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Abstract: Numerous existing formulas predicted the ultimate interfacial bond strength in concrete-
filled steel tubes (CFST) between steel tubes and concrete core without investigating the whole
response under push-out load. In this research, four models are proposed to predict the interfacial
behavior in CFST including the post-peak branch under the push-out loading test based on 157 circular
specimens and 105 squared specimens from the literature. Two models (one for circular and one for
squared CFST) are developed and calibrated using artificial neural network (ANN) and two models
(one for circular and one for squared CFST) are developed based on multivariable regression analysis,
analysis of variance (ANOVA). The shape of the specimen (circular or squared), diameter of the
tube, thickness of the tube, concrete compressive strength, age at the time of testing, and length of
the specimen are the main factors considered. These models are then compared to other existing
formulas to verify their capability to better predict the ultimate interfacial bond strength. It is found
that the ANN model gives better results for most of the considered data. It is also found that ANN
models can predict the overall bond-slip response for the considered dataset. In order to simulate the
response of any CFST column using finite element (FE) method, it is vital to have sufficient input
data on the overall bond-slip behavior between the interior face of the steel tube and the exterior
surface of the concrete core including the post-peak branch. Accordingly, the suggested ANN model
is used to generate the required input data related to the cohesive behavior and damage along the
interface in ABAQUS model to simulate the response of two circular and two squared CFST columns
under concentric compressive load. The results are in good agreement with experimental outcomes.
The cohesive criterion and damage interface that are used based on ANN models in FE are found to
be sufficient and can be adopted to model CFST columns.

Keywords: concrete-filled steel tubes; artificial neural networks; analysis of variance; bond-slip
behavior; finite element method

1. Introduction

Concrete-filled steel tube (CFST) columns are widely used in high-rise buildings,
underground infrastructures, and bridges due to their ductility and lower weight compared
to reinforced concrete. Their implementation in engineering structures dates back to the
1950s [1]. The use of this composite action of steel and concrete in CFSTs has several
advantages over using pure steel or reinforced concrete members. The steel tube acts as
formwork for the concrete and provides confinement to the core concrete which enhances
the strength and ductility of concrete. On the other hand, the concrete core provides
stiffness and compressive strength to the steel tube which reduces the chances of local
buckling taking place in steel tubes.

The behavior of the concrete-steel bond in CFSTs has been extensively investigated
and tested by many researchers. It has been found that the bond strength is affected by the
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cross-section geometry, shrinkage, age of concrete, interface roughness, compaction, and
the use of lubrication [2–13].

The interfacial bond strength in CFSTs is obtained by using two methods: the push-off
test and the push-out test. The loading is applied to the entire section in the push-off test,
and this method can only test the ultimate bond strength [14]. On the other hand, many
researchers used the push-out test because it assesses the bond strength between steel
and concrete throughout the whole loading process [15,16]. The interfacial ultimate bond
strength value is the main focus of these test methods.

Different equations have been proposed by researchers to predict this ultimate bond
strength of CFSTs under push-out tests. Roeder et al. [7] conducted an experimental
investigation on twenty circular CFSTs. The experimental program studied the bond
behavior of CFST with a large diameter to thickness ratio (D/t) compared to other previous
studies [4,5,17]. Parsely et al. [18] also proposed an equation to obtain the bond strength
of square CFST based on eight squared specimens under push-out tests. The effects of
the replacement level of recycled aggregate (δ), concrete compressive strength ( fcu), and
length/diameter ratio (Le/d) on the bond strength of circular recycled aggregate CFST
were considered by Chen et al. [19].

Xue and Cai [20] investigated the bond strength based on thirty-two CFST specimens.
It was concluded that interfacial bond strength is mainly attributed to the concrete strength,
applied interfacial treatment, and the curing conditions of concrete. However, the interfacial
length was found to be irrelevant to the bond strength.

Lyu and Han [21] proposed two empirical formulas to predict the ultimate bond
strength for circular and square CFSTs. The proposed equations were based on a series of
push-out tests on fifty-six CFST specimens with different cross-sectional types (circular and
squared) and dimensions, interfacial treatment processes, and different replacement ratios
of recycled coarse aggregate. It was recommended that to obtain the best predictions, the
compressive strength value of concrete ( f ′c) should be within 20–60 MPa. Additionally, the
diameter or width be within 120–600 mm with the (D/t) ratio not to be more than 60.

The effect of shrinkage and creep that can develop in composite structures was studied
by Martinelli [22]. The finite element solution was employed along the interfacial surface
within a time integration procedure in order to account for the accumulation of strains due
to these long-term effects. The models were validated based on experimental data.

It can be noticed through the literature, that there are many existing formulas to
predict the ultimate bond strength. However, there is no available equation that can predict
the post-peak behavior which is significant to investigate CFST columns under different
loadings and can be used to provide input data for the concrete-steel interface in the finite
element (FE) models.

