y3 , y5 , y7 , y9 ≤ 245

Young modulus: E = 104 (ksi)

Buckling coefficient: K = 4

Material density: ρ = 0.1 (lb/in 3
)

The nodal coordinates (xn, yn) ∈ R2 for n ∈ {1, 2, 4, 6, 8, 10, 11} at the top-chord
members and two restrained points were unvaried, whilst those for n ∈ {3, 5, 7, 9} at the
bottom-chord were designed for an optimal layout. This led to a total of twelve design
variables X ∈ R12 = (a, x, y), consisting of four unknown member sizes (in2-unit) and eight
unknown nodal x-y coordinates (in-unit).

The simultaneous size and shape optimization was formulated as the non-convex
and non-smooth NLP problem in Equation (1). The GLS-ECLPSO method constructed the
total 20 particles with the algorithmic parameters of max_iter = 300. The minimum weight
of W(a) = 4175.1425 lb was successfully determined. All constraints on permissible and
buckling forces developed for design members were strictly complied with, as shown in
Figure 12. The corresponding optimal layout and normalized buckling force ratios are
depicted in Figure 13.
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Figure 13. Example 2: optimal design solution with (a) optimal shape and (b) normalized buckling
force ratio.

The optimal solution presented a total weight value that was 8% less than those
reported in the literature [13,29,30,33]. Table 5 summarizes the optimal solutions, as well as
the statistical values obtained from 25 independent runs. In essence, the small standard
deviation of 57.32 lb is addressed. This illustrates the superior performance of the proposed
method in obtaining accurate and reliable optimal design solutions that are insensitive to
the underlying algorithmic random parameters. Good convergence to the (best and mean)
optimal design solutions was shown in the first 200 iterations, as shown in Figure 14.
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Table 5. Example 2: optimal size and shape design solutions.

Variables GA [30] PSO [29] SCPSO [29] D-ICDE [13] ABC [33] GLS-ECLPSO
(Present)

A1 12.75 12.00 12.5 13 12.50 10.25
A2 18.50 18.50 17.5 17.5 17.75 17.5
A3 4.75 5.25 5.75 6.5 5.75 6.25
A4 3.25 4.50 3.75 3.0 3.75 2.75
X3 917.4475 903.9806 907.2491 914.06 912.9974 909.0566
Y3 193.7899 185.7807 179.8671 183.46 183.6806 180.1431
X5 654.3243 644.9170 636.7873 640.53 642.7143 636.8079
Y5 159.9436 144.9692 141.8271 133.74 143.8920 138.5523
X7 424.4821 428.2196 407.9442 406.12 411.6918 406.1961
Y7 108.5779 100.5623 94.0559 92.63 97.14763 94.7056
X9 208.4691 209.5415 198.7897 196.69 200.9087 197.5999
Y9 37.6349 24.3748 29.5157 37.06 30.21906 33.6241

Best weight (lb) 4530.68 4609.001 4512.365 4554.29 4537.064 4175.1425
Constraint violation (%) 0.0 0.0 0.0 0.0 0.0 0.0

No. of analyses 8000 4500 4500 8025 2700 6000
SD N/A N/A 37.691 N/A 9.7971 57.32

Note: GA = genetic algorithm; PSO = particle swam optimization; SCPSO = sequential cellular and particle swarm
optimization; D-ICDE = discrete improved constrained differential evolution; ABC = artificial bee colony algorithm.
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Figure 14. Example 2: solution convergence.

6.3. Example 3: 47-Bar Tower Truss

The third example designed the simultaneous shape and member sizes of a 47-bar
tower truss in Figure 15 [29]. Three different load cases (viz., each case involved similar
forces applied at either node 17 or 22, or both nodes) were considered (see Table 6), and
the design was subjected to three multiple load cases. The presence of multiple load cases
was considered by assigning each member stress and each nodal displacement with their
associated maximum (critical) responses developed under the envelop of three load cases.
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Figure 15. Example 3: 47-bar tower truss.

