The Effect of Bone Ash on the Physio-Chemical and Mechanical Properties of Clay Ceramic Bricks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. Characterization of Materials
2.3. Physio-Chemical and Mechanical Properties of Clay Ceramic Bricks’ Measurement
3. Results and Discussion
3.1. Chemical Characterization of Clay Ceramic Bricks
3.1.1. XRF Characterization of Raw Materials
3.1.2. XRD Analysis
3.1.3. FTIR Analysis
3.1.4. SEM Micrograph Analysis
3.2. Physcial Characterization of Raw Materials and Clay Ceramic Bricks
3.2.1. Plasticity Analysis of Bricks
3.2.2. Bulk Density
3.2.3. Apparent Porosity
3.2.4. Water Absorption
3.2.5. Percent Weight Loss (%) of Clay Ceramic Bricks
3.3. The Effect of Bone Ash Addition and Temperature on the Compressive Strength of Clay Ceramic Bricks
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poudyal, L.; Adhikari, K. Environmental sustainability in cement industry: An integrated approach for green and economical cement production. Resour. Environ. Sustain. 2021, 4, 100024. [Google Scholar] [CrossRef]
- Liu, B.; Qin, J.; Shi, J.; Jiang, J.; Wu, X.; He, Z. New perspectives on utilization of CO2 sequestration technologies in cement-based materials. Constr. Build. Mater. 2021, 272, 121660. [Google Scholar] [CrossRef]
- Nwankwo, C.O.; Bamigboye, G.O.; Davies, I.E.; Michaels, T.A. High volume Portland cement replacement: A review. Constr. Build. Mater. 2020, 260, 120445. [Google Scholar] [CrossRef]
- Mahamat, A.; Bih, N.L.; Ayeni, O.; Onwualu, P.A.; Savastano, H.; Soboyejo, W.O. Development of Sustainable and Eco-Friendly Materials from Termite Hill Soil Stabilized with Cement for Low-Cost Housing in Chad. Buildings 2021, 11, 86. [Google Scholar] [CrossRef]
- Jamsawang, P.; Charoensil, S.; Namjan, T.; Jongpradist, P.; Likitlersuang, S. Mechanical and microstructural properties of dredged sediments treated with cement and fly ash for use as road materials. Road Mater. Pavement Des. 2020, 22, 2498–2522. [Google Scholar] [CrossRef]
- He, Z.; Shen, A.; Wu, H.; Wang, W.; Wang, L.; Yao, C.; Wu, J. Research progress on recycled clay brick waste as an alternative to cement for sustainable construction materials. Constr. Build. Mater. 2021, 274, 122113. [Google Scholar] [CrossRef]
- Zeidabadi, Z.A.; Bakhtiari, S.; Abbaslou, H.; Ghanizadeh, A.R. Synthesis, characterization and evaluation of biochar from agricultural waste biomass for use in building materials. Constr. Build. Mater. 2018, 181, 301–308. [Google Scholar] [CrossRef]
- Abbas, S.; Saleem, M.A.; Kazmi, S.M.; Munir, M.J. Production of sustainable clay bricks using waste fly ash: Mechanical and durability properties. J. Build. Eng. 2017, 14, 7–14. [Google Scholar] [CrossRef]
- Munir, M.J.; Abbas, S.; Nehdi, M.L.; Kazmi, S.M.S.; Khitab, A. Development of Eco-Friendly Fired Clay Bricks Incorporating Recycled Marble Powder. J. Mater. Civ. Eng. 2018, 30, 04018069. [Google Scholar] [CrossRef]
- Ozaki, H.; Sharma, K.; Saktaywin, W. Performance of an ultra-low-pressure reverse osmosis membrane (ULPROM) for separating heavy metal: Effects of interference parameters. Desalination 2002, 144, 287–294. [Google Scholar] [CrossRef]
- Khitab, A.; Riaz, M.S.; Jalil, A.; Khan, R.B.N.; Anwar, W.; Khan, R.A.; Arshad, M.T.; Kirgiz, M.S.; Tariq, Z.; Tayyab, S. Manufacturing of Clayey Bricks by Synergistic Use of Waste Brick and Ceramic Powders as Partial Replacement of Clay. Sustainability 2021, 13, 10214. [Google Scholar] [CrossRef]