In this study, interfacial bond-slip models are proposed for CFSTs including the initial
branch till ultimate bond strength and the corresponding ultimate slip, in addition to
the post-peak branch. The ultimate bond strength, its corresponding slip value, and the
parameters required to define the post-peak exponent function are predicted using artificial
neural network (ANN) and multivariable regression, the analysis of variance (ANOVA).
The predictions are based on specimens previously tested under different parameters, such
as concrete properties and CFST dimensions.

Calibrated finite element models of structural members can be used to estimate the
behavior of these members under various conditions that they are not tested for. CFST
is a structural member that needs to be calibrated so it can be further used to investigate
its response under various conditions. In this paper, ABAQUS [23] is used to model
previously tested CFST columns under axial loads. In order to simulate the performance
of such columns, input data of the overall bond-slip behavior between the interior face of
the steel tube and the exterior surface of the concrete core including the post-peak branch
is essential. Accordingly, the bond-slip behavior based on the proposed ANN models are
further used herein to generate the required input data related to the cohesive behavior
and damage along the interface in ABAQUS models.
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The behavior of CFSTs under push-out loading is mainly characterized by two stages;
ascending branch and post-peak branch as shown in Figure 1a. The ascending branch is
considered linear up to the average or ultimate bond strength (τu) and its corresponding
slip value (Su).
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The average bond stress was commonly used by most of the researchers to indicate
the bond strength in the push-out test regardless of the non-uniform interfacial bond stress
distribution [4] and was defined as

τu =
p f

Ai
(1)

where p f is the maximum load which results in breaking the bond, and Ai is the interfacial
area between the internal inner surface of the steel tube and the outer surface of the concrete
core.

However, different definitions of bond strength were used in the literature, such as
the peak bond stress or the post-peak residual bond stress. While the slip value (Su) which
corresponds to the ultimate bond strength represents the relative slip between the concrete
core and the steel tube. Nevertheless, the slip results include both the relative slip between
the infill concrete and the steel tube as well as the compressive deformations of the concrete
and steel tube. However, because these compressive deformations have a small effect on
the bond mechanism and strength, and because it is difficult to distinguish them from
interfacial slip results due to the experimental conditions, only relative slip between infill
concrete and steel tube was considered.

After reaching the peak bond strength (τu), the push-out curves through the literature
were noticed to have three different trends for the post-peak behavior depending on
the macro-dimensional deviations [24]. This trend can represent hardening, softening,
or constant plasticity as indicated in Figure 1a by trends a, c, and b, respectively. No
predictions were found in the literature to capture both the ascending and post-peak
branches which form the whole behavior of the push-out test.

In this research, the softening trend is adopted to represent the post-peak behavior
of CFSTs, and, as a result, only specimens that followed this trend are chosen for analysis.
This post-peak branch is expressed as an exponential function using β and α parameters as
presented by Equation (2).

y = βeαx (2)
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This branch is normalized against the ultimate bond strength and shifted to the origin
point as shown in Figure 1b, so the equation becomes

y = βeαx (3)

2. Experimental Database

The circular and squared specimens considered in this study were chosen from twelve
previous studies [5,6,11,18,21,24–31]. No treatment along the interfacial length between
the concrete core and steel tube was provided such that the interaction between the two
surfaces relied on the natural bond. Additionally, no shear connectors or studs were used
in the considered specimens. Besides, the additives that replaced aggregates in the concrete
mixture for some specimens were considered through the cubic compressive strength
parameter, fcu.

The considered variables of specimens were; diameter (D) or width (B) of the circular
or squared specimen, respectively, the thickness of the steel tube (t), the interfacial length
between the concrete and steel tube (Li), the cubic strength of the concrete mixture ( fcu),
and finally the age of the concrete mixture.

Tables S1 and S2 are included as supplementary documents that summarize the details
of circular and squared specimens from literature and used in this study.

3. Analysis of Variance (ANOVA)

A multivariate linear analysis of variance (ANOVA) was carried out to calculate
the parameters that represent the interfacial behavior, namely; τu, su, β and α for both
circular and square CFSTs based on the aforementioned test results. To achieve the best
predictions by applying these equations, it is recommended to use specimens with (Li) less
than 1200 mm and the concrete age (T) of not more than one year. The equations proposed
for circular specimens are

τu = 1.53623 + 0.00047D + 0.10393t− 0.00071Li − 0.00585 fcu − 0.00173T (4)

Su = 1.00209− 0.01305D + 0.26067t + 0.00033Li + 0.01941 fcu + 0.00070T (5)

β = 0.79605 + 0.00028D− 0.00223t + 0.00008Li + 0.00153 fcu + 0.00026T (6)

