Development of a Solar Tracking-Based Movable Louver System to Save Lighting Energy and Create a Comfortable Light Environment
Abstract
:1. Introduction
1.1. Concepts and Technologies Related to Louvers
1.2. Solar Tracking Technology
2. Method
2.1. Proposal for a Solar Tracking-Based Movable Louver (STML) System
2.2. Performance Evaluation Environment
2.3. Performance Evaluation Method
3. Performance Evaluation Results and Discussion
3.1. Performance Evaluation Results
3.2. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UN Environment Programme. 2021 Global Status Report for Buildings and Construction. Available online: https://globalabc.org/resources/publications/2021-global-status-report-buildings-and-construction (accessed on 16 July 2022).
- Wong, C.H.H.; Cai, M.; Ren, C.; Huang, Y.; Liao, C.; Yin, S. Modelling building energy use at urban scale: A review on their account for the urban environment. Build. Environ. 2021, 205, 108–235. [Google Scholar] [CrossRef]
- Amasyali, K.; El-Gohary, N.M. A review of data-driven building energy consumption prediction studies. Renew. Sustain. Energy Rev. 2018, 81, 1192–1205. [Google Scholar] [CrossRef]
- Danny, H.L.; Ernest, K.W.T. An analysis of daylighting performance for office buildings in Hong Kong. Build. Environ. 2008, 43, 1446–1458. [Google Scholar] [CrossRef]
- Kamel, E.; Memari, A.M. Residential Building Envelope Energy Retrofit Methods, Simulation Tools, and Example Projects: A Review of the Literature. Buildings 2022, 12, 954. [Google Scholar] [CrossRef]
- Lee, H. A Basic Study on the Performance Evaluation of a Movable Light Shelf with a Rolling Reflector That Can Change Reflectivity to Improve the Visual Environment. Int. J. Environ. Res. Public Health 2020, 17, 8338. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.; Moon, J. Performance evaluation of artificial neural network-based variablecontrol logic for double skin enveloped buildings during the heatingseason. Build. Environ. 2014, 82, 328–338. [Google Scholar] [CrossRef]
- Burak Gunay, H.; O’Brien, W.; Beausoleil-Morrison, I.; Gilani, S. Development and implementation of an adaptive lighting and blinds control algorithm. Build. Environ. 2017, 113, 185–199. [Google Scholar] [CrossRef]
- Albatayneh, A. Optimising the Parameters of a Building Envelope in the East Mediterranean Saharan, Cool Climate Zone. Buildings 2021, 11, 43. [Google Scholar] [CrossRef]
- Ma, R.; Tao, S.; Li, Z.; Yuan, Y.; Jiang, F. Investigation on Forced Convective Heat Transfer at the Building Façade with Louver Blinds under Different Wind Directions. Buildings 2022, 12, 1096. [Google Scholar] [CrossRef]
- Konis, K.; Lee, E.S. Measured daylighting potential of a static optical louver system under real sun and sky conditions. Build. Environ. 2015, 92, 347–359. [Google Scholar] [CrossRef]
- Eltaweel, A.; Su, Y.; Mandour, M.A.; Elrawy, O.O. A novel automated louver with parametrically-angled reflective slats; design evaluation for better practicality and daylighting uniformity. J. Build. Eng. 2021, 42, 102438. [Google Scholar] [CrossRef]
- Rossi, F.; Cardinali, M.; Giuseppe, A.D.; Castellani, B.; Nicolini, A. Outdoor thermal comfort improvement with advanced solar awnings: Subjective and objective survey. Build. Environ. 2022, 215, 108967. [Google Scholar] [CrossRef]
- Lee, H.; Han, S.; Seo, J. Light Shelf Development Using Folding Technology and Photovoltaic Modules to Increase Energy Efficiency in Building. Buildings 2022, 12, 81. [Google Scholar] [CrossRef]
- Lee, H.; Seo, J.; Kim, S. Improvement of light-shelf performance through the use of a diffusion sheet. Build. Environ. 2018, 144, 248–258. [Google Scholar] [CrossRef]