- Moayedi, H.; Aghel, B.; Abdullahi, M.M.; Nguyen, H.; Rashid, A.S.A. Applications of rice husk ash as green and sustainable biomass. J. Clean. Prod. 2019, 237, 117851. [Google Scholar] [CrossRef]
- Hafez, A.I.; Khedr, M.M.; Osman, R.M.; Sabry, R.; Mohammed, M.S. A comparative investigation of the unit cost for the preparation of modified sand and clay bricks from rice husk waste. J. Build. Eng. 2020, 32, 101765. [Google Scholar] [CrossRef]
- Minakshi, M.; Schneider, P.A.; Fichtner, M. Biowaste eggshells as efficient electrodes for energy storage. In Valorization of Agri-Food Wastes and By-Products; Elsevier BV: Amsterdam, The Netherlands, 2021; pp. 475–495. [Google Scholar]
- Ngayakamo, B.H.; Bello, A.; Onwualu, A.P. Development of eco-friendly fired clay bricks incorporated with granite and eggshell wastes. Environ. Chall. 2020, 1, 100006. [Google Scholar] [CrossRef]
- Adegoke, D.; Afuwape, R.; Olukanni, D.; Bamigboye, G. Utilization of Palm Fruit Fibers as Constituent Materials for Hand Mould Clay Bricks. J. Physics Conf. Ser. 2019, 1378, 022044. [Google Scholar] [CrossRef]
- Joglekar, S.N.; Kharkar, R.A.; Mandavgane, S.; Kulkarni, B.D. Sustainability assessment of brick work for low-cost housing: A comparison between waste based bricks and burnt clay bricks. Sustain. Cities Soc. 2018, 37, 396–406. [Google Scholar] [CrossRef]
- Kazmi, S.M.; Abbas, S.; Saleem, M.A.; Munir, M.J.; Khitab, A. Manufacturing of sustainable clay bricks: Utilization of waste sugarcane bagasse and rice husk ashes. Constr. Build. Mater. 2016, 120, 29–41. [Google Scholar] [CrossRef]
- Stanislas, T.T.; Komadja, G.C.; Ngasoh, O.F.; Obianyo, I.I.; Tendo, J.F.; Onwualu, P.A.; Junior, H.S. Performance and Durability of Cellulose Pulp-Reinforced Extruded Earth-based Composites. Arab. J. Sci. Eng. 2021, 46, 11153–11164. [Google Scholar] [CrossRef]
- Singh, A.K.; Masto, R.E.; Hazra, B.; Esterle, J.; Singh, P.K. Utilization of Coal and Biomass Ash. In Ash from Coal and Biomass Combustion; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2020; pp. 37–89. [Google Scholar]
- Lozano-Miralles, J.A.; Hermoso-Orzáez, M.J.; Martínez-García, C.; Rojas-Sola, J.I.J.S. Comparative study on the environmental impact of traditional clay bricks mixed with organic waste using life cycle analysis. Sustainability 2018, 10, 2917. [Google Scholar] [CrossRef] [Green Version]
- Adetayo, O.A.; Umego, O.M.; Faluyi, F.; Odetoye, A.O.; Bucknor, A.O.; Busari, A.A.; Sanni, A. Evaluation of Pulverized Cow Bone Ash and Waste Glass Powder on the Geotechnical Properties of Tropical Laterite. Silicon 2021, 1–10. [Google Scholar] [CrossRef]
- Neuman, W.F.; Neuman, M.W. The Nature of the Mineral Phase of Bone. Chem. Rev. 1953, 53, 1–45. [Google Scholar] [CrossRef]
- Bih, N.L.; Mahamat, A.A.; Hounkpè, J.B.; Onwualu, P.A.; Boakye, E. The Effect of Polymer Waste Addition on the Compressive Strength and Water Absorption of Geopolymer Ceramics. Appl. Sci. 2021, 11, 3540. [Google Scholar] [CrossRef]
- Pavlova, I.A.; Getman, A.A.; Farafontova, E.P. The Possibility of Using Tyumen Keramzite Clay in the Production of Ceramic Materials. IOP Conf. Series Mater. Sci. Eng. 2020, 969, 012030. [Google Scholar] [CrossRef]
- Luo, H.; Li, Y.B.; Li, S.J.; Chen, R.Y.; Xiang, R.F.; Na Xu, N.; Wang, Q.H.; Si, O.Y. Fabrication of Porous Mullite Ceramics with Different Phase of Alumina for Insulation Materials. Solid State Phenom. 2018, 281, 242–248. [Google Scholar] [CrossRef]
- Johari, I.; Said, S.; Hisham, B.; Bakar, A.; Ahmad, Z.A. Effect of the change of firing temperature on microstructure and physical properties of clay bricks from Beruas (Malaysia). Sci. Sinter. 2010, 42, 245–254. [Google Scholar] [CrossRef]