α = −0.04938 + 0.00017D + 0.00006t + 0.00002Li + 0.00009 fcu − 0.00018T (7)

and for squared specimens are

τu = 1.66240− 0.00556B + 0.05539t− 0.00014Li − 0.00792 fcu − 0.00123T (8)

Su = −1.95025− 0.00033B + 0.30021t− 0.00327Li + 0.11636 fcu − 0.00045T (9)

β = 0.79707 + 0.00100B− 0.01877t− 0.00014Li + 0.00248 fcu + 0.00028T (10)

α = −0.26698− 0.00108B + 0.01067t + 0.00012Li + 0.00568 fcu + 0.00028T (11)

The τu, Su, β and α results of ANOVA equations of circular and square CFSTs are
listed in Tables S1 and S2 respectively. These results are also presented in Figure 2 for
circular specimens and Figure 3 for squared specimens. By applying ANOVA analysis, the
mean value (µ), standard deviation (σ), and R2 of (τu Exp./τu Pred.) are presented in Table 1.
It is found that the ANOVA results compare well with the experimental results and the
mechanical-based discussion is presented in Section 4. ANOVA is an efficient parametric
method for analyzing experiment data since it is practical and adaptable [32]. However,
it is a considerably complex and subtle method to use as there are numerous ANOVA
variations, each of which corresponds to a specific experimental situation. As such, it is
possible to use the wrong type of ANOVA for a given experimental situation and draw
incorrect conclusions from the data [33].
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Table 1. Comparison between mean value, standard deviation, and R2 of the ratio of experimental
values to estimated values using the proposed ANOVA and ANN.

Shape Output
ANN Results ANOVA Results

Mean
Value, µ

Standard
Deviation, σ

R2 Mean
Value, µ

Standard
Deviation, σ

R2

C
ir

cu
la

r τu (MPa) 0.999 0.166 0.876 1.001 0.277 0.328
Su (mm) 1.023 0.462 0.674 1.006 0.611 0.140
β 1.000 0.052 0.742 1.000 0.062 0.394
α 1.090 0.713 0.695 0.935 0.945 0.409

Sq
ua

re

τu (MPa) 1.004 0.188 0.837 1.067 0.596 0.623
Su (mm) 1.160 0.658 0.809 0.338 2.932 0.442
β 1.000 0.096 0.570 1.000 0.117 0.231
α 1.175 0.985 0.548 0.907 1.922 0.358

The predictions of this current study were based on specimens of various parameters
that had been collected from various literature works then modeled using multivariate
regression methods. Therefore, using ANOVA in this present study can be complicated
because these parameters are correlated and affected by various factors. Accordingly, it is
suggested to present another method of analysis for comparison. Machine Learning (ML)
methods study links between inputs and outputs using statistical methods that enable
computer systems to learn from a dataset without being explicitly programmed, which
can be a good solution to this problem [34]. Several unique ML prediction methods have
been used in recent decades. Artificial neural networks (ANNs) are one of them and are
discussed further in the next section.

4. Artificial Neural Network (ANN)

It is vital to mention that several novel machine learning (ML) methods, i.e., artifi-
cial neural network (ANN), multi expression programming (MEP), and gene expression
programming (GEP), have become very important forecasting and optimizing tools in
many civil engineering fields. ML methods were introduced and utilized in predicting
and modeling the non-linear behavior of different types of geoengineering materials like
soil, concrete, asphalt, and clay which opened the door for revolutionary applications
in the field of material science and optimization [35,36]. Additionally, ML methods can
describe and recognize unnoticeable non-linear patterns among a high number of vari-
ables in extremely complex datasets due to the use of a non-linear activation function [37].
Moreover, ML has the advantage over regression in that the form of the model need not
be pre-determined. ML was extensively utilized for predicting the mechanical behavior
of concrete and concrete structural elements [38]. ML methods such as GEP were used to
predict the ultimate load capacity of CFSTs [39]. On the other hand, ANN proved its ability
to predict the mechanical properties of CFSTs such as the ultimate pure bending, the axial
compression capacity, and fire performance [40–42].

In this study, the Feed-forward error Back-propagation (FB) method is utilized for
calibrating the ANN models in this study. To model the behavior of CFST columns, two
models are developed: ANN1 and ANN2 for circular and square columns, respectively.
To develop the ANN models, 262 testing results datasets are utilized from the literature.
These models are trained by utilizing the TRSEQ1 program, which was built on the FB
algorithm [43]. The models are structured to have one hidden layer with a sigmoidal
activation function.

ANN training can reflect efficient results if both inputs and outputs are normalized
and scaled so the whole data vary from 0.1 to 0.9 before modeling. Once ANN models’
inputs are scaled, the outputs are also be scaled, so the outputs are denormalized to give
the results. Table 2 lists the parameters, maximum and minimum parameters values, and
the ANN chosen maximum and minimum values for each parameter.
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Table 2. Utilized datasets’ maximum, minimum, ANNmax, and ANNmin values.