Table 6. Example 3: design variables and constraints.

Objective Function: W(a, x, y, z) = ∑ne=47
m=1

(
∑

ng=44
g=1 Qm,g.ag.ρg

)
.Lm(x, y, z)

Stress constraints:
{

σm ≤ 20 (ksi) in tension
σm ≥ −15 (ksi) in compression , for all m ∈ {1, 2, . . . , 47}

Buckling constraints: |σm| ≤ KEAm/Lm
2, for all m ∈ {1, 2, . . . , 47}

Size variables:

A3 = A1 , A4 = A2 , A5 = A6 , A7 , A8 = A9 , A10 , A12 = A11 ,
A14 = A13 , A15 = A16 , A18 = A17 , A20 = A19 , A22 = A21 ,
A24 = A23 , A26 = A25 , A27 , A28 , A30 = A29 , A31 = A32 , A33 ,
A35 = A34 , A36 = A37 , A38 , A40 = A39 , A41 = A42 , A43 ,
A45 = A44 , A46 = A47

Shape variables:

x2 = −x1 , x4 = −x3 , y4 = y3 , x6 = −x5 , y6 = y5 ,
x8 = −x7 , y8 = y7 , x10 = −x9 , y10 = y9 , x12 = −x11 ,
y12 = y11 , x14 = −x13 , y14 = y13 , x20 = −x19 , y20 = y19 ,
x21 = −x18 , y21 = y18

Discrete area variables: ag ∈ Rng = {0.1, 0.2, 0.3, . . . , 4.8, 4.9, 5.0} (in 2)

Layout conditions: xi , yi ∈ R

Loads (kips):
Case 1: at node 17: Fx = 6 , Fy = −14
Case 2: at node 22: Fx = 6 , Fy = −14

Case 3: at nodes 17 and 22: Fx = 6 , Fy = −14

Young modulus: E = 3× 104 (ksi)

Buckling coefficient: K = 3.96

Material density: ρ = 0.3 (lb/in 3)
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The material properties had a density of 0.3 lb-in−3 and modulus of elasticity of
3 × 104 ksi, with permissible stresses of 20 ksi in tension and 15 ksi in compression.

The structure was discretized into 47-pin-connected members and 22 nodes (ng = 44;
ne = 47; and nn = 22). A symmetric layout about the y-axis was imposed and led to a total of
44 design variables X ∈ R44 = (a, x, y), including 27 unknown member sizes (in2-unit) and
17 unknown nodal x-y coordinates (in-unit). Six specific nodes, namely 1 and 2 at supports
and 15–17 and 22 at the tower arms, were restrained to their original locations. The design
solely selected the member sizes from the set of discrete areas with an incremental step
of 0.1 in2 and determined the nodal coordinates (xn, yn) ∈ R2 for ∀n ∈ {1, . . . , 22} in the
presence of stress constraints, where the Euler’s buckling load of 3.96 EA.L−2 was enforced
to all members.

The proposed GLS-ECLPSO method generated a total of 20 particles (viz., np = 20,
max_iter = 1500) and successfully converged to the minimum total weight of W(a) = 1799.8757 lb
for the best designed truss structure. The optimal design strictly satisfied the permissible
stress conditions, drawn in Figure 16. The associated optimal layout with normalized
buckling load ratios developed within the members are plotted in Figure 17.
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The computed results, including member areas, nodal coordinates, and statistical
values given by 25 independent solves, were summarized in Table 7. The most minimum
design was achieved compared with those reported in the literature [29,34–37]. Moreover,
the small standard deviation of 89.53 lb described the reliability of the proposed method in
repetitively obtaining accurate designs under population-based random parameters. The
fast convergence to the best and mean designed total weights of the structure is depicted in
Figure 18 and presents the superior performance of the GLS-ECLPSO method in capturing
the near-optimal solution for the non-convex and non-smooth NLP problem in Equation (1).