- Heniegal, A.M.; Ramadan, M.A.; Naguib, A.; Agwa, I.S. Case Studies in Construction Materials. Case Stud. Constr. Mater. 2020, 13, e00397. [Google Scholar]
- Monteiro, S.; Vieira, C. Solid state sintering of red ceramics at lower temperatures. Ceram. Int. 2004, 30, 381–387. [Google Scholar] [CrossRef]
- Herek, L.C.; Hori, C.E.; Reis, M.H.M.; Mora, N.D.; Tavares, C.R.G.; Bergamasco, R. Characterization of ceramic bricks incorporated with textile laundry sludge. Ceram. Int. 2012, 38, 951–959. [Google Scholar] [CrossRef]
- Pérez-Villarejo, L.; Eliche-Quesada, D.; Iglesias-Godino, F.J.; Martínez-García, C.; Corpas-Iglesias, F.A. Recycling of ash from biomass incinerator in clay matrix to produce ceramic bricks. J. Environ. Manag. 2012, 95, S349–S354. [Google Scholar] [CrossRef]
- Obianyo, I.; Onwualu, A.P.; Soboyejo, A.B. Mechanical behaviour of lateritic soil stabilized with bone ash and hydrated lime for sustainable building applications. Case Stud. Constr. Mater. 2020, 12, e00331. [Google Scholar] [CrossRef]
- Bhuiya, A.W.; Hu, M.; Sankar, K.; Keane, P.F.; Ribero, D.; Kriven, W.M. Bone ash reinforced geopolymer composites. J. Am. Ceram. Soc. 2021, 104, 2767–2779. [Google Scholar] [CrossRef]
- British Standards Institution. British Standard Specification for Clay Bricks; British Standards Institution: London, UK, 1985. [Google Scholar]
- Zhao, X.; Liu, Q.; Yang, J.; Zhang, W.; Wang, Y. Sintering Behavior and Mechanical Properties of Mullite Fibers/Hydroxyapatite Ceramic. Materials 2018, 11, 1859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miron, G.D.; Kulik, D.A.; Yan, Y.; Tits, J.; Lothenbach, B. Extensions of CASH+ thermodynamic solid solution model for the uptake of alkali metals and alkaline earth metals in C-S-H. Cem. Concr. Res. 2021, 152, 106667. [Google Scholar] [CrossRef]
- Mendoza-Castillo, D.I.; Bonilla-Petriciolet, A.; Jáuregui-Rincón, J.J.D.; Treatment, W. On the importance of surface chemistry and composition of bone char for the sorption of heavy metals from aqueous solution. Porous Mater. Theory Its Appl. Environ. Remediat. 2015, 54, 1651–1662. [Google Scholar] [CrossRef]
- Rezaee, A.; Ghanizadeh, G.; Behzadiyannejad, G.; Yazdanbakhsh, A.; Siyadat, S.D. Adsorption of Endotoxin from Aqueous Solution Using Bone Char. Bull. Environ. Contam. Toxicol. 2009, 82, 732–737. [Google Scholar] [CrossRef] [PubMed]
- Malla, K.P.; Regmi, S.; Nepal, A.; Bhattarai, S.; Yadav, R.J.; Sakurai, S.; Adhikari, R. Extraction and Characterization of Novel Natural Hydroxyapatite Bioceramic by Thermal Decomposition of Waste Ostrich Bone. Int. J. Biomater. 2020, 2020, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, R.; Das, S.; Bhattacharjee, S.K. Optimization of biodiesel production from Indian mustard oil by biological tri-calcium phosphate catalyst derived from turkey bone ash. Clean Technol. Environ. Policy 2014, 17, 455–463. [Google Scholar] [CrossRef]
- Rana, M.; Akhtar, N.; Rahman, S.; Jamil, H.M.; Asaduzzaman, S.M. Extraction of hydroxyapatite from bovine and human cortical bone by thermal decomposition and effect of gamma radiation: A comparative study. Int. J. Complementary Altern. Med. 2017, 8, 1–10. [Google Scholar]
- Sun, Z.; Cui, H.; An, H.; Tao, D.; Xu, Y.; Zhai, J.; Li, Q. Synthesis and thermal behavior of geopolymer-type material from waste ceramic. Constr. Build. Mater. 2013, 49, 281–287. [Google Scholar] [CrossRef]