- Lee, H.; Zhao, X.; Seo, J. A Study of Optimal Specifications for Light Shelves with Photovoltaic Modules to Improve Indoor Comfort and Save Building Energy. Int. J. Environ. Res. Public Health 2021, 18, 2574. [Google Scholar] [CrossRef]
- Eltaweel, A.; Su, Y. Evaluation of Suitability of a Parametrically Controlled Louvers for Various Orientations throughout a Year Comparing to an Existing Case. Buildings 2017, 7, 109. [Google Scholar] [CrossRef] [Green Version]
- Bao, S.; Zou, S.; Zhao, M.; Chen, Q.; Li, B. Experimental Study on the Modular Vertical Greening Shading in Summer. Int. J Environ. Res. Public Health 2022, 19, 11648. [Google Scholar] [CrossRef]
- Tian, Z.; Shi, X.; Hong, S. Exploring data-driven building energy-efficient design of envelopes based on their quantified impacts. J. Build. Eng. 2021, 42, 103018. [Google Scholar] [CrossRef]
- Feehan, A.; Nagpal, H.; Marvuglia, A.; Gallagher, J. Adopting an integrated building energy simulation and life cycle assessment framework for the optimisation of facades and fenestration in building envelopes. J. Build. Eng. 2021, 43, 103138. [Google Scholar] [CrossRef]
- Medved, S.; Begelj, Ž.; Domjan, S.; Šuklje, T.; Černe, B.; Arkar, C. The dynamic thermal response model and energy performance of multi-layer glass and BIPV facade structures. Energy Build. 2019, 188–189, 239–251. [Google Scholar] [CrossRef]
- Alrubaih, M.S.; Zain, M.F.M.; Alghoul, M.A.; Ibrahim, N.L.N.; Shameri, M.A.; Elayeb, O. Research and development on aspects of daylighting fundamentals. Renew. Sustain. Energy Rev. 2013, 21, 494–505. [Google Scholar] [CrossRef]
- Lee, H.; Jang, H.; Seo, J. A preliminary study on the performance of an awning system with a built-in light shelf. Build Environ. 2018, 131, 255–263. [Google Scholar] [CrossRef]
- Zhao, J.; Du, Y. Multi-objective optimization design for windows and shading configuration considering energy consumption and thermal comfort: A case study for office building in different climatic regions of China. Sol. Energy 2020, 206, 997–1017. [Google Scholar] [CrossRef]
- Kirimtat, A.; Koyunbaba, B.K.; Chatzikonstantinou, I.; Sariyildiz, S. Review of simulation modeling for shading devices in buildings. Renew. Sustain. Energy Rev. 2016, 53, 23–49. [Google Scholar] [CrossRef]
- Parka, D.; Kim, P.; Alvarenga, J.; Jin, K.; Aizenberg, J.; Bechthold, M. Dynamic daylight control system implementing thin cast arrays of polydimethylsiloxane-based millimeter-scale transparent louvers. Build. Environ. 2014, 82, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Uribe, D.; Vera, S.; Bustamante, W.; McNeil, A.; Flamant, G. Impact of different control strategies of perforated curved louvers on the visual comfort and energy consumption of office buildings in different climates. Sol. Energy 2019, 190, 495–510. [Google Scholar] [CrossRef]
- Freewan, A.A.; Shao, L.; Riffat, S. Interactions between louvers and ceiling geometry for maximum daylighting performance. Renew. Energy 2009, 34, 223–232. [Google Scholar] [CrossRef]
- Palmero-Marrero, A.I.; Oliveira, A.C. Effect of louver shading devices on building energy requirements. Appl. Energy 2010, 87, 2040–2049. [Google Scholar] [CrossRef]
- Hammad, F.; Abu-Hijleh, B. The energy savings potential of using dynamic external louvers in an office building. Energy Build. 2010, 42, 1888–1895. [Google Scholar] [CrossRef]
- Hernández, F.F.; López, J.M.C.; Suárez, J.M.P.; Muriano, M.C.G.; Rueda, S.C. Effects of louvers shading devices on visual comfort and energy demand of an office building. A case of study. Energy Procedia 2017, 140, 207–216. [Google Scholar] [CrossRef]
