A Simplified Thermal Comfort Calculation Method of Radiant Floor Cooling Technology for Office Buildings in Northern China
Abstract
:1. Introduction
- The floor surface cools the indoor thermal environment in two ways coupling convection and radiation, and the heat transfer process is very complex [31];
- It is very complicated to calculate the radiation angular coefficient and average radiation temperature;
- Lack of practical application feedback and fitting empirical formulas.
- The effect of the changes of the main factors of the indoor thermal environment on the thermal comfort indicator in a room with floor cooling;
- Quantitative evaluation of the contribution of the floor cooling end to indoor thermal environment comfort;
- Finding a simplified calculation model of the thermal comfort indicator for FRC systems, which can be used to adjust the temperature value of the indoor thermal environment or calculate the value of the indoor thermal comfort indicator quickly.
2. Methods
2.1. Thermal Comfort Index and Influencing Factors
2.2. Numerical Simulation Methods
- Room model and two cooling ends (Part 1):
- Control of the indoor thermal environment (Part 2 and Part 3):
- Results output (Part 4):
- Outdoor environmental meteorological parameters:
- Work schedule:
3. Results and Discussions
3.1. Solution of PMV
3.1.1. Effect of Floor Surface Temperature Changes on PMV
3.1.2. Simplified Calculation Model of PMV
- (1).
- In the room using FRC technology, using Equation (11), the current PMV value can be calculated according to the current floor surface temperature and indoor air temperature so as to monitor the indoor thermal environment. The PMV value can also be obtained by referring to Figure 4.
- (2).
- Equation (11) or Figure 4 can be used as a theoretical basis for regulating the floor surface temperature or indoor air temperature in a room using FRC technology, and can also be used to control the floor surface temperature and indoor air temperature to achieve the desired PMV.
3.2. Solution of PPD and Verification of Numerical Simulation
3.2.1. Solution of PPD
3.2.2. Verification and Error Analysis
3.3. Correction Equation of PMV
3.3.1. Effect of Relative Humidity on PMV
3.3.2. Complete Calculation Expression of PMV
4. Conclusions
- (1).
- The indoor air temperature is the main factor affecting the PMV value. In rooms with floor radiant cooling, the indoor air temperature shall not be lower than 26 °C or higher than 29 °C. The floor surface temperature is the secondary factor affecting the PMV. The relative humidity of indoor air has little effect on the PMV;
- (2).
- In the design of air conditioning engineering, the design temperature of the indoor air of a room using FRC technology should be 1~2 °C higher than the indoor design temperature of convective air conditioning.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
M | Metabolic rate W/m2 (met) |
Icl | Thermal resistance of clothing (CLO) |
Relative humidity | |
va | Air velocity m/s |
Mean radiant temperature °C | |
Angle factor between a person and surface i | |
ta | Indoor air temperature °C |
ts | Floor surface temperature °C |
td tc | Inner surface temperature of ceiling °C Inner surface temperature of internal sunshade for the window °C |
tw1~4 | Internal surface temperature of four walls °C |
ti | Average temperature of inner surfaces of other envelopes except floor °C |
Offset | |
Average offset | |
FRC | Floor radiant cooling |
