The Impacts of Greenery Systems on Indoor Thermal Environments in Transition Seasons: An Experimental Investigation
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Outdoor Weather Conditions
3.2. Indoor DBT
3.3. Indoor RH
3.4. Indoor BGT
3.5. Internal and External Surface Temperatures of Building Walls and Roofs
4. Discussion
4.1. Impacts of GS on Indoor DBT and RH
4.2. Impacts of GS on Indoor OT
4.3. Impacts of GS on Indoor Thermal Comfort
4.4. Impacts of GS on Heat Transfer through the Walls or Roof
5. Conclusions
Abbreviation
BGT | Black-globe temperature (°C) |
DBT | Dry-bulb temperature (°C) |
DSGF | Double-skin green façade |
GHG | Greenhouse gas |
GR | Green roof |
GS | Greenery system |
GW | Green wall |
HOWR | Relative humidity oscillation weakening rate (%) |
IPCC | Intergovernmental Panel on Climate Change |
LWS | Living wall system |
MDRHR | Maximum daily relative humidity ranges (%) |
MDTR | Maximum daily dry-bulb temperature range (°C) |
MRT | Mean radiant temperature (°C) |
OT | Operative temperature (°C) |
PMV | Predicted mean vote |
PPD | Predicted percentage dissatisfied (%) |
RH | Relative humidity (%) |
RefRoom | Experimental room without greenery system |
SD | Standard deviations |
TOWR | Dry-bulb temperature oscillation weakening rate (%) |
TR | Temperature reductions (°C) |
UGS | Urban green spaces |
UHI | Urban heat island |
VGRoom | Experimental room equipped greenery system |
VGS | Vertical greening systems |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Meulen, S.H.V.D. Costs and benefits of green roof types for cities and building owners. J. Sustain. Dev. Energy Water Environ. Syst. 2019, 7, 57–71. [Google Scholar] [CrossRef]
- U.N. Sustainable Development Goal 11: Sustainable Cities and Communities, Make Cities and Human Settlements Inclusive, Safe, Resilient and Sustainable. Available online: https://armenia.un.org/index.php/en/sdgs/11 (accessed on 1 March 2022).
- Morakinyo, T.E.; Lai, A.; Lau, K.K.-L.; Ng, E.Y.Y. Thermal benefits of vertical greening in a high-density city: Case study of Hong Kong. Urban For. Urban Green. 2019, 37, 42–55. [Google Scholar] [CrossRef]
- Mathew, A.; Khandelwal, S.; Kaul, N. Spatial and temporal variations of urban heat island effect and the effect of percentage impervious surface area and elevation on land surface temperature: Study of Chandigarh city, India. Sustain. Cities Soc. 2016, 26, 264–277. [Google Scholar] [CrossRef]
- Dutta, D.; Rahman, A.; Paul, S.; Kundu, A. Impervious surface growth and its inter-relationship with vegetation cover and land surface temperature in peri-urban areas of Delhi. Urban Clim. 2021, 37, 100799. [Google Scholar] [CrossRef]
- Oke, T.R. City size and the urban heat island. Atmos. Environ. 1973, 7, 769–779. [Google Scholar] [CrossRef]
- Tan, C.L.; Wong, N.H.; Jusuf, S.K. Outdoor mean radiant temperature estimation in the tropical urban environment. Build. Environ. 2013, 64, 118–129. [Google Scholar] [CrossRef]
- Kim, S.W.; Brown, R.D. Urban heat island (UHI) variations within a city boundary: A systematic literature review. Renew. Sustain. Energy Rev. 2021, 148, 111256. [Google Scholar] [CrossRef]
- Tian, L.; Li, Y.; Lu, J.; Wang, J. Review on Urban Heat Island in China: Methods, Its Impact on Buildings Energy Demand and Mitigation Strategies. Sustainability 2021, 13, 762. [Google Scholar] [CrossRef]
- Manso, M.; Teot’onio, I.; Silva, C.M.; Cruz, C.O. Green roof and green wall benefits and costs: A review of the quantitative evidence. Renew. Sustain. Energy Rev. 2021, 135, 110111. [Google Scholar] [CrossRef]