- Younesi, M.; Javadpour, S.; Bahrololoom, M.E. Effect of Heat Treatment Temperature on Chemical Compositions of Extracted Hydroxyapatite from Bovine Bone Ash. J. Mater. Eng. Perform. 2011, 20, 1484–1490. [Google Scholar] [CrossRef]
- Ifka, T.O.; Palou, M.T.; Bazelova, Z. Influence of CaO and P2O5 of bone ash upon the reactivity and the burnability of cement raw mixtures. Ceram. Silikáty 2012, 56, 76–84. [Google Scholar]
- British Standards Institution. Methods of Test for Soils for Civil Engineering Purposes: Classification Tests; British Standards Institution: London, UK, 1990. [Google Scholar]
- Bennour, A.; Mahmoudi, S.; Srasra, E.; Boussen, S.; Htira, N. Composition, firing behavior and ceramic properties of the Sejnène clays (Northwest Tunisia). Appl. Clay Sci. 2015, 115, 30–38. [Google Scholar] [CrossRef]
- Eliche-Quesada, D.; Sandalio-Pérez, J.A.; Martínez-Martínez, S.; Pérez-Villarejo, L.; Sánchez-Soto, P.J. Investigation of use of coal fly ash in eco-friendly construction materials: Fired clay bricks and silica-calcareous non fired bricks. Ceram. Int. 2018, 44, 4400–4412. [Google Scholar] [CrossRef]
- Achik, M.; Benmoussa, H.; Oulmekki, A.; Ijjaali, M.; El Moudden, N.; Touache, A.; Álvaro, G.G.; Rivera, F.G.; Infantes-Molina, A.; Eliche-Quesada, D.; et al. Evaluation of technological properties of fired clay bricks containing pyrrhotite ash. Constr. Build. Mater. 2021, 269, 121312. [Google Scholar] [CrossRef]
- Standard, ASTM. Standard Test Methods for Sampling and Testing Brick and Structural Clay Tile; ASTM: West Conshohocken, PA, USA, 2014; p. C67-14. [Google Scholar]
Sample Name | Bone Ash (%) | Clay (%) | Temperature (°C) |
---|---|---|---|
100C | - | 100 | 100, 300, 600, and 900 |
5BAC | 5 | 95 | 100, 300, 600, and 900 |
10BAC | 10 | 90 | 100, 300, 600, and 900 |
15BAC | 15 | 85 | 100, 300, 600, and 900 |
20BAC | 20 | 80 | 100, 300, 600, and 900 |
Chemical Composition | Oxide Percentage of BA (%) | Oxide Percentage of KC (%) |
---|---|---|
P2O5 | 34.50 | - |
CaO | 42.87 | 0.73 |
Fe2O3 | - | 9.23 |
SiO2 | 11.54 | 54.81 |
Al2O3 | 1.84 | 22.72 |
MgO | - | 3.22 |
TiO2 | 0.05 | 1.74 |
K2O | 0.09 | 2.77 |
LOI * | 1.7 |
Physical Properties | Percentage |
---|---|
Liquid limit | 41.8 |
Plastic limit | 26.48 |
Average moisture content | 42.51 |
Average linear shrinkage | 7.79 |
Plasticity index | 15.32 |
Sieve size | 425 µm |
Colour | Reddish brown |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bih, N.L.; Mahamat, A.A.; Chinweze, C.; Ayeni, O.; Bidossèssi, H.J.; Onwualu, P.A.; Boakye, E.E. The Effect of Bone Ash on the Physio-Chemical and Mechanical Properties of Clay Ceramic Bricks. Buildings 2022, 12, 336. https://doi.org/10.3390/buildings12030336
Bih NL, Mahamat AA, Chinweze C, Ayeni O, Bidossèssi HJ, Onwualu PA, Boakye EE. The Effect of Bone Ash on the Physio-Chemical and Mechanical Properties of Clay Ceramic Bricks. Buildings. 2022; 12(3):336. https://doi.org/10.3390/buildings12030336
Chicago/Turabian StyleBih, Numfor Linda, Assia Aboubakar Mahamat, Chukwuemeka Chinweze, Olugbenga Ayeni, Hounkpè Jechonias Bidossèssi, Peter Azikiwe Onwualu, and Emmanuel E. Boakye. 2022. "The Effect of Bone Ash on the Physio-Chemical and Mechanical Properties of Clay Ceramic Bricks" Buildings 12, no. 3: 336. https://doi.org/10.3390/buildings12030336
APA StyleBih, N. L., Mahamat, A. A., Chinweze, C., Ayeni, O., Bidossèssi, H. J., Onwualu, P. A., & Boakye, E. E. (2022). The Effect of Bone Ash on the Physio-Chemical and Mechanical Properties of Clay Ceramic Bricks. Buildings, 12(3), 336. https://doi.org/10.3390/buildings12030336