Table 7. Example 3: optimal size and shape design solutions.

Variables SA [34] SSO [35] PSO [29] SCPSO [29] ABC [33] CA-ICEA [36] GLS-ECLPSO
(Present)

A3 2.5 2.8 2.80 2.5 2.4 2.7 2.7
A4 2.5 2.5 2.70 2.5 2.2 2.5 1.9
A5 0.8 0.7 0.80 0.8 1.1 0.7 0.8
A7 0.1 0.1 1.10 0.1 0.1 0.1 0.5
A8 0.7 1.0 0.80 0.7 1.2 0.9 1.1
A10 1.3 1.1 1.30 1.4 1.3 1.1 1.7
A12 1.8 1.8 1.80 1.7 1.7 1.8 2.2
A14 0.7 0.7 0.90 0.8 0.6 0.7 0.5
A15 0.9 0.8 1.20 0.9 0.8 0.9 0.9
A18 1.2 1.5 1.40 1.3 1.6 1.3 1.9
A20 0.4 0.4 0.30 0.3 0.3 0.3 0.4
A22 1.3 1.0 1.40 0.9 0.9 1.1 0.4
A24 0.9 1.1 1.10 1.0 1.2 1.0 1.7
A26 0.9 1.0 1.20 1.1 1.0 0.9 1.5
A27 0.7 5.0 1.60 5.0 1.0 0.8 2.3
A28 0.1 0.1 1.00 0.1 0.6 0.1 0.3
A30 2.5 2.7 2.80 2.5 2.8 2.7 3.1
A31 1.0 0.9 0.80 1.0 0.4 0.8 0.5
A33 0.1 0.1 0.10 0.1 0.1 0.1 0.1
A35 2.9 3.0 3.00 2.8 2.9 3.0 3.3
A36 0.8 0.8 0.90 0.9 1.5 0.9 0.8
A38 0.1 0.1 0.10 0.1 0.6 0.1 0.1
A40 3.0 3.2 3.30 3.0 3.1 3.2 3.4
A41 1.2 1.1 0.90 1.0 0.9 1.0 0.7
A43 0.1 0.1 0.10 0.1 0.1 0.1 0.2
A45 3.2 3.3 3.30 3.2 3.3 3.3 3.7
A46 1.1 1.1 1.20 1.2 0.8 1.1 0.3
X2 104 100.5396 98.8628 101.3393 103.6063 99.8037 96.1045
X4 87 81.0279 78.6595 85.9111 81.5008 81.2026 75.1729
Y4 128 137.2003 146.7331 135.9645 143.0525 137.3511 132.4016
X6 70 63.8334 66.5231 74.7969 67.0169 63.7482 52.6328
Y6 259 254.1838 239.0901 237.7447 252.8466 249.2955 276.0971
X8 62 56.1445 55.6936 64.3115 54.5203 54.2828 45.4036
Y8 3.26 327.9040 327.7882 321.3416 374.0126 338.6518 348.3091

X10 53 48.2708 48.8641 53.3345 39.8226 49.1830 35.6093
Y10 412 407.5132 398.6775 414.3025 443.9461 404.2573 417.0551
X12 47 42.4458 43.1400 46.0277 30.9474 44.0380 30.7598
Y12 486 468.8267 464.7831 489.9216 491.9941 467.5475 482.1343
X14 45 45.8692 37.8993 41.8353 36.7597 44.4605 30.2856
Y14 504 515.2907 511.0450 522.4161 510.000 511.3081 536.6923
X20 2.0 0.0010 18.2341 1.0005 17.6763 4.0141 0.1239
Y20 584 586.9443 594.0710 598.3905 598.8911 590.5903 594.3145
X21 89 80.7351 90.9369 97.8696 77.6661 84.3733 94.5263
Y21 637 621.5769 621.3943 624.0552 619.8911 630.3705 604.8316