Limit fcu
(MPa)

Age
(days)

Li
(mm) T (mm) B (mm) D (mm) τu (MPa) Su (mm) β α

A
N

N
1

Max 96.43 365 1095 6 - 219 2.55 6.83 1.04 −1 × 10−3

Min 9.11 28 190 2.5 - 107.7 0.61 0.23 0.69 −0.31
ANNmax 120 450 1300 7 - 250 3 8 1.1 0
ANNmin 0 0 0 1.5 - 75 0 0 0.6 −0.35

A
N

N
2

Max 58.31 365 1498.6 6.6 254 - 1.74 10.42 1.06 −4 × 10−4

Min 9.11 28 190 3 90.85 - 0.17 0.13 0.5 −0.62
ANNmax 70 450 1750 7.5 310 - 2 12.5 1.25 0
ANNmin 0 0 0 1.75 30 - 0 0 0.3 −0.75

ANNmax and ANNmin values are chosen to be used in scaling the inputs and outputs
so the scaled values are between 0.1 and 0.9 as shown in Equations (12) and (13). However,
ANN models’ prediction is restricted to be within the actual maximum and minimum
values. Equations (12) and (13) are utilized in normalizing and denormalizing the data
respectively.

Normalized Parametern =
Parametern −ANNnmin

ANNnmax −ANNnmin

(12)

Parametern = (Normalized Value× (ANNnmax −ANNnmin)) + ANNnmin (13)

The datasets utilized in ANN modeling are divided into three groups: training datasets,
testing datasets, and validation datasets. Training datasets is utilized to optimize the
network’s connection links weights for different networks with a varying number of
hidden nodes from 1 to 10. For each trained network, the statistical accuracy measurements;
Average Squared Errors (ASE), Mean Absolute Relative Error (MARE), and coefficient
of determination (R2) are calculated and listed. The testing datasets are used to test the
accuracy of the trained networks. The trained network with the lowest ASE value of the
testing datasets is defined as the network with the optimum number of hidden nodes. After
the optimization, both training and testing datasets are combined into one train-all datasets
group and utilizedtoretrain the optimum network to get the connection links weights of
the train-all model. Combining these two dataset groups allows the network to use more
datasets in model training and capturing the relations between inputs and outputs which
helps in increasing the model accuracy and reducing the error. The validation datasets
(which were not used in training or testing the model) are utilized to check and validate
the model by comparing them with the model’s outputs.

Figure 4 illustrates a 5-n-4 (5 inputs, n hidden nodes, and 4 outputs) ANN model
schematic. However, 5-n-4 ANN model mathematical equations can be written as in
Equations (14) and (15).
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Outputm =
1

1 + e−∑n
i=1 HNi×(HNi−OutputmConnection)+Bias2m

(14)

HNi =
1

1 + e−∑5
j=1 Inputj×(Inputj−HNiConnection)+Bias1i

(15)

The developed ANN models are:

1. ANN1 (for circular column): 157 datasets of circular columns are utilized. The datasets
are divided into 117 training datasets, 30 testing datasets, and 10 validation datasets.
ANN models’ ASEtraining, ASEtesting, ASEtrain-all, and ASEvalidation values are listed in
Figure 5a. Based on the values shown in Figure 5a, the optimum number of hidden
nodes for ANN1 is found to be 9; because it has the lowest ASEtesting value. Hence,
ANN1 is denoted by its architecture as 5-9-4.

2. ANN2 (for square column): 105 datasets of circular columns are utilized. The datasets
are divided into 75 training datasets, 20 testing datasets, and 10 validation datasets.
As shown in Figure 5b, the optimum number of hidden nodes for ANN2 is found to
be 7. So, ANN2 is denoted by its architecture as 5-7-4.

Figure 5 illustrates how combining testing and training datasets together and including
them in the models training helps in reducing the ASE values and increasing the models’
accuracy.

The connection links weights for ANN1 and ANN2 to be used in Equations (12) and
(13) are shown in Tables 3 and 4, respectively. However, ANN modeling results are listed
in Tables S1 and S2.
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Table 3. Connection links weight used in 5-9-4 ANN1.

