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Abstract: This paper develops an integrated model for the distribution of post-disaster temporary
shelters after a large-scale disaster. The proposed model clusters impacted areas using an Adaptive
Neuro-Fuzzy Inference System (ANFIS) method and then prioritizes the points of clusters by affecting
factors on the route reliability using a permanent matrix. The model’s objectives are to minimize
the maximum service time, maximize the route reliability and minimize the unmet demand. In
the case of ground relief, the possibility of a breakdown in the vehicle is considered. Due to the
disaster’s uncertain nature, the demands of impacted areas are considered in the form of fuzzy
numbers, and then the equivalent crisp counterpart of the non-deterministic is made by Jimenez’s
method. Since the developed model is multi-objective, the Non-dominated Sorting Genetic Algorithm
(NSGA-II) and Multi-Objective Firefly Algorithm (MOFA) are applied to find efficient solutions.
The results confirm higher accuracy and lower computational time of the proposed MOFA. The
findings of this study can contribute to the growing body of knowledge about disaster management
strategies and have implications for critical decision-makers involved in post-disaster response
projects. Furthermore, this study provides valuable information for national decision-makers in
countries with limited experience with disasters and where the destructive consequences of disasters
on the built environment are increasing.

Keywords: temporary shelter; clustering; post-disaster; construction; uncertainty; augmented
ε-constraint method

1. Introduction

There is a growing consensus that disasters do not occur naturally but rather due to
poor planning [1]. The rising frequency and severity of disasters pose a severe threat to hu-
man society and the built environment [2], resulting in large-scale population displacement.
Almost 42 million people were forced to abandon their homes due to natural hazards in
2010 alone [3]. After a disaster, a large number of people are left without a place to live, and
one of the most obvious consequences is damage to housing [4]. Damaged houses require
extensive repair and reconstruction. As a result, providing emergency shelter to those in
need takes precedence over all other actions. Communities that have been affected by
natural disasters can resume their daily routines in temporary shelter units, which provide
them with the necessary protection while they await the completion of the reconstruction
process [5]. Prefabricated units and other forms of temporary shelters are designed for
short-term occupants after a disaster event to serve the displaced communities [6,7]. How-
ever, many logistical issues can arise when providing temporary shelters for displaced
people in the immediate aftermath of natural disasters.

The literature on disaster risk management in construction and the built environment
has received insufficient attention [8]. Following a disaster, the construction industry is
often called upon to provide various crucial services, including temporary shelters in the
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immediate aftermath and permanent shelter reconstruction [5,9]. A lack of planning and
administration can exacerbate the difficulties inherent in reconstruction projects, which
can be further compounded by international aid organizations’ lack of expertise in dealing
with such matters [10].

This article focuses on the response phase and the problem of the distribution of
post-disaster temporary shelters after a large-scale disaster. In this problem, we encounter
impacted areas where the vehicles should serve them and then return to the shelter’s
warehouse with the lowest possible cost. In times of crisis, we strive to reduce total
travel time to provide shelters faster for the impacted people. The number of warehouses
(e.g., without, single warehouse, and multiple warehouses) in a transportation system,
the number of periods (e.g., single and multiple), the type of fleet (e.g., heterogeneous
and non-heterogeneous), and the type of transportation (e.g., single and multiple) are all
influencing factors on a distribution system’s agility and performance. The presence of an
open or closed vehicle routing problem can also significantly impact the speed and security
of distribution operations.

Designers of distribution networks of post-disaster temporary shelters are generally
looking for quick and equitable distribution [11]. In order to achieve this goal, it is crucial
to identify and cluster areas that have similar needs and features. ANFIS can cluster the
impacted areas [12]. In a crisis, having a secure transportation network is critical, and
considering secure and safe routes appears to be a very reasonable action [13]. These issues
prevent unanticipated delays, ensure the safety of drivers and relief personnel, allow for the
safe transport of vehicles, and ensure the timely arrival of temporary shelters. As a result,
this can be accomplished by weighing the impacted areas concerning some influencing
criteria on the road reliability. It is also possible to specify the priority of each impacted
point using various Multi-Criteria Decision-Making (MCDM) methods [14,15]. Because of
the nature of the disasters and a lack of reliable information, there is uncertainty in demand,
supply, transportation time, etc.

On the other hand, the distribution of temporary shelters and equipment will be
complex because infrastructure and routes may be disrupted. Disorders are expected
during the response phase, following a crisis and the implementation of distribution
operations [16]. These disruptions are sometimes the result of unexpected events, such as
vehicle breakdowns. As a result, some impacted areas cannot receive services from that
vehicle, and even active vehicles, due to driver shift exchange or completion of the defined
time, cannot deliver the remaining shelters of the broken-down vehicle to the impacted
areas, leaving them unserved. As a result, there is a shortage in the distribution system.
This shortage (i.e., unmet demand) is minimised in this study. The primary objective of
this study is to develop an integrated model and an advanced computational approach
to assist decision-makers in addressing the challenges associated with the distribution of
post-disaster temporary shelters that many communities face following the occurrence of a
destructive large-scale disaster. The specific research objectives of this study are as follows:

• Analyzing initial requirements to develop an integrated model for distributing tempo-
rary shelters following a large-scale disaster.

• Developing an integrated model to aid in distributing temporary shelters following a
large-scale destructive disaster.

This paper proposes a mathematical multi-objective model (i.e., minimisation of the
maximum serving time, maximisation of route reliability, and minimisation of unmet
demand) for a disrupted VRP in which impacted areas are first clustered (by applying
the ANFIS). These points are then prioritised based on the factors that influence reliability
(applying a graph theoretical-matrix permanent method). Diverse vehicles and depots in
multi-mode (i.e., ground and air) transportation are used in temporary shelter distribution
operations during the disaster response phase.

The remainder of the paper is organised as follows: Section 2 contains a review of
the literature. Section 3 explains and formulates the proposed model, including clustering
impacted areas using ANFIS, reliable route selection, modelling, and the proposed aug-
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mented ε-constraint method. Sections 4 and 5 present two multi-objective metaheuristics
algorithms and analyses their results. Finally, the conclusion in Section 6 brings the paper
to a close.

2. Literature Review

This section investigates several streams of previous related research in the literature
and research gaps in two separate sub-sections.

2.1. Disaster Risk Management

Disaster management aims to reduce or avoid the potential losses from hazards, assure
prompt and appropriate assistance to disaster victims, and achieve rapid and effective
recovery [17,18]. Disaster Risk Management (DRM) consists of processes for designing,
implementing, and evaluating strategies, policies, and measures to improve our under-
standing of disaster risk, promote disaster risk reduction and transfer and stimulate a
continuous improvement in disaster mitigation, preparedness, response and recovery activ-
ities [19,20]. Disaster risk management comprises four activities that are often considered
as part of ongoing and interconnected processes [19]. These four activities are mitigation,
preparedness, response and recovery [19], which are described by The United Nations
International Strategy for Disaster Reduction (UNISDR) as follows:

• Mitigation: “The lessening or minimizing of the adverse impacts of a hazardous event./The
adverse impacts of hazards, in particular natural hazards, often cannot be prevented fully,
but their scale or severity can be substantially lessened by various strategies and actions.
Mitigation measures include engineering techniques and hazard-resistant construction as well
as improved environmental and social policies and public awareness [21].”;

• Preparedness: “The knowledge and capacities developed by governments, response and
recovery organizations, communities and individuals to effectively anticipate, respond to and
recover from the impacts of likely, imminent or current disasters [21].”;

• Response: “Actions taken directly before, during or immediately after a disaster in order to
save lives, reduce health impacts, ensure public safety and meet the basic subsistence needs of the
people affected. /Disaster response is predominantly focused on immediate and short-term needs
and is sometimes called disaster relief. Effective, efficient and timely response relies on disaster
risk-informed preparedness measures, including the development of the response capacities of
individuals, communities, organizations, countries and the international community [21].”;

• Recovery: “The restoring or improving of livelihoods and health, as well as economic, phys-
ical, social, cultural and environmental assets, systems and activities, of a disaster-affected
community or society, aligning with the principles of sustainable development and “build back
better”, to avoid or reduce future disaster risk [21].”

Although disaster risk management has evolved into much more than what was earlier
envisaged, many parts, such as distribution routing planning of shelters or temporary
housing, have received less attention.

2.2. Disaster Distribution Routing Planning

The first studies in this field were conducted by Haghani and Oh [22] and Haghani [23],
who proposed a multi-objective model for commodity distribution in which a transportation
network with various fleet types distributes various types of goods. Until 2010, studies
focused on other routing parameters such as multi-mode distribution, multiple products,
clustering, and multi-objectivity. Özdamar et al. [24] developed a model with multiple relief
modes for distributing multi-type products over time. They used a Lagrangian relaxation
method to solve the model. Despite the critical importance of instant response in a routeing
problem and goods distribution, particularly in times of emergency, a few researchers
considered a model that would meet this requirement.

Dondo and Cerdá [25] considered demand point clustering in non-crisis fields and
assigned heterogeneous vehicles to each cluster. He et al. [26] proposed a vehicle routeing
model under non-crisis conditions using a heuristic algorithm and designing a goods
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distribution network by clustering demand points using a balanced k-means algorithm to
distribute goods to demand points. However, the approach used to cluster demand points
in crisis conditions (i.e., damaged points) in the ANFIS network structure is fuzzy c-means,
which is not found in any research with this content. From 2010 to early 2016, papers
took on a new shape, and previously unaddressed efficient and effective routeing factors
were incorporated into mathematical models. Vehicle heterogeneity, multi-mode and multi-
period distribution operations, uncertainty, disruption, reliability, and other efficient factors
have been considered in these studies. Although reliability is critical in ensuring relief
goods’ safe and timely delivery, it has received little attention in studies. Some researchers
have recently considered and applied this concept to the design of distribution networks.