FRH | Floor radiant heating |
PMV | Predicted mean vote |
PPD | Predicted percentage of dissatisfaction |
MAPE | Mean absolute percentage error |
RMSE | Root mean square error |
References
- Chen, M.; Ma, M.; Lin, Y.; Ma, Z.; Li, K. Carbon Kuznets Curve in China’s Building Operations: Retrospective and Prospective Trajectories. Sci. Total Environ. 2022, 803, e150104. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Yao, R.; Sadrizadeh, S.; Li, B.; Cao, G.; Zhang, S.; Zhou, S.; Liu, H.; Bogdan, A.; Croitoru, C.; et al. Thermal Comfort in Hospital Buildings—A Literature Review. J. Build. Eng. 2022, 45, e103463. [Google Scholar] [CrossRef]
- Vangtook, P.; Chirarattananon, S. Application of Radiant Cooling as a Passive Cooling Option in Hot Humid Climate. Build. Environ. 2007, 42, 543–556. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, W.; Li, Q.; Wei, Z.; Lei, W.; Zhang, L. An Analytical Method to Estimate Temperature Distribution of Typical Radiant Floor Cooling Systems with Internal Heat Radiation. Energy Explor. Exploit. 2021, 39, 1283–1305. [Google Scholar] [CrossRef]
- Wang, X.; Lei, W.; Zhang, W.; Zhang, Y.; Zhang, L. Simplified Calculation and Control Method of Floor Surface Temperature for Radiant Floor and Fresh Air Coupled Cooling Systems in Steady-State. Case Stud. Therm. Eng. 2021, 27, e101320. [Google Scholar] [CrossRef]
- Dong, J.; Lan, H.; Liu, Y.; Wang, X.; Yu, C. Indoor Environment of Nearly Zero Energy Residential Buildings with Conventional Air Conditioning in Hot-Summer and Cold-Winter Zone. Energy Built Environ. 2021, 3, 129–138. [Google Scholar] [CrossRef]
- Xing, D.; Li, N.; Zhang, C.; Heiselberg, P. A Critical Review of Passive Condensation Prevention for Radiant Cooling. Build. Environ. 2021, 205, e108230. [Google Scholar] [CrossRef]
- Wang, X.; Man, Y.; Zhang, L.; Zhang, W.; Zhang, L. Dynamic Research on Cold Storage Performance of a Standard Radiant Floor Cooling System for Office Buildings in Northern China. J. Therm. Sci. 2022, 1–11. [Google Scholar] [CrossRef]
- Yan, H.; Yang, L.; Dong, M.; Hu, B.; Sun, Z.; Shi, F.; Yuan, G.; Bi, X. Thermal Comfort in Residential Buildings Using Bimetal Radiator Heating vs. Floor Heating Terminals. J. Build. Eng. 2022, 45, e103501. [Google Scholar] [CrossRef]
- Shin, M.S.; Rhee, K.N.; Jung, G.J. Optimal Heating Start and Stop Control Based on the Inferred Occupancy Schedule in a Household with Radiant Floor Heating System. Energy Build. 2020, 209, e109737. [Google Scholar] [CrossRef]
- Borinaga- Treviño, R.; Cuadrado, J.; Canales, J.; Rojí, E. Lime Mud Waste from the Paper Industry as a Partial Replacement of Cement in Mortars Used on Radiant Floor Heating Systems. J. Build. Eng. 2021, 41, e102408. [Google Scholar] [CrossRef]
- Jiang, C.; Xie, G.; Wu, D.; Yan, T.; Chen, S.; Zhao, P.; Wu, Z.; Li, W. Experimental Investigation on an Energy-Efficient Floor Heating System with Intelligent Control: A Case Study in Chengdu, China. Case Stud. Therm. Eng. 2021, 26, e101094. [Google Scholar] [CrossRef]
- Garcia, D.A. Can Radiant Floor Heating Systems Be Used in Removable Glazed Enclosed Patios Meeting Thermal Comfort Standards? Build. Environ. 2016, 106, 378–388. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, M.; Yao, W. Performance of the Wall Implanted with Heat Pipes on Indoor Thermal Environment. Indoor Built Environ. 2021, 31, 878–894. [Google Scholar] [CrossRef]