Inputj
Connection Links Weights between Inputs and Hidden Nodes (Inputj–HNiConnection)

HN1 HN2 HN3 HN4 HN5 HN6 HN7 HN8 HN9

Input1
D (mm) −11.17 −18.56 −20.95 −11.36 −8.69 −11.29 −2.26 −3.64 −2.72

Input2
T (mm) 11.47 0.96 30.81 −8.25 −18.52 −7.72 −4.56 5.32 1.46

Input3
Li (mm) −6.08 −15.98 0.44 −5.25 −4.93 −12.12 −4.70 −2.71 0.74

Input4
fcu (MPa) −15.35 −15.39 1.55 −3.66 20.37 1.73 1.55 −5.55 0.90

Input5
A (days) −16.51 −0.93 −6.22 9.25 −0.62 −6.42 −2.36 −3.37 −3.67

Bias1 5.26 11.98 −8.71 4.71 7.26 6.24 2.34 −0.84 −0.69

Outputm
Connection Links Weights between Hidden Nodes and Outputs (HNi–OutputmConnection)

HN1 HN2 HN3 HN4 HN5 HN6 HN7 HN8 HN9 Bias2

Output1
τu (MPa) 4.28 −2.75 −3.64 1.46 0.65 6.97 −6.84 2.22 0.36 0.72

Output2
Su (mm) −5.90 −0.84 7.19 3.65 3.37 2.21 −0.46 5.25 1.49 −5.70

Output3
β

−3.21 0.31 4.45 −0.11 1.36 2.51 0.19 −1.23 −3.11 0.20

Output4
α

−5.13 3.49 3.70 −5.49 1.50 0.01 −1.90 −0.06 −0.06 2.44
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Table 4. Connection links weight used in 5-7-4 ANN2.

Inputj
Connection Links Weights between Inputs and Hidden Nodes (Inputj–HNiConnection)

HN1 HN2 HN3 HN4 HN5 HN6 HN7

Input1
B (mm) 3.49 −24.58 5.49 −7.53 −2.29 −1.42 −0.37

Input2
T (mm) −11.94 10.40 −7.95 0.68 1.88 −2.02 −2.41

Input3
Li (mm) 10.68 2.55 14.40 −0.92 −1.03 −1.43 −1.16

Input4
fcu (MPa) 19.57 9.37 −0.57 8.37 −2.67 −6.08 0.00

Input5
A (days) 20.11 −6.96 14.91 0.27 5.37 −4.21 −0.42

Bias1 −11.30 −5.28 −4.33 −2.57 −1.66 1.15 −0.39

Outputm
Connection Links Weights between Hidden Nodes and Outputs (HNi–OutputmConnection)

H1 H2 H3 H4 H5 H6 H7 Bias2

Output1
τu (N/mm2) −4.20 4.89 1.95 2.85 1.65 −0.75 −1.34 −0.19

Output2
Su (mm) 5.75 8.42 −6.37 −0.78 1.96 0.86 −0.81 −3.70

Output3
β

1.39 −7.36 −1.31 0.30 0.50 1.96 1.40 0.05

Output4
α

12.72 16.91 −9.67 −1.06 −1.81 4.44 0.07 0.41

For both models, Table 5 lists the training, testing, train-all, and validation statistical
accuracy measurements. However, Figure 4; Figure 5 show the experimental datasets
versus the ANN prediction results of the validation results for ANN1 and ANN2 models
respectively. Both validation statistical accuracy measurements (listed in Table 5) and the
validation predicted versus experimental data results (shown in Figures 6 and 7) illustrate
that ANN1 and ANN2 predictions are significantly reasonable and acceptable. Excel sheets
of the ANN models are provided as supplementary documents.

Table 5. Statistical accuracy measurements of the developed ANN models.

Model 5-9-4 ANN1
(Circular Column Model)

5-7-4 ANN2
(Square Column Model)

ASEtraining 0.00724 0.007836
ASEtesting 0.006465 0.01313
ASEtrain-all 0.007167 0.006721
ASEvalidation 0.007048 0.007940
MAREtraining 33. 648 41.586
MAREtesting 33.177 44.317
MAREtrain-all 33. 229 39.400
MAREvalidation 33.064 42.304
R2

training 0.67767 0.59295
R2

testing 0.54837 0.44174
R2

train-all 0.74671 0.691078
R2

validation 0.75730 0.631577
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5. Comparison and Discussion of Results
5.1. Comparison of Bond Strength (τu) Predicted by ANOVA and ANN with Existing Models

Results of τu based on proposed equations in this paper and equations from literature
for circular CFSTs of Roeder et al. [7], Xue and Cai [20], Lyu and Han [21], and Chen
et al. [19] and equations for squared CFSTs of Parsley et al. [18], Lyu and Han [21], and Xue
and Cai [20] are compared. It can be concluded that results by ANOVA and ANN proposed
models can better represent most of the specimens compared to available equations. Mean
values (µ) and standard deviation (σ) results estimated by ANOVA and ANN formulas
and by the existing models are presented in Table 6.

Table 6. Comparison among mean value, standard deviation, and R2 regarding the ultimate bond
strength.