Vitoriano et al. [27] proposed a goal programming model for relief distribution that
considered reliability and route safety factors, with relief goods delivered to heteroge-
neous vehicles from multiple depots to damaged areas. Torabi et al. [28] also proposed
a location-routing model at a conference, in which infrastructure disruption (e.g., roads)
was considered, and relief goods from multiple depots were delivered to affected areas to
maximise route reliability. Hamedi et al. [29] developed a multi multi-depot multi-objective
function and designed a road disruption product distribution network. Nasiri and Shishe-
Gar [30], on the other hand, proposed a model for rapid and secure response after a crisis
in which damaged points are prioritised based on affecting factors on route reliability.
Heterogeneous vehicles are in charge of providing relief batches to damaged points.

Among the papers reviewed, the subject of distribution network disruption has been
studied under normal conditions rather than in times of crisis. According to these studies,
disruption can occur in a variety of ways. For example, road breakdowns, facility and
equipment failures, vehicle breakdowns, and bad weather conditions cause problems in
the humanitarian relief logistics goods distribution system, which can be fixed by using
different methods and reprogramming. Although vehicle breakdowns are a significant
disruption in the routeing and distribution problem, only a few researchers addressed
this issue in the literature. In the non-crisis situations, for example, Wang et al. [31]
introduced vehicle breakdown as a disruption in serving demand points and assumed that
in the case of vehicle breakdown throughout goods distribution, other vehicles could do
their serving duties before finishing their serving operation, leaving no demand points
unsatisfied. Mu and Eglese [32], and Mamasis et al. [33] proposed disrupted routeing
models in separate papers, in which the vehicle fails during goods distribution and the
absence of the immobilised vehicle is covered by rerouting of other vehicles, and its
corresponding demand points are satisfied, and thus the cost of delay is reduced. Gharib
et al. [34] presented a three-stage integrated model for a cluster-based emergency vehicle
routing problem in disaster considering reliability. Current study is the extended version
of this study. Jiang et al. [35] introduced the problem of delayed distribution and decreased
service level to customers (in the case of vehicle breakdown) and the concept of disruption
management in a VRP and presented a prioritising method for customer serving in a
time period.

This study tries to develop a multi-objective mathematical model for the response
phase, in which land and air fleet are deployed in a temporary shelter distribution system.
Multiple depots were considered as distribution centres, and impacted areas were clustered
using the ANFIS method to speed up distribution operations. Damaged points in each
cluster are prioritised by affecting factors on reliability, using an integration method of
graph theory-MCDM-permanent matrix, to ensure perfect and on-time delivery to these
areas. The probability of breakdown has been considered in the cluster related to ground
relief, and we are looking to minimise the shortage of temporary shelters at the impacted
areas caused by this disruption and try to reduce the current disruption, based on produced
scenarios, by minimising unmet demand (i.e., undelivered goods to the damaged points).
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3. Proposed Framework for a Disaster Response Strategy

The following three steps outline the procedure for developing the model in this
study. Step 1 involves the clustering and prioritisation of impacted areas, while Step 2
involves presenting all stages of the mathematical model design. After that, two multi-
objective metaheuristic algorithms are presented to solve the problem. This is illustrated
schematically in Figure 1.
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3.1. Clustering Impacted Areas Using ANFIS

By clustering the impacted areas, response strategies for sending shelters to impacted
areas can be accelerated. Therefore, this study uses Adaptive Neuro-Fuzzy Inference System
(ANFIS), which has shown acceptable performance in clustering problems [36]. ANFIS
combines the FIS with a backpropagation algorithm used for neural network training [37].
This inference-based structure has three components depending on the selection of fuzzy
rules, database (i.e., membership determination), and argument or inference on rules and
obtaining the appropriate output [38]. Chu [39] proposed a neural learning method with an
adaption for the FIS modelling process for information learning (i.e., ANFIS), which is the
best generator for FIS. This structure is a multi-layer feed-forward network that uses neural
network learning algorithms and fuzzy logic for mapping an input space to an output
space, and by embedding this adapted network in the Sugeno fuzzy model, the model
learning is facilitated [40]. The general structure of this method is shown in Figure 2.
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In this structure, the adapted nodes (i.e., squares) are the set of adjustable parameters,
while fixed nodes (i.e., circles) present constant parameters in the model. The previous
layer’s output is used as input of the next layer [40]. According to Figure 2, two input
variables x1 and x1 and output y are considered to define two rules as follows [41]

• Rule 1: If x1 is A1 and x2 is B1 then Y1 = p1x1 +q1x2 + r1
• Rule 2: If x1 is A2 and x2 is B2 then Y2 = p2x1 +q2x2 + r2

In the current paper, for example, the first rule states that if the road slope is low,
the weather is normal, the crisis severity is high, and the road risk is moderate, then the
intended damaged point belongs to cluster 1. If the road slope is moderate, the weather
is normal, the crisis severity is very high, and the road risk is moderate, the intended
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damaged point falls into cluster 2, and so on. The ANFIS determines the output value
using five layers.

Layer 1. This layer maps input variables x1 and x2 to fuzzy sets A = {A1, A2, B1, B2}
through the fuzzification method (A and B are verbal tags, like high and low). Each node in
this layer is an adapted node with n function nodes that the bell or Gaussian membership
function can produce. In fact, each node is used for one membership function [41].

O = µ(x) (1)

Layer 2. After generating membership functions, each node in this layer is a fixed (i.e.,
constant) node, and the output is the multiplication of all inputted signals that represent
the Firing Strength of each fuzzy rule. In this layer, after the combination of fuzzy sets
of each input, the Firing Strength is applied, and determination of output is used from
∏−norm operator or the fuzzy letter “and” [40].

O = wi = µ(x1)∏ µ(x2)
(2)

Layer 3. Each node in this layer is a fixed layer that calculates the Firing Strength rate
for each rule and divides it by all rules’ Firing Strengths. Actually, the rate of the i-th rule
is calculated.

O = w∗i =
wi

w1 +w2
i = 1, 2 (3)

Layer 4. Each node in this layer represents an adapted node with a function node, and
the contribution of each rule to the total output is calculated. It means that the output of
the previous layer is multiplied by a function of the Sugeno fuzzy rule. In other words,
defuzzification is done, and the output values are obtained from fuzzy inference rules, in
which ri,qi and pi are consequent parameters.

O = wi·x·f = w∗i (pix1 +qix2 + ri) (4)

Layer 5. The single node of this layer is a fixed layer that indicates the total output to
the sum of all signals. Actually, this non-adapted node obtains the total output by summing
all signals [38]

O = ∑w∗i ·x·f =
∑i wi·f

∑i wi
(5)

The parameters in the ANFIS network are non-linear (in the premise section) and
linear (in the consequent section). There are different methods for optimisation of these
parameters, such as the gradient or slope descent. Of course, the blended learning method
is more efficient in this technique. The layer output forward to layer four and least square
estimation is used for consequent parameter adjustment in feed-forward movement. How-
ever, in backward movement, the error signals return to layer one and update premise
parameters by using gradient descent [41]. Sometimes, the ANFIS method has constraints
for large-scale data and is not efficient. Hence, we seek newly developed algorithms
that resolve this deficiency. The fuzzy c-mean (FCM) can be mentioned as an alternative
method [42]. This unsupervised algorithm is applied for clustering the N data points to c
clusters by initialisation. Its purpose is to minimise the existing errors (i.e., the weighted
distance of each point with all c means of clusters) [43]. Then, it is applied for minimising
the following objective function:

Min JFCM =
C

∑
c=1

N

∑
i=1

W
p

ic ‖xi − vc‖2

s.t.
(6)

C

∑
c=1

Wic = 1; i = 1, 2, . . . ,N (7)

where p (p > 1) is the fuzzifier operator, N is the number of data points, c is the number
of clusters, wic is the measure of belonging data point i to cluster c, V is the cluster mean,
and x is the input data. wic is computed by [44].
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Wic =
1

∑c
l=1

(
d2

ic
d2

ij

) 1
(p−1)

; i = 1, 2, . . . .,N; c = 1, 2, . . . ,C (8)

The cluster means are recalculated at the next stage of initialisation using the follow-
ing formula:

Vc =
∑N

j=1 W
p
jc × xj

∑N
j=1 W

p
jc

; c = 1, 2, . . . ,C; 1 < p < N (9)

Finally, the algorithm reaches convergence condition stops [38]. To summarise, this
algorithm is carried out in four steps: (1) random selection of a cluster centre from among
the n points, (2) calculation of the membership function, (3) calculation of the cost function
using the above formula and terminating the procedure if this value is less than a specified
threshold, and (4) calculation of new cluster centres (recalculation). Finally, the termination
condition is convergence; otherwise, it returns to Step 2 [43].