- Cho, J.; Park, B.; Lim, T. Experimental and Numerical Study on the Application of Low-Temperature Radiant Floor Heating System with Capillary Tube: Thermal Performance Analysis. Appl. Therm. Eng. 2019, 163, e114360. [Google Scholar] [CrossRef]
- Karacavus, B.; Aydin, K. Numerical Investigation of General and Local Thermal Comfort of an Office Equipped with Radiant Panels. Indoor Built Environ. 2019, 28, 806–824. [Google Scholar] [CrossRef]
- Sirhan, N.; Golan, S. Efficient PMV Computation for Public Environments with Transient Populations. Energy Build. 2021, 231, e110523. [Google Scholar] [CrossRef]
- Li, T.; Merabtine, A.; Lachi, M.; Martaj, N.; Bennacer, R. Experimental Study on the Thermal Comfort in the Room Equipped with a Radiant Floor Heating System Exposed to Direct Solar Radiation. Energy 2021, 230, e120800. [Google Scholar] [CrossRef]
- Du, H.; Lian, Z.; Lai, D.; Duanmu, L.; Zhai, Y.; Cao, B.; Zhang, Y.; Zhou, X.; Wang, Z.; Zhang, X.; et al. Comparison of Thermal Comfort between Radiant and Convective Systems Using Field Test Data from Chinese Thermal Comfort Database. Build. Environ. 2021, 209, 108685. [Google Scholar] [CrossRef]
- Liu, J.; Kim, M.K.; Srebric, J. Numerical Analysis of Cooling Potential and Indoor Thermal Comfort with a Novel Hybrid Radiant Cooling System in Hot and Humid Climates. Indoor Built Environ. 2021, 31, 929–943. [Google Scholar] [CrossRef]
- Tan, J.; Liu, J.; Liu, W.; Yu, B.; Zhang, J. Performance on Heating Human Body of an Optimised Radiant-Convective Combined Personal Electric Heater. Build. Environ. 2022, 214, e108882. [Google Scholar] [CrossRef]
- Zhang, F.; Guo, H.A.; Liu, Z.; Zhang, G. A Critical Review of the Research about Radiant Cooling Systems in China. Energy Build. 2021, 235, e110756. [Google Scholar] [CrossRef]
- Gu, X.; Cheng, M.; Zhang, X.; Qi, Z.; Liu, J.; Li, Z. Performance Analysis of a Hybrid Non-Centralized Radiant Floor Cooling System in Hot and Humid Regions. Case Stud. Therm. Eng. 2021, 28, e101645. [Google Scholar] [CrossRef]
- Kwong, Q.J.; Arsad, M.A.; Adam, N.M. Evaluation of Indoor Thermal Environment in a Radiant-Cooled-Floor Office Building in Malaysia. Appl. Mech. Mater. 2014, 564, 228–233. [Google Scholar] [CrossRef]
- Hu, Y.; Xia, X.; Wang, J. Research on Operation Strategy of Radiant Cooling System Based on Intermittent Operation Characteristics. J. Build. Eng. 2022, 45, e103483. [Google Scholar] [CrossRef]
- Liu, J.; Li, Z.; Kim, M.K.; Zhu, S.; Zhang, L.; Srebric, J. A Comparison of the Thermal Comfort Performances of a Radiation Floor Cooling System When Combined with a Range of Ventilation Systems. Indoor Built Environ. 2020, 29, 527–542. [Google Scholar] [CrossRef]
- Kastner, P.; Dogan, T. Eddy3D: A Toolkit for Decoupled Outdoor Thermal Comfort Simulations in Urban Areas. Build. Environ. 2022, 212, e108639. [Google Scholar] [CrossRef]
- Wang, Z.; Cao, B.; Zhu, Y. Questionnaire Survey and Field Investigation on Sleep Thermal Comfort and Behavioral Adjustments in Bedrooms of Chinese Residents. Energy Build. 2021, 253, e111462. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, Y.; Zhang, J.; Ye, L.; Luo, M. Radiant Asymmetric Thermal Comfort Evaluation for Floor Cooling System—A Field Study in Office Building. Energy Build. 2022, 260, e111917. [Google Scholar] [CrossRef]