References Prediction Model Mean Value, µ Standard Deviation, σ

Circular CFST
Roeder et al. [7] τu = 2.109− 0.026(D/t) 1.197 0.524
Xue and Cai [20] τu = 0.1( fcu)

0.4 4.316 1.809
Lyu and Han [21] τu = 0.071 + 4900

(
t/D2) 1.212 0.549

Chen et al. [19] τu = [0.0336 + 0.0141δ− 0.0028(Le/d)] fcu 2.487 1.414
Proposed ANOVA 1.001 0.277
Proposed ANN 0.999 0.1660
Squared CFST
Parsley et al. [18] τu = 0.013 + 1751

(
t/b2) 1.417 0.679

Lyu and Han [21] τu = 0.043 + 1100
(
t/B2) 2.019 0.937

Xue and Cai [20] τu = 0.1( fcu)
0.4 2.544 1.255

Proposed ANOVA 1.067 0.596
Proposed ANN 1.004 0.188

5.2. Comparisons of τu, Su, β and α Predicted by ANOVA and ANN for Both Circular and Squared
CFSTs

It is found that most predicted values of τu, Su, β and α by ANN models are closer
to the experimental than ANOVA results (Table 1). ANN outperforms the ANOVA and
provides more accurate prediction results due to the use of the sigmoidal activation function
which allows the ANN to capture the non-linear mechanical behavior of concrete.

Figure 8 shows the total interfacial behavior obtained experimentally of one circular
and one squared specimen versus the predicted behavior using ANN and ANOVA analysis.
These two specimens were previously investigated by Abendeh et al. [26] The results
also confirms that the ANN analysis can better represent the bond-slip behavior of CFSTs.
Proposed excel sheets for predicting the entire bond-slip behavior of circular and squared
CFSTs by using ANN are available as supplementary documents. Figures 9 and 10 present
the whole experimental and predicted interfacial behavior (based on ANN models) of
6 circular specimens and 6 squared specimens, respectively. These specimens are selected
from the different references adopted in this study to verify the capability of ANN models
to represent the whole experimental bond-slip curves. For all predicted curves, the first
point, after the ultimate bond strength is reached, on the post-peak curve is selected at
Su plus standard deviation.
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Figure 9. Experimental versus predicted interfacial behavior using ANN of circular specimens.
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Figure 10. Experimental versus predicted interfacial behavior using ANN of squared specimens.

It should be stated that the proposed bond-slip behavior model (Figure 1) follows what
was observed in the literature; the bond stress increase linearly, till the maximum bond stress
value is reached. At this stage, no separation is seen in the interface between the concrete
core and steel tubes. Hence, as both materials still work together, chemical adhesion
dominates the bond resistance. Furthermore, the micro-interlocking forces increase with an
increase in the push-out load. However, the macro-interlocking force does not contribute
since no slip occurred between the various materials.

After reaching the peak, three kinds of curves are noted based on the macro-dimensional
deviation [21,24]. The macro-interlocking force is produced from the confinement of steel
tubes that prevented lateral expansion. It is also directly correlated to the size effect, which
is produced by lateral expansion in concrete or the presence of irregularities in the internal
surfaces of the steel tubes. Additionally, this force increases with an increase in the sep-
aration and relative slip. When the macro-dimensional deviation is large, the increase in
friction is higher compared to the reduction in the initial friction. This leads to a hardening
trend. On the other hand, if this friction value is lower compared to the reduction, the curve
shows a softening trend. In intermediary situations, the curve showed a constant plasticity
trend.

The difference between predicted and experimental results is considered reasonable
since the test results of identical specimens encountered such a difference due to variation of
properties of concrete, manufacturing, and previously mentioned irregularities in internal
forces. For example, Figures 9 and 10 present the difference in τu of the three identical
t2.5-1.2%-28d specimens, in Su of the three identical CTRL-SS1 specimens, in β and α of
the two identical specimens of Parsley.

6. Finite Element Modeling of CFST’s Columns

In this paper, ABAQUS is used to model previously tested CFST columns under axial
loads. The development of such models involves the discretization of components, the
selection of the materials’ constitutive models, and the approach to defining the interaction
along the interfaces.
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To develop calibrated finite element models of CFST members, it is vital to quantify
and qualify the interaction characteristics along the concrete-steel interface. Abu Shamah
and Allouzi [44] defined a surface to surface contact between the core-concrete and the
steel tube using a shear stress limit according to Han et al. [45]. After the shear stress
limit is reached, the softening behavior is not considered. The importance to identify the
concrete-steel interface model was emphasized by Effendi [46]. Interface element and
contact analysis were used along the interface and it was found that this method is better
than rigid bar elements since rigid bar elements artificially add stiffness to the system.
Nguyena et al. [47] investigated the use of the tie and slip contact properties between
concrete and steel tubes. It was found that the tie model represented the test outcomes
better than the slip model. Neither the tie model nor the slip model represents the actual
interaction along the concrete-steel interface. Alatshan and Mashiri [48] defined the friction
coefficient along the interface between the concrete and steel tube. The magnitude of this
coefficient was reviewed from the literature.