This paper employs an ANFIS method with ten neurones in a hidden layer for
20 damaged points and a binary output (i.e., cluster 1 or cluster 2). The output layer’s
transformation function is linear, while the hidden layer’s function is tangent sigmoid. The
type of training algorithm, on the other hand, is LM-BP. Table 1 shows an example of the
above-mentioned data. This table also includes verbal tags for the membership functions
for each input variable. Table 1 shows how 20 damaged points are divided into two clusters.
Cluster 1 includes the points where the corresponding road is in good condition, and
the relief operation takes place on the ground or in the air. Cluster 2, on the other hand,
contains points where the corresponding road is broken down, and the relief operation can
only take place in the air mode. Table 1 lists the clustering measures, some of which are
deterministic and some of which are fuzzy. This table also includes the clustering results of
20 damaged points.

Table 1. A numerical illustration of affected point clustering using the ANFIS-FCM method.
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4 Low good Great 453 Low 10 6 2 13 1
5 High Bad Great 501 Medium 10 16 21 9 2
6 Medium Normal Great 503 Medium 20 17 14 13 2
7 Medium Normal Great 505 Medium 10 14 19 9 2
8 High Bad Very great 804 Medium 71 73 79 9 2
9 Low good Very great 852 Low 11 6 4 13 1
10 High Normal Very great 903 Medium 69 72 77 13 2
11 Medium Normal Medium 1021 Medium 8 15 18 9 1
12 High Bad Medium 1205 Medium 9 15 20 9 2
13 Medium good Medium 1211 Medium 7 14 17 9 1
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3.2. Reliable Route Selection

Road networks now require a high degree of reliability to ensure drivers’ travel and
avoid delays because of disruption in the network [45]. In the present paper, applying a
permanent matrix in a graph theory and MCDM, we determine the most reliable route. Rao
and Padmanabhan [46] presented a graph theory and its applications in the field of decision
making and application of the graph theory. The graph theory and matrix method include
graph representation, matrix representation, and permanent function representation. That
is, first, the representation of variables and their dependencies is presented and then
formulated mathematically and finally, a numerical index is identified by a permanent
function [47]. Clusters obtained by the ANFIS method are prioritised by affecting factors
on route reliability to find the most reliable route for distributing temporary shelters to
these points using this theory. Road type (e.g., autobahn and highway), mountainous
rate, and geographical characteristics all have an impact on the reliability of cluster 1 (i.e.,
ground and air relief). The severity of the crisis, the regional context (rural or urban), the
conditional weather, the population of the region, and the distance of the air vehicle depot
and damaged points all have an impact on the reliability of cluster 2 (i.e., air relief).

Step 1 (identification of criteria, sub-criteria, and alternatives of the problem): Identi-
fication of the affecting factor on the process using the available data in the literature or
conducting a survey of experts [48] is presented by representing graph and their dependen-
cies. The reliability affecting factors have been described before. In the representation of the
graph, as shown in Figure 3, there is a set of nodes and a set of directed edges. Each node
ni is the identifier of the i-th criterion for alternative selection and the edges represent the
relative importance of criteria, in which the number of nodes and alternatives are identical.
In alternative selection, if node i is more important than node j, a directed edge is drawn
from i to j (eij) and vice versa [46]. An example of the decision-making structure by the
use of the permanent matrix is given in Figure 3.
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Step 2 (definition of the relative importance of criteria and alternatives score): In this
step, if the criterion is qualitative, the values of the alternatives score can be calculated by
rating a scale from zero to one [30], as shown in Table 2.

Table 2. Quantitative scores of alternatives.

Qualitative Measure Crisp Score Qualitative Measure Crisp Score

Exceptionally Low 0 Above average 6
Extremely Low 1 High 7

Very Low 2 Very high 8
Low 3 Extremely high 9

Below average 4 Exceptionally high 10
Average 5
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If the criterion is quantitative, it should be normalised. Therefore, if vi is the cri-
teria value of alternative i and vj is the criteria value of alternative j, vi

vj
should be

normalised [47]. After calculating all the criteria values for each alternative, we define the
ratio criteria matrix for them.

[ψ] =


C11 0 . . . 0

0 C22 . . . 0
. . . . . . . . . . . .
0 0 . . . Cnn

 (10)

On the other hand, the relative importance between criteria (rij) can get the val-
ues between zero and one. The relationship between rij and rji is not necessarily a
compensatory relationship. It can be rji =

1
rij

as shown in Table 3.

Table 3. The relative importance of criteria.

Class Definition rij rji = 1 −rij

Two criteria equally important 0.5 0.5
One criterion is slightly more important than others 0.6 0.4
One criterion more important than others 0.7 0.3
One criterion very important than others 0.8 0.2
One criterion exceptionally important than others 0.9 0.1
One criterion most important, other not important 1.0 0.0

The relative importance matrix is defined at the end of this step as:

[β] =


0 r12 . . . rin
r21 0 . . . r2n
. . . . . . . . . . . .
rn1 . . . . . . 0

 (11)

Step 3 (calculation of the alternative evaluation matrix): In this step, after identifying
β and ψ, the alternative evaluation matrix ξ is calculated by:

ζ = ψ + β =


C1 r12 r13 . . . r1n
r21 C2 r23 . . . r2n
r31 r32 C3 . . . r3n
. . . . . . . . . . . . . . .
rn1 rn2 rn3 . . . Cin

 (12)

The permanent of this matrix is the criteria function of alternative selection [30]. This
value gives a grade for the alternatives that must be dissentingly sorted, and the alternative
with the largest permanent value will be the best alternative (the most reliable route) [49].
The following equation represents the function for calculating the permanent value.

per(ξ) =
N

∏
i=1

ci + ∑
i,j...N

(rij .rji).ck.cl . . . cN + ∑
i,j...N

(rij .rjk.rki

+rik.rkj .rji).cl .cn . . . cN

+

{{
∑

i,j...N
(rij .rji)(rkl .rlk).cn.cm . . . .cN + ∑

i,j...N
(rij .rjk.rkl .rli + ril .rlk.rnj .rji).cn.cm . . . .cN

}

+

[
∑

i,j...N
(rij .rji)(rkl .rln.rnk).cm.co . . . cN

+ ∑
i,j...N

(rij .rjk.rkl .rln.rni + rin.rnl .rlk.rkj .rji).cm.co . . . cN

]
+ . . .

(13)
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3.3. Modelling and the Proposed Solving Method

Consider a disaster-affected area. Humanitarian organisations have a plan to send
temporary shelters to the affected areas using trucks and helicopters in response to this
disaster. Multiple depots are considered in response operations, including the depot of
heterogeneous trucks and the hangers of heterogeneous helicopters. It should be noted
that the vehicle depot also serves as a shelter warehouse. These vehicles should deliver
temporary shelters to demand points. However, due to the severity of the disaster, some
infrastructures, including access roads to some of these points, have been disrupted, making
ground delivery to these points impossible. As a result, the affected areas have been
divided into two clusters in order to reduce the time it takes to send shelters. Because of
the disruptions in the access roads, the affected points in one cluster can receive shelters in
both ground and air modes, while the points in the other cluster can only receive shelters
in an air mode due to the breakdown of their road. The points in each cluster are then
prioritised separately by the key factors on route reliability. That is, in each cluster, the
shelters are distributed first to the most reliable route, and the vehicles serve from the most
reliable routes. On the other hand, during the distribution of shelters, the ground vehicle
(e.g., truck) breaks down, causing its service areas to be served late and causing disruption
in the distribution system (Figure 4 shows a schematic sample of the problem).
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Mathematical modelling approaches can effectively condense and highlight the most
important aspects of our understanding of real-world decision-making problems. These
problems, however, are frequently complex. Real-world problems can be too complex or
challenging to model if all details are taken into account, so it is important to keep this in
mind when developing models. Therefore, effective models rely heavily on assumptions
that reduce complexity while retaining the system’s fundamental properties. Because of
this, it is crucial to simplify assumptions in order to keep models tractable and true to the
underlying system. These assumptions lead to a highly effective mathematical model, as
shown by the following:

1. There is a limitation in the number of vehicles, and various types are used to transport
shelters to affected areas.

2. All vehicles’ starting points are known and defined, as is which vehicle belongs to
which depot.

3. All vehicles should be utilised in the event of a large-scale disaster.
4. Each affected point is served by a single-vehicle.
5. The depot inventory is sufficient to respond to the affected areas.
6. The location of any affected area is known, as is its distance from depots.
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7. The amount of demand is known at each affected point.
8. Each vehicle returns to its starting place at the end of the operation.
9. The affected points are divided into two clusters, and all impacted areas in each cluster

are prioritised based on reliability-affecting factors.
10. The broken-down vehicle cannot be repaired in a reasonable amount of time so that it

can be used again.
11. The problem is scenario-based, and the vehicle’s failure time is known under various

scenarios.
12. If the product is delivered to the affected point, the service is completed, and the

shortage is avoided. After the vehicle fails, the other vehicle should not perform its
serving duties and must follow their specified plan.

13. The affected areas’ demand is fuzzy, with a triangular fuzzy number.
14. Each affected area’s demand can be partially met, and a shortage is acceptable.

3.3.1. Mathematical Model of the Disrupted and Clustered MDVRPHF

The mathematical model is developed using the variables and parameters listed below.