Best weight (lb) 1871.17 1869.876 1975.839 1864.10 1871.843 1844.71 1799.8757
Constraint violation (%) 0.0 N/A 0.0 0.0 N/A 7.8409 × 10−6 0.0

No. of analyses N/A 20,020 25,000 25,000 18,000 5016 30,000
SD N/A 29.55 N/A 97.478 7.565 N/A 89.53

Note: SA = simulated annealing; SSO = shuffled shepherd optimization; PSO = particle swam optimiza-
tion; SCPSO = sequential cellular and particle swarm optimization; ABC = artificial bee colony algorithm;
CA-ICEA = cellular automata-imperialist competitive algorithm.
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Y20 584 586.9443 594.0710 598.3905 598.8911 590.5903 594.3145
X21 89 80.7351 90.9369 97.8696 77.6661 84.3733 94.5263
Y21 637 621.5769 621.3943 624.0552 619.8911 630.3705 604.8316
Best weight (lb) 1871.17 1869.876 1975.839 1864.10 1871.843 1844.71 1799.8757 
Constraint 
violation (%)

0.0 N/A 0.0 0.0 N/A 7.8409 × 10−6 0.0

No. of analyses N/A 20,020 25,000 25,000 18,000 5016 30,000 
SD N/A 29.55 N/A 97.478 7.565 N/A 89.53

Note: SA = simulated annealing; SSO = shuffled shepherd optimization; PSO = particle swam opti-
mization; SCPSO = sequential cellular and particle swarm optimization; ABC = artificial bee colony 
algorithm; CA-ICEA = cellular automata-imperialist competitive algorithm. 

Figure 18. Example 3: solution convergence. Figure 18. Example 3: solution convergence.

6.4. Example 4: 25-Bar Space Truss

The final example considered the 25-bar space (three-dimensional) truss structure [29]
shown in Figure 19 that was subjected to applied load regimes listed in Table 8. The
material properties employed throughout had a density of 0.1 lb-in−3 and a modulus
of elasticity of 104 ksi. The simultaneous size and shape optimization of this structure
determined its optimal layout and distribution of member areas under the design criteria,
stating the allowable stresses of 40 ksi in both tension and compression, as well as limited
displacements of 0.35 in all x-y-z directions at nodes 1 to 6, simultaneously.
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Table 8. Example 4: design variables and constraints.

Objective Function: W(a, x, y, z) = ∑ne=25
m=1

(
∑

ng=13
g=1 Qm,g.ag.ρg

)
.Lm(x, y, z)

Stress constraints:
{

σm ≤ 40 (ksi) in tension
σm ≥ −40 (ksi) in compression , for all m ∈ {1, 2, . . . , 25}

Displacement constraints: δn ≤ 0.35 in, for all n ∈ {1, 2, . . . , 6}

Size variables:
A1 , A2 = A3 = A4 = A5, A6 = A7 = A8 = A9, A10 = A11
A12 = A13 , A14 = A15 = A16 = A17, A18 = A19 = A20 = A21,
A22 = A23 = A24 = A25

Shape variables:
x4 = x5 = −x3 = −x6, x8 = x9 = −x7 = −x10,
y3 = y4 = −y5 = −y6, y7 = y8 = −y9 = −y10,
z3 = z4 = z5 = z6

Discrete area variables: ag ∈ Rng =
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1
1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2,

2.3, 2.4, 2.5, 2.6, 2.8, 3.0, 3.2, 3.4} (in 2)

Layout conditions:

20 ≤ x4 ≤ 60
40 ≤ x8 ≤ 80
40 ≤ y4 ≤ 80

100 ≤ y8 ≤ 140
90 ≤ z4 ≤ 130

Loads (kips):

Node 1: Fx = 1 , Fy = −10 , Fz = −10
Node 2: Fx = 0 , Fy = −10 , Fz = −10

Node 3: Fx = 0.5 , Fy = 0 , Fz = 0
Node 6: Fx = 0.6 , Fy = 0 , Fz = 0

Young modulus: E = 104 (ksi)