The ANN models developed in this paper are used to define the interaction along the
steel-concrete interface of simulated CFST columns.

6.1. Experimental Data for Calibration

Four CFST columns are developed using ABAQUS to verify if the proposed ANN
models of the concrete-steel interaction can be used to simulate the interface characteristics
along the concrete-steel interface of these columns. The details of these columns are
presented in Table 7.

Table 7. Details of the specimens used for calibration.

References Shape Specimen D (mm) t (mm) L (mm) f′c (MPa) fy (MPa)

Huang et al. [1] circular
SA 108 4 324 43.9 336
MA 108 4 1296 43.9 336

Huang et al. [49] square SU-40 200 5 600 27.15 265.8
SU-70 280 4 600 31.15 272.6

6.2. Finite Element Discretization

Concrete and steel are modeled as 8-noded 3D elements. The mesh size adopted to
model specimens “SA” and “MA” is 8 mm. A larger mesh size of 25 mm is used to model
specimens “SU-40” and “SU-70” due to the larger sections of these specimens. As supports
are modeled as a rigid body, the mesh size has no effect; accordingly, a mesh size of 20 mm
is used.

6.3. Constitutive Models of Materials

The Concrete Damaged Plasticity model available in ABAQUS [23] is used which is
a continuum model to represent the behavior of brittle materials such as concrete. This
model involves tension and compression plasticity.

The input data of plasticity of concrete under compression is defined based on Tsai’s
equation [50] as

y =
nx

1 +
(
n− r

r−1
)
x + xr

r−1
(16)

where x = εc
ε′c

, y = fc
f ′c

. The strain at the compressive strength f ′c (in MPa) is taken as

ε′c =
f ′c

4690+260 f ′c
[51]. n and r are parameters to control the shape of the stress-strain curve

and are taken as Ecε′c
f ′c

and f ′c
5.2 − 1.9, respectively [52].
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The plasticity of concrete under tension is modeled based on Tsai’s equation as

y =
nx

1 +
(
nt − r

r−1
)
x + xr

r−1
(17)

where x = εt
εt0

, y = ft
ft0

. nt and r are parameters to control the shape of the curve. The strain
at peak tensile strength ( ft) is εt0.

For the concrete plasticity definition, the dilation angle of 22◦ is adopted. The flow
potential eccentricity is taken as 0.1 and the ratio of biaxial to uniaxial compressive strength
is taken as 1.16. The invariant stress ratio is 0.667 and the viscosity is 0.001.

An elastic-plastic model is used to simulate the steel tube.

6.4. Tube-Core Interface

Cohesive behavior is implemented between steel tube and concrete core, and it is
represented based on traction versus separation law. Damage is also enforced to simulate
the post-peak behavior in cohesion over two steps; damage initiation and damage evolution.

Damage initiation is selected based on the quadratic criterion of contact stress ratios
that is represented based on ABAQUS manual [23] as(

tn

to
n

)2
+

(
ts

to
s

)2
+

(
tt

to
t

)2
= 1 (18)

where tn,ts,tt are the contact stresses and to
n, to

s ,to
t are the peak values of the contact stresses.

When the damage initiation criterion is met, the damage evolution is defined based
on tabulated values of damage ratios versus slip displacement after the peak bond strength.
The proposed ANN models presented in this paper define the bond-slip behavior of
concrete-filled steel tube after bond strength that can be used to define damage evolution.
The damage, d, is calculated as

d = 1− τ

τu
(19)

where τ is the bond stress at specific slip displacement after the peak bond strength.

6.5. Finite Element Results

The axial load versus axial displacement curves of the four axial specimens are es-
timated using ABAQUS [23]. The measured versus numerically calculated responses of
these specimens are shown in Figure 11. As shown in this figure, the simulated models
can represent the experimental results very well for columns “SA” and “MA”. Note that
the length of column “MA” exceeds the maximum length of the data of circular specimens
used to develop the ANN models and this can be the reason for the difference between
numerical and experimental results. For columns “SU-40” and “SU-70”, the results can
represent the measured experimental results well and it is expected to get even better
results if the steel constitutive model is tri-linear but the details of steel material were not
provided in the reference. This verifies that the used cohesive criterion and damage based
on the ANN models are sufficient and can be adopted to model CFST’s columns under
axial load.
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Figure 11. Load-deflection curves of the simulated models.

6.6. Sensitivity Analysis

The sensitivity of the results of finite element modeling to the input parameters
is essential to study since it shows the effectiveness of the model and accordingly the
outcomes. The main input parameters that are investigated for sensitivity are; the mesh
size of steel tube and concrete and the dilation angle of concrete.