Notations and sets
v′ Set of land vehicles
v′′ Set of aerial vehicles
e Set of the impacted areas with a passable road
e′ Set of the impacted areas with a damaged road
d Set of the ground vehicle depots
d′ Set of the helicopter hangars
V Set of vehicles
S Set of scenarios
N Number of all nodes
nv′ Number of trucks
nv′′ Number of helicopters
ne Number of impacted areas with a passable road
ne′ Number of impacted areas with a damaged road
nd Number of truck depots
nd′ Number of helicopter hangars

Parameters
χv The capacity of vehicle v
D̃emi The demand of shelters for node i (impacted area)
tvij Travel time from node i to j for vehicle v

rij The permanent value of node i to j based on the reliability index

Uvi
The auxiliary and sequential variable that shows the number of nodes being visited
with vehicle v in sub-tour elimination constraints

Tiv Arrival time of vehicle v to node i
θij Travel time of a vehicle from node i to node j

Decision Variable

xvij =

{
1 if vehicle v travel from node i to node j

0 otherwise

ys
i =

{
1 if the shelter is not delivered to impacted area j under scenario s

0 otherwise
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Model Formulation

The following is a mathematical formulation of the suggested model:

Min (Max ∑
i∈I

∑
j∈J

∑
v∈V

tvijxvij) (14)

Min ( ∑
i∈I

∑
j∈J

∑
v∈V

rijxvij) (15)

Min ∑
s

∑
i∈ne∪ne′

ys
i × d̃emi (16)

s.to.

∑
i∈ne∪f(v,i)

xvji = ∑
i∈ne∪f(v,i)

xvji, ∀j ∈ ne, v ∈ nv′ (17)

∑
i∈ne∪ne′∪f(v,i)

xvij = ∑
i∈ne∪ne′∪f(v,i)

xvji, ∀j ∈ ne ∪ne′ , v ∈ nd′ (18)

∑
i ∈ f (v, i)

∑
j∈ne

xvij = 1, ∀v ∈ nv′ , ∀f(v, i) (19)

∑
i ∈ f (v, i)

∑
j∈ne∪ne′

xvij = 1, ∀v ∈ nd′ (20)

∑
i ∈ ne

∑
j∈f(v,i)

xvij = 1, ∀v ∈ nv′ (21)

∑
i∈ne∪ne′

∑
j∈f(v,i)

xvij = 1, ∀v ∈ nd′ (22)

∑
v∈nv′

∑
j∈ne

xvij + ∑
v∈n

v′′
∑

j∈ne∪ne′∪f(v,i)
xvij = 1, ∀i ∈ ne (23)

∑
v∈n

v′′
∑

j∈ne∪ne′∪f(v,i)
xvij = 1, ∀i ∈ ne′ (24)

∑
j∈ne∪f(v,i)

∑
i∈ne

xvij × d̃emi ≤ χv, ∀v ∈ nd ∪nd′ (25)

∑
j∈ne∪ne′

∑
i∈ne∪ne′

xvij × d̃emi ≤ χv, ∀v ∈ nv′′ (26)

Uvi −Uvj +nexvij ≤ ne − 1, ∀v ∈ nv′ , ∀i ∈ n, ∀i ∈ ne (27)

Uvi −Uvj +ne′xvij ≤ ne′ − 1, ∀v ∈ nv′′ , ∀i ∈ ne ∪ne′ , ∀i ∈ ne ∪ne′ (28)

Uvi ≤ ne, ∀v ∈ nv′ , ∀i ∈ ne (29)

Uv.f(v,i) = 0, ∀v ∈ nv′ , ∀i ∈ ne (30)

Uvi ≤ ne ∪ne′ , ∀v ∈ nv′′ , ∀i ∈ ne ∪ne′ (31)

Uv.f(v,i) = 0, ∀v ∈ nv′′ , ∀i ∈ ne ∪ne′ (32)

∑
v

Tiv = 0, ∀f(v, i) (33)

Tjv = ∑
j∈ne∪ne′

xvij ×
(
Tiv + θij

)
, ∀i ∈ ne ∪ne′ (34)

bigM(1− ys
i ) ≥ (Tiv − ϕs

v), ∀i ∈ ne ∪ne′ , s ∈ S,v ∈ nv (35)

Uvi = {0, 1, 2, . . . .} (36)
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xvij ∈ {0, 1}, ∀v, i,j (37)

Tiv ≥ 0 (38)

ϕs
v ≥ 0 (39)

θij ≥ 0 (40)

ys
i ∈ {0, 1} (41)

The objective function (14) minimises the maximum of the transportation time of
vehicle v between nodes i and j. The objective function (15) maximises the reliability of
routes by maximising the sum of the permanent of each route. The objective function (16)
minimises the unmet demand at impacted area i under scenario s. Constraint (17) guaran-
tees the flow balance for the impacted areas with reliable road and ground vehicles. That is,
each truck, after entering the node and servicing the area, leaves the node. Constraint (18)
guarantees the balance of flow for healthy and not-healthy areas and for helicopters. In
other words, the helicopters leave the node after its entrance. Constraint (19) indicates that
the start point of any truck is known to be from what depot, while constraint (20) is the
constraint on the start point of helicopters. Constraints (21) and (22) guarantees that any
vehicles (i.e., truck and helicopter) after servicing any nodes must come back to the start
point and the route is closed. Constraint (23) ensures that each vehicle (i.e., helicopter or
truck) only serve one node (for points that their leading road is healthy). Consequently,
constraint (24) identifies that each vehicle (i.e., helicopter) serve only one not healthy node
(the impacted area that its leading road is damaged). Constraints (25) and (26) are the
capacity limitation of trucks and helicopters. The part considered as a sub-tour constraint
is represented in Constraints (27) to (32), in which Constraints (27) and (28) are the sub-tour
elimination constraints for trucks and helicopters. Following that, Constraints (29) and (30)
are the sub-tour elimination constraints for axillary variables Uij and Uvf(v,i) for trucks.
Constraints (31) and (32) are the sub-tour elimination constraints for axillary variables
Uvi and Uvf(v,i) for helicopters. Constraint (33) ensures that all vehicles depart from the
depots. Constraint (34) calculates the reaching time of the vehicle to the demand centre or
impacted areas. Constraint (35) identifies whether the shortage is present under the given
scenarios or not. In other words, whether the shelters delivered to impacted areas under
the different scenarios or not (if the product has been delivered to the impacted area means
that the vehicle has not been failed before serving the impacted area and the shortage has
not incurred). If Tiv − ϕs

v > 0 means that the failure time of vehicle is after the failure time
at scenario s. Consequently, the shortage will occur, and the vehicle is not arrived to the
impacted area. Otherwise, the vehicle has break downed after serving and all the goods are
delivered to the affected areas and are not faced with shortage (to identify the shortage, we
calculate the time of serving each point). Constraints (36) and (37) refer to the sequential
uiv and binary variables xvij , respectively. Constraint (38) implies to the arriving time of
vehicle v to node i, which is a non-negative value. Constraint (39) implies the failure time
of vehicle v under scenario s that is a non-negative. Constraint (40) identifies the vehicle
travel time and transfers from node i to node j, a non-negative value. Constraint (41) is a
binary variable that identifies the presence or absence of shortage.

3.3.2. Converting the Multi-Objective Model to a Single Objective Model by the
Augmented ε-Constraint Method

Among the available techniques in the transformation of the multi-objective problem
to a single objective problem, the augmented ε-constraint method is applied. This method
is one of the efficient methods in looking for Pareto optimised solutions, in which the first
objective function is optimised, and other objectives are being added to the constraints [50].
In the general, the other name of the ε-constraint method is a trade-off or ε-constraint
method [51]. Consider a multi-objective programming, where p is the number objectives,
fi(x) i = 1, 2, . . . ,p and x ∈ S is the decision variable, which S is the feasible space.
Now, we suppose that all objective functions are maximisation without a loss of generality.
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When we apply the ε-constraint method, we must consider one of the objective functions
as the main objective and add others to the constraints. Following is the structure of
Formula (41) [52].

maxf1(x) (42)

s.to. (43)

f2(x) ≤ ε2 (44)

f3(x) ≤ ε3

..

fp(x) ≤ εp (45)

x ∈ S (46)

The other objective functions with permissible values εi, are constrained (so that
i ε 1, 2, . . . ,m \n, n is the index of the main objective function) [51]. The Pareto-optimal
values are obtained by adding the right-hand side of new constraints (ε vector) [53]. When
this method is used, the region of at least p-1 objective function, for the definition of grid
points, must be defined for each εi. An efficient method for identification of this region
is to apply a payoff table for each objective function, which the difference between the
minimum value (fmin

i ) and the maximum value (fmax
i ) constitute the region.

ri = fmax
i − fmin

i (47)

Then, this region for each objective function is divided into equal intervals and accord-
ing to the following formula: the set of qi + 1 grid points is calculated.

εki = fmax
i − ri

qi
∗k,k = 0, 1, . . . ,qi (48)

∏p
i=2(qi + 1) single optimisation sub-problem must be produced from the multi-

objective problem, which any sub-problem has a Pareto-optimal solution. Because of
adding objective functions, the constraints may be infeasible. One drawback of this method
is that it may produce inefficient solutions [52]. Different versions of the ε-constraint
method are developed for producing more efficient solutions. To overcome this drawback,
an augmented ε-constraint method is proposed, in which changing the constraints of the
objective functions, by using of slack or surplus variables, is suggested, and the main
objective function is augmented by the sum of slack or surplus values. We have the
following model [53]:

Max {f1(x) + δ∗(s2 + s3 + . . . + sp)}

S.t. (49)

f2(x) = ε2 − s2 (50)

f3(x) = ε3 − s3 (51)

..

fp(x) = εp − sp (52)

x ∈ X, si ∈ R+ (53)

where the δ value is a small number between 10−6 and 10−3.