Material density: ρ = 0.1 (lb/in 3)

The structure was modeled as 25-pin-connected members with 10 nodes (i.e., ng = 13;
ne = 25; and nn = 10). The governing NLP problem in Equation (1) consisted of 13 design
variables X ∈ R13 = (a, x, y, z), including 8 unknown member sizes (in2-unit) and 5 un-
known coordinates (xn, yn, zn) ∈ R3 (in-unit) at nodes 4 and 8. The member sizes were
selected solely from the set of discrete areas, and the nodal coordinates were imposed with
the conditions stated in Table 8.

The GLS-ECLPSO approach with the total 20 particles (np = 20, max_iter = 300)
successfully determined the least minimum total weight of W(a) = 118.045 lb, compared
with the designs given in the literature [13,29–31,37]. The plots in Figure 20 illustrated the
satisfaction of permissible stresses and limited displacements at nodes 1 to 6. The diagram
also showed the limited displacement conditions governing the optimal design. Contrary
to the displacements, the member stresses were far from the permissible values.

As detailed in Table 9, the standard deviation associated with the 25 independent
design runs was only 4.2 lb, which indicated good performance of the proposed method in
reliably obtaining the optimal size and shape designs for the class of problems considered.
The optimal layout corresponding to the best design is plotted in Figure 21, presenting
geometric variation from its original shape. Good convergence to the best and mean values
of the total weights in Figure 22 was observed for a series of GLS-ECLPSO processes. It
showed that optimal solutions were achieved in the first 280 iterations of the total preset
300 iterations in the algorithm.
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Figure 20. Example 4: constraint satisfaction of (a) permissible member stresses and (b) limited
displacements at nodes 1 to 6.

Table 9. Example 4: optimal size and shape design solutions.

Variables IGA [37] GA [30] FA [31] PSO [29] D-ICDE [13] GLS-ECLPSO
(Present)

A1 0.1 0.1 0.1 0.1 0.1 0.1
A2 0.1 0.1 0.1 0.1 0.1 0.1
A3 1.1 1.1 0.9 1.1 0.9 0.9
A4 0.1 0.1 0.1 0.1 0.1 0.1
A5 0.1 0.1 0.1 0.4 0.1 0.1
A6 0.2 0.1 0.1 0.1 0.1 0.1
A7 0.2 0.2 0.1 0.4 0.1 0.1
A8 0.7 0.8 1 0.7 1 1
X4 35.47 33.0487 37.32 27.6169 36.83 37.200
Y4 60.37 53.5663 55.74 51.6196 58.53 61.438
Z4 129.07 129.9092 126.62 129.9071 122.67 122.07
X8 45.06 43.7826 50.14 42.5526 49.21 50.270
Y8 137.04 136.8381 136.40 132.7241 136.74 140

Best weight (lb) 124.943 120.115 118.83 129.207 118.76 118.045
Constraint violation (%) 0.0 0.0 N/A 0.0 0.0 0.0

No. of analyses 6000 10,000 6000 4500 6000 6000
SD N/A N/A 5.5 N/A N/A 4.2

Note: GA = genetic algorithm; IGA = improved genetic algorithm; FA = firefly algorithm; PSO = particle swam
optimization; D-ICDE = discrete improved constrained differential evolution.
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6.5. Discussions of the Results

From all the successfully solved design examples, we discuss three main findings.
(i) The proposed GLS-ECLPSO method incorporated various enhanced search tech-

niques especially designed for different purposes. The perturbation-based local searches
enhanced the standard CLPSO using normative information to perform robust exploitative
searches (i.e., updating the particle velocity) over the appropriate locations within a feasible
domain. The adaptive learning probability enabled dynamic adjustment from the ranking
of personable best particles, improving the capability to eliminate the poor exploitation
of search spaces. The GLS scheme generated samples in a Gaussian distribution around
the global best particle, and thus enhanced explorative searches. A combination of these
techniques provided an enhanced likelihood of obtaining an accurate optimal design for
simultaneous size and shape optimization of the problems considered, which were casted
as challenging convex and/or non-smooth programs.