- Ricciardi, P.; Ziletti, A.; Buratti, C. Evaluation of Thermal Comfort in an Historical Italian Opera Theatre by the Calculation of the Neutral Comfort Temperature. Build. Environ. 2016, 102, 116–127. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Y.; Guo, T.; Fan, J. Development of a New Method to Estimate Thermal Performance of Multilayer Radiant Floor. J. Build. Eng. 2021, 33, e101562. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhang, Y.; Mao, Y.; Yang, Y.; Fu, C.; Fang, Z. Analysis of SET* and PMV to Evaluate Thermal Comfort in Prefab Construction Site Offices: Case Study in South China. Case Stud. Therm. Eng. 2021, 26, e101137. [Google Scholar] [CrossRef]
- Park, J.; Choi, H.; Kim, D.; Kim, T. Development of Novel PMV-Based HVAC Control Strategies Using a Mean Radiant Temperature Prediction Model by Machine Learning in Kuwaiti Climate. Build. Environ. 2021, 206, e108357. [Google Scholar] [CrossRef]
- Broday, E.E.; Ruivo, C.R.; Gameiro da Silva, M. The Use of Monte Carlo Method to Assess the Uncertainty of Thermal Comfort Indices PMV and PPD: Benefits of Using a Measuring Set with an Operative Temperature Probe. J. Build. Eng. 2021, 35, e101961. [Google Scholar] [CrossRef]
- Omidvar, A.; Kim, J. Modification of Sweat Evaporative Heat Loss in the PMV/PPD Model to Improve Thermal Comfort Prediction in Warm Climates. Build. Environ. 2020, 176, e106868. [Google Scholar] [CrossRef]
- Hesaraki, A.; Huda, N. A Comparative Review on the Application of Radiant Low-Temperature Heating and High-Temperature Cooling for Energy, Thermal Comfort, Indoor Air Quality, Design and Control. Sustain. Energy Technol. Assess. 2022, 49, e101661. [Google Scholar] [CrossRef]
- Gao, S.; Ooka, R.; Oh, W. Experimental Investigation of the Effect of Clothing Insulation on Thermal Comfort Indices. Build. Environ. 2021, 187, e107393. [Google Scholar] [CrossRef]
- Alfano, F.R.D.A.; Palella, B.I.; Riccio, G. Notes on the Calculation of the PMV Index by Means of Apps. Energy Procedia 2016, 101, 249–256. [Google Scholar] [CrossRef]
- Zhang, D.L.; Wang, Z.J.; Zhang, X. Experimental Study on Dry Radiant Floor Cooling System Combined with Displacement Ventilation System. Build. Sci. 2009, 25, 38–42. [Google Scholar]
- Brough, D.; Ramos, J.; Delpech, B.; Jouhara, H. Development and Validation of a TRNSYS Type to Simulate Heat Pipe Heat Exchangers in Transient Applications of Waste Heat Recovery. Int. J. Thermofluids 2021, 9, e100056. [Google Scholar] [CrossRef]
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Design Standard for Energy Efficiency of Public Buildings; China Architecture & Building Press: Beijing, China, 2015. [Google Scholar]
- Bordignon, S.; Emmi, G.; Zarrella, A.; De Carli, M. Energy Analysis of Different Configurations for a Reversible Ground Source Heat Pump Using a New Flexible TRNSYS Type. Appl. Therm. Eng. 2021, 197, e117413. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Y.; Sun, L.; Gao, W.; Jing, X.; Ye, W. Influence of Indoor Air Temperature and Relative Humidity on Learning Performance of Undergraduates. Case Stud. Therm. Eng. 2021, 28, e101458. [Google Scholar] [CrossRef]
- Qin, S.Y.; Cui, X.; Yang, C.; Jin, L.W. Thermal Comfort Analysis of Radiant Cooling Panels with Dedicated Fresh-Air System. Indoor Built Environ. 2021, 30, 1596–1608. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Wang, Z.J. Influence of Radiant Cooling Floor Surface on Inner Surface Temperature of Building Envelopes and Indoor Thermal Comfort. Build. Sci. 2008, 24, 79–84. [Google Scholar]
- Dougherty, E.R.; Kim, S.; Chen, Y. Coefficient of Determination in Nonlinear Signal Processing. Signal Processing 2000, 80, 2219–2235. [Google Scholar] [CrossRef]