3.3.3. Uncertainty and Defuzzification

In the proposed model, due to the uncertainty in an emergency situation and be-
coming closer to reality, the demand of the impacted areas is fuzzy numbers (parameter
Demi is considered a triangle fuzzy number). Because of the applicability and simplicity in
calculations, a symmetrical triangle distribution is considered for specifying of the fuzzy
parameter [54,55]. To transform a linear mathematical model to its corresponding deter-
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ministic model, the Jimenez method is applied because of the high efficiency [56]. The
membership function of the fuzzy parameter is as follows [57]:

µc̃(x) =


fc(x) = x−cp

cm−cp i f cp ≤ x ≤ cm

1 i f x = cm

gc(x) = c0−x
c0−cm i f cm ≤ x ≤ c0

0 i f x ≤ cp or x ≥ c0

(54)

Also, for fuzzy number a and b the degree of being greater is defined by:

µM

(
ã, b̃

)
=


0 i f E0

2 − Eb
1 ≺ 0

Ea
2 −Eb

1
Ea

2 −Eb
1−(Ea

1 −Eb
2 )

i f Ea
1 − Eb

2 ≺ 0 ≺ Ea
2 − Eb

1

1 i f E0
1 − Eb

2 � 0

(55)

µM

(
ã, b̃

)
Identifies the degree that ã is greater than b̃. When µM

(
ã, b̃

)
≥ α, it is

said that ã is greater than b̃ at least by degree α” [56]. Consider the mathematical model
with fuzzy parameters as follows:

MinZ = C̃tx (56)

S.t.

X ∈ Ã =
{

x ∈ Rn
∣∣∣ãix ≥ b̃i, i = 1, . . . , m, x ≥ 0 (57)

where b̃ = (b̃1, b̃2, . . . , b̃n), c̃ = (c̃1, c̃2, . . . , c̃n) and Ã =
[
ãij

]
m × n

are the objective
functions and constraints’ parameters [58]. Applying the Jimenez method, the above model
is transformed to the deterministic parametric linear programming method.

min z = c̃tx
s.t.

ãix ≥ b̃i
ãjx = b̃i

x ≥ 0

Equivalent
crisp-parametric

model α

→

minz = EV(c̃)x
s.t[

(1− α)Eaj

2 + αEai
1

]
x ≥ αEbj

2 + (1− α)Ebj

1[(
1− α

2
)
Eaj

2 + αEaj

1

]
x ≥ α

2 Ebj

2 +
(
1− α

2
)
Ebj

1[(
α
2
)
Eaj

2 +
(
1− α

2
)
Eaj

1

]
x ≥

(
1− α

2
)
Ebj

2 + α
2 Ebj

1
x ≥ 0

(58)

where α is the possibility level of non-deterministic data and expected interval (EI(c̃))
and expected value (EV(c̃)) are defined by [28].

EI(c) =
[

Ec
1.E2

c

]
=

[∫ 1

0
fc
−1(x)dx,

∫ 1

0
gc−1(x)dx

]
=

[
1
2
(cp + cm),

1
2

(
cm + c0

)]
(59)

Ev(c) =
E0

1+E0
2

2
=

cp + 2cm + c0

4
(60)

And, if the fuzzy number c is a triangle fuzzy number, the expected interval can be easily stated
by [56].

E1(c) =
[

E0
1 , E0

2

]
=

[
cp + cm

2
,

cm + c0

2

]
(61)

If the equation has smaller than and equal constraints, its augmented model can be displayed
as follows:

[(1 − a)Ea
1 + aEa

2 ]x ≤ aEb
1 + (1 − a)Eb

2 , i = 1, . . . ,m, x ≥ 0,a ∈ [0, 1] (62)

And, if the relationship has equal constraints, we have:[(
1− a

2

)
Ea

1 +
a

2
Ea

2

]
x ≤ a

2
Eb

1 +
(

1− a

2

)
Eb

2 , i = 1, . . . ,m, x ≥ 0,a ∈ [0, 1] (63)[(
1− a

2

)
Ea

1 +
a

2
Ea

2

]
x ≤ a

2
Eb

1 +
(

1− a

2

)
Eb

2 , i = 1, . . . ,m, x ≥ 0,a ∈ [0, 1] (64)

According to what we have discussed, changes in the objective function and constraints take
place according to the following equations:

Min (Max
(
tijvxvij

)
(65)
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Max

(
∑

i∈I
∑
j∈J

∑
v∈V

rijxvij

)
(66)

Min ∑ ∑ys
i × (

demi
1 + 2demi

2 + demi
3

4
) (67)

s.to.

Constraints (9)–(16) (68)

∑
j∈ne∪f(v,i)

∑
i∈ne

xvij ×
[

α

(
demi

1 + demi
2

2

)
+ (1− α)

(
demi

2 + demi
3

2

)]
≤ χv (69)

∑
j∈ne∪ne′

∑
i∈ne∪ne′

xvij ×
[
α

(
demi

1 + demi
2

2

)
+ (1− α)

(
demi

2 + demi
3

2

)]
≤ χv (70)

Constraints (19)–(23).

The Jimenez method is implemented in three stages described below:
Stage 1: The provided auxiliary deterministic model (Equation (71)) is solved for each αk.

In this way, space O = {x0(αk), λεM} is obtained from the optimal solution with degree αk and
corresponding possibility distribution with objective value Z̃0(αk) = C̃x0(αk), which is shown in
Figure 5.
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For acquiring a decision vector that satisfies the decision maker’s expectation, two factors must
be considered: (1) the degree of feasibility and (2) reaching the acceptable value for the objective

function. After the observation of the obtained information of Z̃
0
(ak), the decision-maker is asked

to select an objective G and tolerance limit G. Accordingly, if Z ≤ G, is totally satisfactory; however,

if Z ≥ G, its satisfaction level is zero. The objective is stated by fuzzy set Z̃
0
(ak), whose membership

function is as follows:

µG(Z) =


0 if Z ≤ G
η ∈ [0, 1] decreasing on G ≤ Z ≤ G

1 if Z ≥ G
(71)

The decision-maker wants to acquire the maximum satisfaction level. However, a lower level
of constraint establishment is obtained for the optimal objective value. With this explanation, the
decision-maker may want a lower level of satisfaction to better establish the constraints. Figure 5

show the different Z̃
0

and objective Z̃
0
(ak). The objective is to find a definitive solution x* so that

the decision maker’ expectation is satisfied.

Stage 2: The satisfaction level of the fuzzy objective Z̃
0
(ak) under each optimal solution with

acceptance degree α, which the membership function of each fuzzy number Z̃
0
(ak) to the fuzzy set

Z̃
0
(ak) that the method was proposed by [59] is applied here.

kG̃(Z
0(α)) =

∫ ∞
∫

−∞ µ
Z̃

0
(α)

(Z)∗µG̃(α)(Z)dz∫ ∞
∫

−∞ µ
Z̃

0
(α)

(Z)dz
(72)
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In this equation, the dominator identifies the area under the µZ0(α)(Z) curve and the numerator
is the possibility of µZ0(α)(Z) for any deterministic value Z weighted by its satisfaction level.

Stage 3: We search for finding a balanced solution between the degree of feasibility and
satisfaction. Hence, the optimal solution space with acceptance degree α and two fuzzy sets F̃ and S̃
is considered, whose membership function is as follows:

µS̃

(
x0(αk

)
) = kG̃

(
z̃0(αk)

)
and µF̃

(
x0(αk)

)
= αk. (73)

Therefore, the fuzzy decision vector D̃ = F̃ ∩ S̃ is defined by [60]:

µ
D̃

(
x0(αk)

)
= αk × kG̃

(
z̃0(αk)

)
(74)

where * is a t− norm that can be minimised. Hence, when we have a deterministic decision vector
and, it will be known as a solution for the main fuzzy linear model in Equation (70) if x∗ ∈ O is the
solution with the most membership degree in the fuzzy decision vectors:

µ
D̃
(x∗) = Max

λk∈M

{
λk × kG̃

(
z̃0(αk)

)}
(75)

4. Multi-Objective Metaheuristics Algorithms
Finding optimum solutions to problems that have more than one objective function is diffi-

cult [61,62]. Many real-world optimisation problems may pursue different goals, which increases
the problem’s complexity [63]. For these challenging problems, metaheuristic algorithms may be
used [64]. There are some benefits to using metaheuristic algorithms [65]. They can be applied
to any problem that can be expressed as a function optimisation problem [66], are typically easier
to understand and implement [67], can solve larger problems faster [68], are simple to design and
implement [69], are very flexible [70], and can be combined with other techniques [71]. To the prob-
lem in this study, two multi-objective metaheuristic algorithms, NSGA-II [72] and Multi-objective
firefly algorithm [73] are employed. The next section delves into the algorithm’s characteristics and
pseudo-code.

4.1. NSGA-II
A Non-Dominated Sorted Genetic Algorithm (NSGA-II) is a common and strong method based on

the genetic algorithm (GA). Deb, Pratap, Agarwal and Meyarivan [72] proposed this multi-objective
algorithm that, instead of a particular solution, identifies a set of solutions as Pareto-front solutions
that no one has absolute domination to others. This algorithm is an expert-based multi-objective
evolutionary algorithm that maintains the dominant solution with a good strategy and assigns
population members by a dominance rank according to non-dominated sorting. Actually, by adding
these two important features to the usual genetic algorithm, a set of solutions (i.e., Pareto front) are
obtained [74]. Three major operators of this algorithm are selection, mutation and crossover. The
selection operator selects the independent parameters among the different parameters to be utilised
in mutation and crossover operators. Therefore, setting an appropriate coding is very important to
minimise these independent parameters, as the correct selection of genetic operators is also vital for
this coding [72] all the duties are done in population generation sections. The crossover and mutation
are integrated, then non-dominated sorting is done according to the rank and crowding distance, and
finally redundant parts are eliminated [74].