- Alzoubi, H.H.; Al-Zoubi, A.H. Assessment of building façade performance in terms of daylighting and the associated energy consumption in architectural spaces: Vertical and horizontal shading devices for southern exposure facades. Energy Convers. Manag. 2010, 51, 1592–1599. [Google Scholar] [CrossRef]
- Datta, G. Effect of fixed horizontal louver shading devices on thermal perfomance of building by TRNSYS simulation. Renew. Energy 2001, 23, 497–507. [Google Scholar] [CrossRef]
- Pourshab, N.; Tehrani, M.D.; Toghraie, D.; Rostami, S. Application of double glazed façades with horizontal and vertical louvers to increase natural air flow in office buildings. Energy 2020, 200, 117486. [Google Scholar] [CrossRef]
- Horner, M.; Rhode-Barbarigos, L.; Adriaenssens, S. Site-specific louvered shells for shading harmful ultraviolet radiation. Build Environ. 2014, 78, 14–22. [Google Scholar] [CrossRef]
- Hafez, A.Z.; Yousef, A.M.; Harag, N.M. Solar tracking systems: Technologies and trackers drive types—A review. Renew. Sustain. Energy Rev. 2018, 91, 754–782. [Google Scholar] [CrossRef]
- Awasthi, A.; Shukla, A.K.; Murali Manohar, S.R.; Dondariya, C.; Shukla, K.N.; Porwal, D.; Richhariya, G. Review on sun tracking technology in solar PV system. Energy Rep. 2020, 6, 392–405. [Google Scholar] [CrossRef]
- Roth, P.; Georgiev, A.; Boudinov, H. Design and construction of a system for sun-tracking. Renew. Energy 2004, 29, 393–402. [Google Scholar] [CrossRef]
- Carballo, J.A.; Bonilla, J.; Roca, L.; Berenguel, M. New low-cost solar tracking system based on open source hardware for educational purposes. Sol. Energy 2018, 174, 826–836. [Google Scholar] [CrossRef]
- Mousazadeh, H.; Keyhani, A.; Javadi, A.; Mobli, H.; Abrinia, K.; Sharifi, A. A review of principle and sun-tracking methods for maximizing solar systems output. Renew. Sustain. Energy Rev. 2009, 13, 1800–1818. [Google Scholar] [CrossRef]
- AL-Rousan, N.; Isa, N.A.M.; Desa, M.K.M. Advances in solar photovoltaic tracking systems: A review. Renew. Sustain. Energy Rev. 2018, 82, 2548–2569. [Google Scholar] [CrossRef]
- Halmstad University, Awning Arm Folding Mechanism. Available online: www.diva-portal.org/smash/get/diva2:934600/FULLTEXT02 (accessed on 16 July 2022).
- Lv, F.; Yao, D.; Wang, Y.; Wang, C.; Zhu, P.; Hong, Y. Recycling of waste nylon 6/spandex blended fabrics by melt processing. Compos. B Eng. 2015, 77, 232–237. [Google Scholar] [CrossRef]
- Lee, H.; Kim, S.; Seo, J. Development of a detachable window aircap module for energy saving. Energy Build. 2018, 158, 1640–1647. [Google Scholar] [CrossRef]
- Xue, P.; Mak, C.M.; Huang, Y. Quantification of luminous comfort with dynamic daylight metrics in residential buildings. Energy Build. 2016, 117, 99–108. [Google Scholar] [CrossRef]
- Ochoa, C.E.; Aries, M.B.C.; van Loenen, E.J.; Hensen, J.L.M. Considerations on design optimization criteria for windows providing low energy consumption and high visual comfort. Appl. Energy 2012, 95, 238–245. [Google Scholar] [CrossRef] [Green Version]
- Illuminating Engineering Society. The Lighting Handbook, 10th ed.; Illuminating Engineering Society (IES): New York, NY, USA, 2011. [Google Scholar]
- ISZ 9110:2010; Recommended Levels of Illumination. Japanese Industrial Standards Committee: Tokyo, Japan, 2010.
- KSA 3011–2013; Recommended Levels of Illumination. The Korean Standards Association (KSA): Seoul, Korea, 1998.
- EN 12464-1:2002; BSI Standards Publication. European Standard, EUROPÄISCHE NORM, 2002.