- Fanger, P. Calculation of Thermal Comfort, Introduction of a Basic Comfort Equation. ASHRAE Trans. 1967, 73, III.4.1–III.4.20. [Google Scholar]
- Cheung, T.; Schiavon, S.; Parkinson, T.; Li, P.; Brager, G. Analysis of the Accuracy on PMV—PPD Model Using the ASHRAE Global Thermal Comfort Database II. Build. Environ. 2019, 153, 205–217. [Google Scholar] [CrossRef] [Green Version]
- Spielvogel, L. Thermal Environmental Conditions for Human Occupancy; ASHRAE: Atlanta, GA, USA, 2005. [Google Scholar]
- Ahamed, M.S.; Guo, H.; Tanino, K. Evaluation of a Cloud Cover Based Model for Estimation of Hourly Global Solar Radiation in Western Canada. Int. J. Sustain. Energy 2019, 38, 64–73. [Google Scholar] [CrossRef]
- d’Ambrosio Alfano, F.R.; Palella, B.I.; Riccio, G. The Role of Measurement Accuracy on the Thermal Environment Assessment by Means of PMV Index. Build. Environ. 2011, 46, 1361–1369. [Google Scholar] [CrossRef]
Thermal Sensation | Hot | Warm | Slightly Warm | Moderate | Slightly Cool | Cool | Cold |
---|---|---|---|---|---|---|---|
PMV value | +3 | +2 | +1 | 0 | −1 | −2 | −3 |
Personnel Status | Thermal Resistance of Summer Clothing (Shorts, Long Thin Pants, Short Sleeved Cardigan, Thin Socks, and Shoes) | Metabolic Rate |
---|---|---|
Sitting | 0.5 CLO) | 1.0 met) |
Envelopes of Public Buildings | Building Shape Coefficient ≤ 0.30 | 0.30 < Building Shape Coefficient ≤ 0.50 |
---|---|---|
Heat Transfer Coefficient | Heat Transfer Coefficient | |
Roof | ||
Exterior wall (including non-transparent curtain wall) | ||
Window to wall ratio | 0.4 | 0.3 |
Indoor Air Temperature/°C | Floor Surface Temperature Changes/°C | |||||||
---|---|---|---|---|---|---|---|---|
18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | |
26 | −0.59 | −0.55 | −0.50 | −0.44 | −0.38 | −0.32 | −0.26 | −0.21 |
27 | −0.34 | −0.28 | −0.23 | −0.17 | −0.12 | −0.06 | 0.00 | 0.06 |
28 | −0.07 | 0.00 | 0.04 | 0.09 | 0.15 | 0.20 | 0.26 | 0.32 |
29 | 0.21 | 0.25 | 0.32 | 0.36 | 0.41 | 0.47 | 0.53 | 0.59 |
Indoor Relative Humidity | Relative Humidity Deviation | ||||||
---|---|---|---|---|---|---|---|
40% | −10% | −0.0800 | −0.0700 | −0.0750 | −0.0700 | −0.0720 | −0.0734 |
45% | −5% | −0.0400 | −0.0370 | −0.0400 | −0.0340 | −0.0400 | −0.0382 |
50% | 0% | −0.0010 | 0.0040 | 0.0000 | −0.0007 | −0.0020 | 0.0001 |
55% | +5% | 0.0320 | 0.0280 | 0.0300 | 0.0310 | 0.0300 | 0.0302 |
60% | +10% | 0.0690 | 0.0700 | 0.0600 | 0.0660 | 0.0650 | 0.0660 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Mu, T.; Zhang, L.; Zhang, W.; Zhang, L. A Simplified Thermal Comfort Calculation Method of Radiant Floor Cooling Technology for Office Buildings in Northern China. Buildings 2022, 12, 483. https://doi.org/10.3390/buildings12040483
Wang X, Mu T, Zhang L, Zhang W, Zhang L. A Simplified Thermal Comfort Calculation Method of Radiant Floor Cooling Technology for Office Buildings in Northern China. Buildings. 2022; 12(4):483. https://doi.org/10.3390/buildings12040483
Chicago/Turabian StyleWang, Xiaolong, Tian Mu, Lili Zhang, Wenke Zhang, and Linhua Zhang. 2022. "A Simplified Thermal Comfort Calculation Method of Radiant Floor Cooling Technology for Office Buildings in Northern China" Buildings 12, no. 4: 483. https://doi.org/10.3390/buildings12040483
APA StyleWang, X., Mu, T., Zhang, L., Zhang, W., & Zhang, L. (2022). A Simplified Thermal Comfort Calculation Method of Radiant Floor Cooling Technology for Office Buildings in Northern China. Buildings, 12(4), 483. https://doi.org/10.3390/buildings12040483