First, a random population of is generated, and each function’s value is computed for each
member of the initial population. Following the computation of the objective functions, the non-
dominance sorting is applied to the. In this manner, population members with varying degrees
of non-domination are classified into several fronts. A non-dominated set of solutions is formed
by population members who are not dominated at all (i.e., Pareto front). A secondary measure
(namely crowding distance) is used to sort solutions that have the same rank and are in the same
non-dominance level. This crowding distance for solution I is an estimate of the diameter of a
rectangle, the vertices of which are the closest neighbour solutions to it in its front. The crossover
operator is applied to a subset of the current population at each iteration, and new solutions are
generated. Each member of the new population is given the value of each objective function. To
select parent solutions, a binary tournament selection was used. Algorithm 1 presents the steps of
any iteration of the NSGA-II. When a user-specified number of iterations is reached, the algorithm is
completed.
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Algorithm 1: NSGA-II Algorithm.

Initialization of generation Aξ ;
Initialization of iteration ξ = 1;
while generation ξ ≤ ξmax

Crossover and mutation on Aξ to get new population Bξ ;
Merge Aξ and Bξ as total population Tξ ;
Rank population Tξ in Pareto front;
Select best Np population from Tξ as Aξ+1 with crowding distance function;
Increment generation ξ = ξ + 1

end

4.2. Multi-Objective Firefly Algorithm
Firefly algorithm was proposed by Yang [75]. The fireflies generate short and rhythmic flashes

(with unique pattern) the flashing light is generated by a procedure of bioluminescence [76]. With
chemical changes in them, these insects flash to attract a mating partner or protect themselves. There
are three rules in this algorithm, which are as follows:

1. A firefly can attract another firefly regardless of their gender (all fireflies are unisex).
2. The brighter firefly attracts the other one (the dependence of attraction rate of fireflies to their

brightness). The brightness and attractiveness increase with distance reduction.
3. The more bright the firefly is, the more objective function it has. Thus, the obtained solution will

be better. To find the brightness value of these insects, we can use the objective function [77]. In
other words, the objective function of this algorithm is the same as the fitness function of the
genetic algorithm [78].

To better understand this concept, consider that the butterfly’s attractiveness is defined by its
brightness. For a maximisation problem, the brightness (illumination) of a firefly (I) located at point x
is equivalent to I(x) ∝ f(x) [75]. The attractiveness is relative meaning that other fireflies should
judge it. So, it will differ with the distance of two fireflies i and j (rij). By this explanation, the firefly
attractiveness is obtained from the following equation:

β(r) = β0e − γr
2

(76)

where β0 is the initial attractiveness of firefly at distance r = 0. In more detailed explanation, this
equation identifies that at a given distance

Buildings 2022, 12, x FOR PEER REVIEW 19 of 30 
 

 Merge 𝐴క and 𝐵క as total population 𝑇క ; 
 Rank population 𝑇క  in Pareto front; 
 Select best 𝑁 population from 𝑇క  as 𝐴కାଵ with crowding distance function; 

  Increment generation 𝜉 = 𝜉 + 1 
 end 

4.2. Multi-Objective Firefly Algorithm 
Firefly algorithm was proposed by Yang [75]. The fireflies generate short and rhyth-

mic flashes (with unique pattern) the flashing light is generated by a procedure of biolu-
minescence [76]. With chemical changes in them, these insects flash to attract a mating 
partner or protect themselves. There are three rules in this algorithm, which are as follows: 
1. A firefly can attract another firefly regardless of their gender (all fireflies are unisex). 
2. The brighter firefly attracts the other one (the dependence of attraction rate of fireflies 

to their brightness). The brightness and attractiveness increase with distance reduc-
tion. 

3. The more bright the firefly is, the more objective function it has. Thus, the obtained 
solution will be better. To find the brightness value of these insects, we can use the 
objective function [77]. In other words, the objective function of this algorithm is the 
same as the fitness function of the genetic algorithm [78]. 
To better understand this concept, consider that the butterfly’s attractiveness is de-

fined by its brightness. For a maximisation problem, the brightness (illumination) of a 
firefly (I) located at point x is equivalent to ℐ(𝓍) ∝ 𝒻(𝓍) [75]. The attractiveness is relative 
meaning that other fireflies should judge it. So, it will differ with the distance of two fire-
flies i and j (𝑟). By this explanation, the firefly attractiveness is obtained from the follow-
ing equation: 

β(𝓇) = β0e−γ𝓇2
 (76)

where β is the initial attractiveness of firefly at distance 𝓇 = 0. In more detailed expla-
nation, this equation identifies that at a given distance  ℾ = 1 √γ⁄ , the attractiveness 
changes remarkably from β to βeିଵ.The distance of two fireflies is located at points 𝓍𝒾 
and 𝓍𝒿. 𝓍𝒾,𝓀 is the k-th factor of the spatial coordinates of the i-th firefly. Of course, with 
regard to the research problem’s nature, other metrics (e.g., Manhattan distance or Ma-
halanobis distance) can be considered for identifying the distance [79]. If γ → 0, β = β; 
hence the firefly’s attractiveness value is close to zero (if that is seen by other firefly) if γ → ∞, β = 0. That means any firefly moves in the random route and the other firefly has 
not seen [80]. If the firefly i is attracted to the brighter firefly j, its movement is calculated 
by [73]. 𝓍𝒾𝓉ାଵ = 𝓍𝒾𝓉 + 𝛽 × 𝑒ିఊ𝓇𝒾𝒿మ × ൫𝓍𝒿𝓉 − 𝓍𝒾𝓉൯ + 𝛼𝓉 × 𝜖𝒾𝓉 (77)

The second statement identifies the attractiveness, and the third statement has been 
randomised with random parameter 𝛼𝓉 (randomisation) and 𝜖𝒾𝓉 is the produced vector 
of Gaussian or Uniform distribution function. This statement generates random number 
with control parameter α୲ that the most applicable parameters value is when β = 1 and ∈ [0,1]. By this explanation, the following equation can be written. 𝓍𝒾𝓉ାଵ = 𝓍𝒾𝓉 + 𝛽 × 𝑒ିఊ𝓇𝒾𝒿మ × ൫𝓍𝒿𝓉 − 𝓍𝒾𝓉൯ + α𝓉 × (rand − 12  )   (78)

In conclusion, it can be said that four stages are designed for applying this algorithm. 
In Stage 1, the generation of an initial population of fireflies is taken place. Then, their 
fitness or light intensity is evaluated to the objective function. In Stage 3, this fitness value 
is updated. In the final stage, the fireflies are ranked, and their states are updated. [73] 

= 1/
√
γ, the attractiveness changes remarkably from

β0 to βe−1. The distance of two fireflies is located at points xi and xj . xi,k is the k-th factor of the
spatial coordinates of the i-th firefly. Of course, with regard to the research problem’s nature, other
metrics (e.g., Manhattan distance or Mahalanobis distance) can be considered for identifying the
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xt+1
i = xti + β0 × e−γr2

ij ×
(

xtj − xti
)
+ αt × εti (77)

The second statement identifies the attractiveness, and the third statement has been randomised
with random parameter αt (randomisation) and εti is the produced vector of Gaussian or Uniform
distribution function. This statement generates random number with control parameter αt that the
most applicable parameters value is when β0 = 1 and ∈ [0, 1]. By this explanation, the following
equation can be written.

xt+1
i = xti + β0 × e−γr2

ij ×
(

xtj − xti
)
+ αt ×

(
rand− 1

2

)
(78)

In conclusion, it can be said that four stages are designed for applying this algorithm. In
Stage 1, the generation of an initial population of fireflies is taken place. Then, their fitness or light
intensity is evaluated to the objective function. In Stage 3, this fitness value is updated. In the
final stage, the fireflies are ranked, and their states are updated. [73] developed the original FA for
multi-objective problems by applying three rules and characteristics. Actually, this algorithm is the
adjusted firefly algorithm [81]. According to the emitted light from firefly, this algorithm reproduces
the attractiveness rate between them. Therefore, the brightest firefly attracts at least one firefly. In the
optimisation problem, each firefly represents a solution to the problem, and the lighter firefly has
better quality [82]. The pseudo-code of the multi-objective firefly algorithm (MOFA) can be explained
in two stages. As shown in Algorithm 2, in the first stage, after the completion of initialisation, the
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first firefly that is less bright moves to the brighter one. In other words, all fireflies are compared to
fireflies that are smaller than or equal to them by ε, and if one of them dominate others by ε, the firefly
with the least brightness approaches the brightest one. if the obtained firefly is better than the original
firefly with respect to dominance, it is replaced with it. In fact, in this stage, the moved fireflies to
the better ones are counted to identify whether the population has encountered with stagnant or not.
The times in which fireflies have encountered stagnant have unsuccessful attempts for evolution. In
the second stage, it is identified whether the population is being encountered with stagnant or not.
According to the moved fireflies and their limit values, when the number of fireflies approached to
the brighter one is less than StageCont, the population is deemed to be stagnated and if their limit
values are greater than LimitF, replaced with new random fireflies. At the end of each generation,
the validated members of the population are stored in DS Archive to new appropriate solutions [82].

Algorithm 2: MOFA.