(ii) The optimal solutions computed by the proposed GLS-ECLPSO are summarized
in Table 10, where the lowest minimum weights reported in the literature [13,29–37] are
collected. The superior performance of our proposed design method is shown. The lowest
minimum weights (indicating that it was the most optimal solution) were obtained by the
GLS-ECLPSO approach, compared with the best results found in the literature, namely
D-ICDE [13], SCPSO [29], CA-ICEA [36], and D-ICDE [13] for Examples 1 through 4,
respectively. The associated member stresses (buckling forces) and nodal displacements
strictly complied with the imposed limits, and hence reported zero percent constraint
violation. Moreover, the statistical values collected from the 25 independent designs solved
by the proposed method (see Tables 3, 5, 7 and 9) showed a small standard deviation for
all the examples processed, indicating high reliability of the GLS-ECLPSO approach in
repeatedly determining accurate optimal designs for the class of structures considered,
being insensitive to the underlying population-based random parameters.

Table 10. Result summary for least minimum weight designs.

Example No. of
Variables

GLS-ECLPSO
(lb)

No. of
Analyses

Reference Method
(lb)

No. of
Analyses Reference

1 23 74.172 6000 74.682 8000 D-ICDE [13]
2 12 4175.142 6000 4512.365 4500 SCPSO [29]
3 44 1799.875 30,000 1844.71 5016 CA-ICEA [36]
4 13 118.045 6000 118.76 6000 D-ICDE [13]

(iii) Whilst a fast convergence to minimum weight solutions (viz., for both best and
mean values) was presented in Figures 10, 14, 18 and 22, the proposed GLS-ECLPSO
method involved slightly greater numbers of analyses compared with methods cited in the
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literature. It processed enhanced search strategies, including perturbation exploitative and
Gaussian explorative searching schemes. Similar to standard population-based algorithms,
the solutions of large-scale problems necessarily require a special high-performance parallel
computing framework with sufficient memory storage. In contrast to this, the presence
of some machine learning maps out the predictive models of design structures and by-
passes the need to iteratively call finite element implementations within a time-consuming
meta-heuristic algorithm. This could be a promising solution to robustly handle large-scale
optimization problems. This technique is currently under investigation and is an area for
future research.

7. Concluding Remarks

This paper presents an efficient meta-heuristic GLS-ECLPSO method that reliably
performs optimal size and shape design of truss structures in two- and three-dimensional
spaces. The governing formulation is cast as a non-convex and/or non-smooth optimization
problem in view of the presence of discrete area variables and permissible stress and/or
limited displacement conditions. In essence, two main phases underpinning the proposed
approach have been incorporated to enhance a good balance between the exploration and
exploitation of search spaces.

The first phase enhances the trajectories of particles in the design space using the
information across personal best particles, whilst the comprehensive learning scheme
enables cross-positions between the best swarm particles in each dimension. The two
perturbation-based exploitation (viz., normative knowledge on bounds of the personal
best positions) and adaptive learning probability functions are encoded to achieve good
exploitative search ability and fast convergence to the optimal solution. The second phase
applies the GLS strategy that generates random (following a Gaussian distribution) particles
enveloping the global best particle to test its optimality, and hence, an accurate exploitation
procedure. This process avoids premature convergence to local optima.

Four size and shape optimization examples illustrate the accurate optimal design
solutions using the proposed method, validating the good performance of the proposed
GLS-ECLPSO method. The results are consistent with those reported in the literature. The
standard deviation collected from various independent runs presents a small variance. This
indicates the reliability of the proposed design method that can achieve optimal solutions,
whilst being insensitive to population-based random parameters.
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