The dilation angle of concrete is the angle of internal friction and it controls the
amount of plastic volumetric strain. For the definition of the concrete constitutive model,
the dilation angle usually is selected based on the value that can represent the experimental
response of one specimen and verify it for the other specimens [53]. The load-deflection
results of specimens SA and SU-40 that are simulated with dilation angles of 22◦ and 30◦

are presented in Figure 12. It is found the circular column is more sensitive to the dilation
angle value compared to the squared section.
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Figure 12. Load-deflection curves of the simulated specimens using different dilation angles.

A mesh convergence study is performed where each column is simulated with different
mesh sizes and the results are compared. Sufficiently small elements are used. Three mesh
sizes are adopted to model specimens “SA” and “MA”, namely; 8 mm, 15 mm, and 20 mm.
Three mesh sizes are used to model specimens “SU-40” and “SU-70”, namely; 15 mm,
20 mm, and 25 mm. The results of load-deflection of all considered columns at these
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different mesh sizes are introduced in Figure 13. It is found that the peak load results are
not affected by the different mesh sizes.
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Figure 13. Load-deflection curves of the models simulated at different mesh sizes.

7. Conclusions

Concrete-Filled Steel Tube (CFST) columns are composite columns that are getting
significant attention as a replacement for reinforced concrete due to their ductility and
lower weight. CFST consists of an outer steel tube that is filled with concrete. Various
models available in the literature are limited to predicting the ultimate bond strength along
the steel-concrete interface of CFSTs under push-out loading. Nevertheless, there is no
prediction of the post-peak behavior in the literature. Accordingly, the behavior along
the steel-concrete interface in composite columns is investigated in this paper to propose
prediction models of the overall behavior which can be used for engineering practice.

The dataset considered for this investigation includes 157 circular specimens and
105 squared specimens from several references. These specimens had the following key
parameters; diameter or width that ranges from 90.85 mm to 254 mm, thickness that ranges
from 2.5 mm to 6.6 mm, length that ranges from 190 mm to 1498.6 mm, core-concrete
compressive strength that ranges from 9.11 MPa to 96.43 MPa, and age of concrete when
the push-out test was performed that ranges from 28 days to 365 days.

ANN and ANOVA models are proposed in this study to obtain the overall stress-slip
behavior of the CFSTs. The ANN analysis is shown to be the most appropriate models
for anticipating overall interfacial behavior among the major existing equations and the
suggested ANOVA formulas herein. The ratios of the experimental to the predicted ultimate
bond strength based on ANOVA and ANN formulas have mean values of 1.001 and 0.999,
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respectively for circular CFSTs, and 1.067 and 1.004, respectively for squared CFSTs. These
mean values represent how ultimate bond strength is well predicted compared to the mean
values of the results estimated by the other existing formulas. Moreover, the proposed
ANOVA and ANN formulas have a standard deviation of 0.277 and 0.166, respectively,
for circular specimens and 0.596 and 0.188, respectively, for squared specimens compared
to the standard deviation values of the results estimated by the existing models. Hence,
ANOVA and ANN are more appropriate models to predict the ultimate bond strength for
circular and squared CFSTs.

The proposed ANN models provide better prediction results than ANOVA due to the
use of the sigmoidal activation function which allows the ANN to capture the non-linear
mechanical behavior of concrete. ANN models have a lesser standard deviation of the
ratios of the experimental to the predicted ultimate bond strength, slip at ultimate bond
strength, and the parameters controlling the post-peak curve. R2 values are found ranging
from 0.674 to 0.876 for circular CFSTs and from 0.548 to 0.837 for squared CFSTs, which are
high compared to ANOVA results. Consequently, it can be concluded that ANN models
are appropriate to anticipate the full behavior of circular and square CFSTs and are better
than ANOVA.

The difference between ANN results and experimental outcomes is considered reason-
able since the test results of identical specimens had similar differences in their slip-bond
response curves. This can be attributed to the variation of properties of concrete, manufac-
turing, and previously mentioned irregularities in internal forces.

This paper also investigates the ability of proposed ANN models to be used in nu-
merical non-linear finite element models to predict the performance of CFST’s columns
under axial load. It is concluded that calibrated finite element models can represent the
experimental results which may make it beneficial to further study CFST’s columns. The
Concrete Damage Plasticity model and cohesive-damage interface based on ANN models
are sufficient and can be adopted to simulate the behavior of CFST’s columns under axial
load.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/buildings12040456/s1, Table S1. Details of circular CFSTs specimens
and results obtained from experiments and the prediction from ANOVA and ANN; Table S2. Details
of squared CFSTs specimens and results obtained from experiments and the prediction from ANOVA
and ANN. Excel sheets of the ANN models is provided as supplementary documents.
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