NF ← Number of fireflies.
NDS Archive ← ∅
# Initialization.
Fireflies ← Generate NF random fireflies.
Generations ← Number of iterations of the algorithm.
Fmoved ← Number of fireflies moved in each generation.
StagCont ← Percentage of fireflies for stagnation control.
LimitF ← Maximum number of times that a firefly tries unsuccessfully to evolve.
for i = 1 to generations

# Evolution of the swarm
Fmoved ← 0
for j = 1 to NF

FireflyA ← Fireflies[j]
for k = 1 to NF

fireflyB ← fireflies[k] #fireflyB 6=fireflyA
if fireflyA 4ε fireflyB

fireflyR ← bringcloser(fireflyB,firefly)
if fireflyR ≺ fireflyB

Fireflies[k] ← fireflyR
Fmoved ← Fmoved +1

else
incrementLimit(Fireflies[k],1)

end
end

end
end
# Stagnation Control
if Fmoved < (NF× StagCont)/100

for m = 1 to NF
if limit (fireflies[m]) > LimitF

Fireflies[m] ← newrandom firefly.
end

end
end
# Save population to the NDSArchive.
export fireflies (fireflies,NF,NDSArchive)

end

5. Computational Results
The results are shown in the following four sub-sections.

5.1. Evaluating the Performance of the Algorithms
Ten problems in different dimensions are designed to compare the proposed meta-heuristic

algorithms (i.e., NSGA-II and MOFA). We compare the obtained results of these meta-heuristics with
the GAMS’s results obtained by the augmented ε-constraint method. As shown in Table 4, for each



Buildings 2022, 12, 414 20 of 28

produced problem, the values of Objective Function (OF) and errors of the proposed meta-heuristics
are reported in comparison to the augmented ε-constraint method, in which the solution time of this
method is at most 3600 s. In this paper, for each of the three objective functions of the mathematical
model, the error rate of each algorithm in comparison to the Augmented ε-constraint method can be
calculated from the following equations (for the calculation of the MO-firefly algorithm’s error, we
do similarly).

GapOFi
=

OFiNSGA-II −OFiAugmented ε-Constaint

OFiAugmented ε-Constaint
× 100, i = 1, 2, 3 (79)

Table 4. The best values of the augmented ε-constraint method, NSGA-II and MOFA.

(Problem No.,
Depots,

Affected
Areas)

Augmented
ε-Constraint NSGA-II Gap (%) MOFA Gap (%)

(OF1,OF2, OF3) Time (OF1,OF2, OF3) Time (OF1,OF2, OF3) (OF1,OF2, OF3) Time (OF1,OF2, OF3)

(1, 2, 5) (24.7, 3.4, 13.1) 147 (24.8, 3.4, 13.2) 249 (0.004, 0.000, 0.008) (24.7, 3.4, 13.1) 387 (0.00, 0.00, 0.00)
(2, 3, 10) (27.4, 4.7, 14.2) 261 (27.9, 4.4, 14.4) 327 (0.018, 0.064, 0.014) (27.4, 4.7, 14.2) 492 (0.00, 0.00, 0.00)
(3, 4, 9) (28.9, 3.8, 14.9) 392 (30.1, 3.7, 15.6) 586 (0.042, 0.026, 0.047) (29.3, 3.7, 15.4) 719 (0.014, 0.026, 0.034)

(4, 3, 12) (30.7, 6.1, 16.8) 504 (31.2, 5.5, 17.5) 765 (0.016, 0.098, 0.042) (30.9, 5.8, 17.1) 963 (0.007, 0.049, 0.018)
(5, 5, 14) (34.1, 6.4, 15.3) 793 (35.9, 6.1, 16) 980 (0.053, 0.047, 0.046) (35, 6, 15.9) 1104 (0.026, 0.063, 0.039)
(6, 6, 15) (43.6, 5.7, 16.1) 947 (56.2, 5.3, 16.6) 1297 (0.060, 0.070, 0.031) (45.9, 5.4, 16.7) 1284 (0.053, 0.053, 0.037)
(7, 7, 17) (48.2, 6.2, 15.8) 1297 (51, 5.9, 16.4) 1753 (0.058, 0.048, 0.038) (49.3, 5.8, 16.2) 1403 (0.023, 0.065, 0.025)
(8, 8, 18) (56, 8.1, 14.2) 1696 (58.2, 7.7, 14.9) 2102 (0.039, 0.049, 0.049) (58.4, 7.7, 14.5) 1883 (0.043, 0.049, 0.021)
(9, 9, 19) (-, -, -) - (69.8, 8.4, 17.3) 2683 (-, -, -) (70.1, 8.3, 17) 2292 (-, -, -)

(10, 10, 21) (-, -, -) - (81, 9.6, 16.8) 3103 (-, -, -) (80.8, 9.8, 17.1) 2841 (-, -, -)
Average (36.7, 5.55, 15.05) 754.625 (45.61, 6, 15.87) 1093.8 (3.58, 5.06, 3.22) (45.18, 6.06, 15.72) 1336.8 (1.75, 3.64, 2.19)

The mean differences between the NSGAII and augmented ε-constraint method values are 3.58,
5.06 and 3.22% for the first, second and third objective functions (i.e., transportation time, reliability
and unmet demand or shortage), respectively. Furthermore, the mean differences between the best
values of the MOFA and ε-constraint method are 1.75, 3.64 and 2.19% for the first, second and third
objective functions, respectively. As a result, we infer that the suggested metaheuristic approaches
are efficient since the mean gaps of three objective functions are quite small (see Figure 6).
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Furthermore, Figure 7 compares the CPU time of the augmented ε-constraint method to the time
required to solve each of the meta-heuristic algorithms. As the dimensions of the problem increase,
the solving time of the augmented ε-constraint method increases exponentially, to the point where it
cannot solve problems 9 and 10. In contrast, the proposed metaheuristic algorithms can find good
solutions in a reasonable amount of time and with a reasonable slope.
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5.2. Evaluating Metrics and Comparing Three Objectives Meta-Heuristics
To compare the performance of different algorithms in multi-objective optimisation problems,

in which problem solutions constitute the optimal Pareto front, there are different criteria used in this
research. One quantitative criterion of algorithms’ performance is the number of Pareto solutions,
in which higher values of this number indicate that it is more appropriate. On the other hand, the
distance index can be used to calculate the relative distance of consecutive solutions. The lower
values of this index are more desirable. This distance index is calculated by [83].

SM =
∑N − 1

i = 1

∣∣d − di
∣∣

(N − 1)d
(80)

where N is the number of Pareto solutions, di is the spacing between two sequential solutions in
optimal front obtained by each algorithm, and d is the average of dis. Another index that identifies
the diversity of solutions is the diversity index, in which its higher values are more appropriate. This
index can be computed by [84]:

DM =

√√√√(maxf1i − minf1i

fmax
1,total − fmin

1,total

)2

+

(
maxf2i − minf2i

fmax
2,total − fmin

2,total

)2

(81)

To compare the performance of the proposed algorithms and generate Pareto-optimal solutions,
12 problems with different sizes are produced and the evaluation metrics of two meta-heuristic
algorithms are presented for each problem. The attributes of the generated sample problems, the
failure times, the fuzzy demands for vehicles under different scenarios and values of evaluations
metrics for algorithms are given in Tables 5–7.

It’s important to note that the number of ground vehicles is between 3 and 10, and the number
of air vehicles is between 2 and 5. In all problems, there is one warehouse for air vehicles. Also, the
capacity and transportation time parameter values are generated according to a uniform distribution
U (50, 60) and U (8, 20), respectively. The demand of affected people is considered a triangle fuzzy
number with the dem = (dem1, dem2, dem3) structure, which generate randomly as follows (from
Uniform distribution): dem1 from [20,45], dem2 from [46,70], and dem3 from [71,140]. The travel time
of vehicles for distributing goods is also considered a uniform distribution, which a part of this
generated random numbers can be seen in Table 6. For each problem, we have a scenario matrix,
in which the rows identify scenarios, the columns identify vehicles, and the numbers in the table
identify the failure time of vehicles. That is scenario3

2 = 16 highlighted in the table meaning that
vehicle 2 in scenario five is broken down after 16 h and causes the unmet demand. Finally, Table 7
shows the comparison of the two proposed meta-heuristic algorithms.
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Table 5. Characteristics of generated sample problems.

Problem No. Helicopter Truck Vehicle Depot Impacted Area
in Cluster 2

Impacted Area
in Cluster 1

1 2 3 6 5 7
2 2 3 6 7 10
3 2 4 8 9 15
4 2 4 7 7 16
5 3 5 7 8 18
6 3 6 8 8 20
7 3 6 8 10 24
8 4 5 9 11 25
9 4 7 9 15 30
10 5 7 9 16 33
11 5 9 9 20 35
12 5 9 10 30 40
13 5 10 12 30 45
14 5 10 15 35 50

Table 6. The failure times and fuzzy demand for vehicles under different scenarios.

d̃emi Vehicle

d̃em = (dem1, dem2, dem3) 5 4 3 2 1 scenario
(20, 46, 75) 10 16 13 7 10 1
(25, 50, 80) 10 9 14 4 20 2
(30, 53, 95) 16 8 11 16 10 3
(35, 60, 100) 10 20 7 10 10 4
(45, 70, 120) 8 10 9 10 15 5

Table 7. Values of evaluations metrics for NSGAII and MOFA.

Problem
No.