- Lee, H.; Kim, S.; Seo, J. Evaluation of a light shelf based on energy consumption for lighting and air conditioning. Indoor Built Environ. 2018, 27, 1405–1414. [Google Scholar] [CrossRef]
- Korea Meteorological Administration. Climate Information. Available online: www.kma.go.kr/eng/weather/climate/worldclimate.jsp (accessed on 16 July 2022).
Author (Year) | Purpose | Louver Type | Operation of Louver Slats |
---|---|---|---|
Uribe et al. (2019) [27] | Derive control strategies for perforated curved louvers for visual comfort and energy savings in office buildings | Horizontal | Fixed at 30°, 45°, 60° |
Ahmed A et al. (2009) [28] | Performance evaluation of louvers according to ceiling geometry | Horizontal | Fixed at 0° |
Ana I and Armando C (2010) [29] | Performance evaluation of louver shading devices by region and façade | Vertical, Horizontal | Fixed at 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, 90° |
Hammad and Abu-Hijleh (2010) [30] | Analysis of energy performance using exterior louvers in office buildings | Vertical, Horizontal | Fixed at −80°, −60°, −40°, −20°, 0°, 20°, 40°, 60°, 80° |
Hernández et al. (2017) [31] | Effects of louvers shading devices on visual comfort and energy savings in an office building | Vertical, Horizontal | Vertical fixed at 0°, 30°, 60°, −30°, −60°/horizontal fixed at 0° |
Hussain H and Amneh H (2010) [32] | Assessment of daylighting quality and energy-saving performance of horizontal and vertical shading devices | Vertical, Horizontal | Fixed at 0°, 45° |
Datta (2001) [33] | Thermal performance analysis of horizontal louver devices by TRNSYS simulation | Horizontal | Fixed at 0°, 30°, 45°, 60° |
Pourshab et al. (2020) [34] | Airflow analysis in an office building with louvers and double-glazed façades | Vertical, Horizontal | Fixed at 0° |
Horner et al. (2014) [35] | To propose a design approach and evaluate the performance of site-specific louvered shells | Eggcrate | Fixed |
Method | Characteristics |
---|---|
Calculating the sun’s position | ▪ Calculating the sun’s position considering the solar altitude and the time of sunrise and sunset ▪ Using a predetermined value, the error rate is low by tracking the sun regardless of the weather |
Using illuminance sensors | ▪ Solar tracking is possible without any restrictions on geographical locations ▪ Requires a separate optical sensor, and the error rate is high because the operation of the optical sensor is affected by weather conditions such as cloudiness or diffused radiation |
Case | Louver Type | Operation | # of Slats | Slat Specifications | Slat Intervals | Slat Angle |
---|---|---|---|---|---|---|
1 | Louver not applied | |||||
2 | Vertical | Fixed | 7 | 0.03 m (W) × 0.25 m (D) × 1.65 m (H) | 0.29 m | −90°, −45°, 0°, 45° |
3 | Horizontal | Fixed | 6 | 1.85 m (W) × 0.25 m (D) × 0.03 m (H) | 0.30 m | −90°, −45°, 0°, 45° |
4 | Eggcrate | Fixed | 13 | Combination of vertical and horizontal louvers | Vertical 0.24 m, Horizontal 0.23 m | 0 |
5 | Hybrid | Movable | 3 | 8-step width control of louver arm (Awning width: 0.2 m increments from 0.2 m to 1.6 m) | - | - |
Season | Meridian Altitude | Outdoor Temperature | External Illuminance, Azimuth, and Solar Radiation by Time | ||||
---|---|---|---|---|---|---|---|
10:00–11:00 | 11:00–12:00 | 12:00–13:00 | 13:00–14:00 | 14:00–15:00 | |||