NSGA-II Firefly

SM DM NOPS Run Time SM DM NOPS Run Time

1 0.914 7.2881 7 612 0.5922 7.6371 14 645
2 0.7145 5.6559 6 754 0.8038 5.1245 9 763
3 1.0176 6.9782 6 1021 0.9946 5.5324 10 998
4 0.3557 7.5087 8 1213 0.465 7.1512 8 1168
5 0.9968 3.8052 6 1627 0.499 6.9166 7 1455
6 0.5547 4.8781 12 1871 0.6264 3.4117 9 1666
7 1.085 3.1801 5 2580 0.4833 3.0387 9 2224
8 0.5612 4.9553 6 2915 1.0506 4.1797 8 2443
9 0.9063 5.6559 8 3987 0.4396 8.4969 14 3496

10 0.726 7.9399 7 5758 0.7331 6.4724 11 5404
11 0.8614 6.7129 7 7108 0.8054 7.9225 14 6337
12 0.5916 7.8599 6 10,049 0.4164 7.4799 11 8223

Average 0.7737 6.0349 7 3291.8333 0.6591 6.1136 10.3333 391.0351

The computational results of comparison metrics are shown below for a better understanding
of the performance of the meta-heuristic algorithms. We compare the meta-heuristic algorithms in
Figure 8 using the distance metric and find that the MOFA outperforms the NSGA-II. The density
metric results in Figure 9 show that there is no special trend for the algorithms. Figure 10 depicts
the number of Pareto solutions demonstrating the MOFA’s superior performance. Figure 11 depicts
a comparison of solution times, demonstrating that the MOFA is faster in finding good solutions,
resulting in better performance.
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5.3. Sensitivity Analysis
The sensitivity analysis is considered for problem 6 (i.e., 28 impacted areas, eight warehouses,

nine vehicles and five scenarios). The results of the objective functions are changed in demand and
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vehicle capacity simultaneously, and the mean of the vehicle damage time (parameter of exponential
distribution in scenarios generation) is shown in Tables 8 and 9.

Table 8. Sensitivity analysis of the changes in vehicle capacity and demand functions simultaneously.

Capacity

Demand

0.7 0.8 0.9 1 1.1 1.2 1.3

OF1 OF2 OF3 OF1 OF2 OF3 OF1 OF2 OF3 OF1 OF2 OF3 OF1 OF2 OF3 OF1 OF2 OF3 OF1 OF2 OF3

0.7 43.6 5.7 12.9 43.6 5.7 14.2 45.2 5.6 16.7 48.2 5.6 17.7 50.1 5.4 18.4 54.3 5.3 19.2 59.4 5.2 20.2
0.8 43.6 5.7 12.9 43.6 5.7 14.2 43.6 5.7 15.4 44.9 5.6 16.9 46.3 5.5 17.8 48.7 5.3 18.2 55.1 5.2 19.5
0.9 43.6 5.7 12.9 43.6 5.7 14.2 43.6 5.7 15.4 43.6 5.7 16.1 46.5 5.7 17.1 47 5.6 17.8 51.3 5.4 18.8
1 43.6 5.7 12.9 43.6 5.7 14.2 43.6 5.7 15.4 43.6 5.7 16.1 43.6 5.7 16.4 47.1 5.7 17.3 49.7 5.6 18.3

1.1 43.6 5.7 12.9 43.6 5.7 14.2 43.6 5.7 15.4 43.6 5.7 16.1 43.6 5.7 16.4 43.6 5.7 17.3 46.5 5.6 18
1.2 43.6 5.7 12.9 43.6 5.7 14.2 43.6 5.7 15.4 43.6 5.7 16.1 43.6 5.7 16.4 43.6 5.7 17.3 43.6 5.7 17.7
1.3 43.6 5.7 12.9 43.6 5.7 14.2 43.6 5.7 15.4 43.6 5.7 16.1 43.6 5.7 16.4 43.6 5.7 17.3 43.6 5.7 17.7

Table 9. Sensitivity analysis of the changes mean of vehicle damage time.

Mean of Vehicle’s
Damage Time 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

OF1 51.8 51.6 50.9 49.3 49 44.6 43.8 43.6 43.4 40.2 39.5 39.3 37.2
OF2 5.2 5.2 5.3 5.4 5.4 5.6 5.7 5.7 5.7 5.8 5.8 5.8 5.9
OF3 19.3 19.3 19.4 19.1 18.5 17.8 17 16.1 15.3 14.7 14.1 13.9 13.9

If the demand reducing and vehicle capacity increasing simultaneous then will be no change
in the route selection and objective functions. Vice versa, when demand increases and a capacity
decrease, then the transportation times (OF1) and unmet demand (OF3) will be increased, and the
reliability (OF3) will be decreased. Because of rising demand and low capacity to serve more vehicles
need (OF1). Therefore, the increased transportation time and vehicle failure probability will be
increased. As a result, the unmet demand (OF3) increases, on the other hands; the route selection
with lower reliability will be increased. If demand is fixed and the vehicle capacity is decreased,
it sounds like, we reduce surplus capacity. Thus, route selection does not change. But when the
demand constant and the vehicle capacity decrease from 0.9 to 0.8, the three objective functions will
be changed. Thus, the routes change. For example, if vehicle 1 should serve three impacted areas,
now because of decrease its capacity will not be able to serve, therefore this task will be devolved
to vehicle 2. When vehicle 2 transports the arc, firstly, transportation time (OF1) increases, and it
is not optimal. Secondly, the unmet demand value (OF3) in different scenarios increases. Thirdly,
the arc with the most reliability is selected before, but now, the reliability decreases from 5.7 to 5.6.
Similarly, if the vehicle capacity decreases up to 0.7, this change will be had again. Now, if the vehicle
capacity is considered constant (value = 1) and demand decreases, the route and objective functions
will not change. However, if demand increases then because of constant capacity and increased
demand, the vehicle cannot response this demand volume. As a result, the transportation time will be
increased and reliability will be decreased on the other hands, the vehicle damaged under different
scenarios, therefore the unmet demand value will be increased. The results of vehicle downtime and
its impact on the optimal solution is shown in Table 9. According to what is shown in Table 7, we find
if the mean of the damage time increases, the characteristic related to vehicle damage times will be
decreased. When damage time is increased (from 1 to 1.1), the vehicle performs better, transportation
time increases, reliability increases, and unmet demand decrease. The model or algorithm tries to do,
not selected routes where the vehicle broken-down earlier and there has the unmet demand value.
Vice versa, if the mean of the damage time is decreased until the vehicle breaks down sooner, the
model tries to increase the mean of the damage time. In fact, the model is increased both of the unmet
demand value and transportation time.

5.4. Practical Implication
There are many cities in the world that are in high-risk areas, and the original designs of many

hospitals failed to account for the potential effects of natural disasters on the built environment.
Despite the fact that natural disasters are extremely rare, it is imperative to have a plan in place for
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dealing with them. As a result of this research, some government organisations and decision-makers
may be able to develop a central platform for distributing temporary shelters to impacted areas.
There are also a number of international organisations that are working on solutions for displaced
people. Global campaigns have been launched by organisations like the WHO and the United
Nations International Strategy for Disaster Reduction. As a result of this study, a Graphical User
Interface (GUI) for emergency planning organisations can be developed using the model proposed.
An online visualisation prototype that generates reliable and dynamic response plans quickly would
be extremely helpful to strategic and operational planners. Decision-makers may benefit from
the prototype’s ability to speed up the evacuation planning process. It will have an easy-to-use
data input system that can generate a lot of data for this decision-making tool. Effective disaster
response plans that can be modified quickly and easily in the event of a disaster may be possible with
this information.

6. Conclusions and Future Research
As the destructive impacts of disasters on societies and built environments are predicted to

increase in the future, innovative disaster response strategies to cope with emergency conditions are
be-coming more crucial. Due to time and resource constraints after a distractive large-scale disaster,
the distribution of post-disaster temporary shelters is challenging. There is strong evidence that the
success of many post-disaster response strategies in providing temporary shelters for impacted areas
is compromised by inappropriate planning. In this research, by proposing a clustered and disrupted
vehicle routing model, we tried to minimise the total travel time of operations and the unmet demand
(shortage) and maximise the reliability of the route simultaneously. A system was designed in which
heterogeneous vehicles from multiple depots initiated the relief operations in the ground and air
mode and delivered temporary shelters to the impacted areas. The augmented ε-constraint method
in small size was used to find the optimal solution. To compare the performance of the proposed
algorithms and generate the optimal solution, 12 problems with different sizes were produced, and
the evaluation metrics of two meta-heuristic algorithms were presented for each problem. The results
identified higher accuracy and lowered computational time of the multi-objective firefly algorithm.

This research has implications for key stakeholders involved in disaster management strategies
and plans in disaster-prone areas, according to the empirical findings. Furthermore, policymakers in
disaster-stricken countries can use the proposed model to manage emergency situations. In addition,
the proposed model can be easily adapted to other disasters, such as bushfires, which are common
in many countries, particularly Australia. Using a bushfire simulation framework like “Spark”
developed by CSIRO-Data61, bushfire spread across the landscape can be predicted, allowing the
availability of different network links to be estimated.

It is possible to extend this study in many ways. As an example, incorporating staff scheduling
and management into the distribution process could be an interesting research area. In the future,
researchers should look into how well the road network performs when distributing shelters. In
addition, disaster response can be more efficient and time-saving if interrelated operations are
coordinated. As a result, developing multi-category integrated models could be an exciting new area
of study in the future.
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