Summer | 76.5 | 27.1 °C | 70,000 lx, 120°, 530 W/m2 | 80,000 lx, 147°, 638 W/m2 | 80,000 lx, 174°, 638 W/m2 | 80,000 lx, 201°, 638 W/m2 | 70,000 lx, 228°, 530 W/m2 |
Winter | 29.5 | −3.2 °C | 20,000 lx, 120°, 289 W/m2 | 30,000 lx, 147°, 289 W/m2 | 30,000 lx, 174°, 332 W/m2 | 30,000 lx, 201°, 332 W/m2 | 20,000 lx, 228°, 289 W/m2 |
Case | Optimal Slat Angle in Summer (Uniformity) | Optimal Slat Angle in Winter (Uniformity) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
10:00–11:00 | 11:00–12:00 | 12:00–13:00 | 13:00–14:00 | 14:00–15:00 | 10:00–11:00 | 11:00–12:00 | 12:00–13:00 | 13:00–14:00 | 14:00–15:00 | |
2 | −45 (0.255) | −45 (0.249) | −45 (0.239) | −45 (0.243) | 90 (0.243) | 0 (0.218) | 0 (0.224) | 90 (0.174) | 45 (0.234) | −45 (0.285) |
3 | 90 (0.229) | 90 (0.230) | 90 (0.233) | 90 (0.229) | 90 (0.228) | 90 (0.185) | 90 (0.183) | 90 (0.191) | 90 (0.190) | 90 (0.178) |
Season | Optimal Control Level by Time [Louver Arm #(Control Level)]/Uniformity/Awning Shape | ||||
---|---|---|---|---|---|
10:00–11:00 | 11:00–12:00 | 12:00–13:00 | 13:00–14:00 | 14:00–15:00 | |
Summer | 2(8) + 4(6) /0.261/ | 2(8) + 4(8) + 1(5) /0.261/ | 2(8) + 4(8) + 1(8) + 3(8)/0.253/ | 1(8) + 3(8) + 2(2) /0.246/ | 1(8) + 3(8) /0.253/ |
Winter | 2(8) + 4(8) + 1(8) + 3(8)/0.273 | 2(8) + 4(8) + 1(8) + 3(8)/0.235 | 2(8) + 4(8) + 1(8) + 3(8)/0.211/ | 1(8) + 3(8) + 2(8) + 4(8)/0.202/ | 1(8) + 3(8) + 2(8) + 4(8)/0.205/ |
Case | Season | Optimal Specification for Each Period (Slat Angle) | Lighting and Heating/Cooling Energy Consumption (kWh) | ||||
---|---|---|---|---|---|---|---|
10:00–11:00 | 11:00–12:00 | 12:00–13:00 | 13:00–14:00 | 14:00–15:00 | |||
2 | Summer | −45° | −45° | 90° | 45° | 45° | 7.184 |
Winter | 45° | 45° | 0° | −45° | −45° | ||
3 | Summer | −45° | −45° | 90° | 0° | 0° | 7.094 |
Winter | 45° | 45° | 45° | 45° | 45° |
Season | Optimal Louver Arm Specs for Each Period (Operation Level) | Lighting and Heating/Cooling Energy Consumption (kWh) | ||||
---|---|---|---|---|---|---|
10:00–11:00 | 11:00–12:00 | 12:00–13:00 | 13:00–14:00 | 14:00–15:00 | ||
Summer | 2(8) + 4(8) + 1(3) | 2(8) + 4(8) + 1(6) | 2(8) + 4(8) + 1(3) + 2(7) | 2(8) + 4(8) + 1(7) | 2(8) + 4(8) + 1(3) | 6.555 |
Winter | No operation | No operation | No operation | No operation | No operation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, S.-y.; Han, S.; Lee, M.-G.; Lee, H. Development of a Solar Tracking-Based Movable Louver System to Save Lighting Energy and Create a Comfortable Light Environment. Buildings 2022, 12, 2017. https://doi.org/10.3390/buildings12112017
Jung S-y, Han S, Lee M-G, Lee H. Development of a Solar Tracking-Based Movable Louver System to Save Lighting Energy and Create a Comfortable Light Environment. Buildings. 2022; 12(11):2017. https://doi.org/10.3390/buildings12112017
Chicago/Turabian StyleJung, Su-yeon, Sowon Han, Min-Goo Lee, and Heangwoo Lee. 2022. "Development of a Solar Tracking-Based Movable Louver System to Save Lighting Energy and Create a Comfortable Light Environment" Buildings 12, no. 11: 2017. https://doi.org/10.3390/buildings12112017
APA StyleJung, S. -y., Han, S., Lee, M. -G., & Lee, H. (2022). Development of a Solar Tracking-Based Movable Louver System to Save Lighting Energy and Create a Comfortable Light Environment. Buildings, 12(11), 2017. https://doi.org/10.3390/buildings12112017