- Besir, A.B.; Cuce, E. Green roofs and facades: A comprehensive review. Renew. Sustain. Energy Rev. 2018, 82, 915–939. [Google Scholar] [CrossRef]
- Daemei, A.B.; Shafiee, E.; Chitgar, A.A.; Asadi, S. Investigating the thermal performance of green wall: Experimental analysis, deep learning model, and simulation studies in a humid climate. Build. Environ. 2021, 205, 108201. [Google Scholar] [CrossRef]
- Charoenkit, S.; Yiemwattana, S. Living walls and their contribution to improved thermal comfort and carbon emission reduction: A review. Build. Environ. 2016, 105, 82–94. [Google Scholar] [CrossRef]
- Perini, K.; Ottel’e, M.; Haas, E.M.; Raiteri, R. Vertical greening systems, a process tree for green façades and living walls. Urban Ecosyst. 2013, 16, 265–277. [Google Scholar] [CrossRef]
- Weerakkody, U.; Dover, J.W.; Mitchell, P.; Reiling, K. Particulate matter pollution capture by leaves of seventeen living wall species with special reference to rail-traffic at a metropolitan station. Urban For. Urban Green. 2017, 27, 173–186. [Google Scholar] [CrossRef]
- Pugh, T.A.M.; MacKenzie, A.R.; Whyatt, J.D.; Hewitt, C.N. Effectiveness of Green Infrastructure for Improvement of Air Quality in Urban Street Canyons. Environ. Sci. Technol. 2012, 46, 7692–7699. [Google Scholar] [CrossRef] [Green Version]
- Ottelé, M.; van Bohemen, H.D.; Fraaij, A.L. Quantifying the deposition of particulate matter on climber vegetation on living walls. Ecol. Eng. 2010, 36, 154–162. [Google Scholar] [CrossRef]
- Xing, Q.; Hao, X.; Lin, Y.; Tan, H.; Yang, K. Experimental investigation on the thermal performance of a vertical greening system with green roof in wet and cold climates during winter. Energy Build. 2018, 183, 105–117. [Google Scholar] [CrossRef]
- Yuan, S.; Rim, D. Cooling energy saving associated with exterior GSs for three US Department of Energy (DOE) standard reference buildings. Build. Simul. 2018, 11, 625–631. [Google Scholar] [CrossRef]
- Kalani, K.W.D.; Dahanayake, C.; Chow, L. Studying the potential of energy saving through vertical greenery systems: Using EnergyPlus simulation program. Energy Build. 2017, 138, 47–59. [Google Scholar]
- Foustalieraki, M.; Assimakopoulos, M.; Santamouris, M.; Pangalou, H. Energy performance of a medium scale green roof system installed on a commercial building using numerical and experimental data recorded during the cold period of the year. Energy Build. 2017, 135, 33–38. [Google Scholar] [CrossRef]
- Coma, J.; Pérez, G.; de Gracia, A.; Burés, S.; Urrestarazu, M.; Cabeza, L.F. Vertical greenery systems for energy savings in buildings: A comparative study between green walls and green facades. Build. Environ. 2017, 111, 228–237. [Google Scholar] [CrossRef] [Green Version]
- Perini, K.; Bazzocchi, F.; Croci, L.; Magliocco, A.; Cattaneo, E. The use of vertical greening systems to reduce the energy demand for air conditioning. Field monitoring in Mediterranean climate. Energy Build. 2017, 143, 35–42. [Google Scholar] [CrossRef]
- Pérez, G.; Coma, J.; Sol, S.; Cabeza, L.F. Green facade for energy savings in buildings: The influence of leaf area index and facade orientation on the shadow effect. Appl. Energy 2017, 187, 424–437. [Google Scholar] [CrossRef] [Green Version]
- Ran, J.; Tang, M. Passive cooling of the green roofs combined with night-time ventilation and walls insulation in hot and humid regions. Sustain. Cities Soc. 2018, 38, 466–475. [Google Scholar] [CrossRef]
- Tan, H.; Hao, X.; Long, P.; Xing, Q.; Lin, Y.; Hu, J. Building envelope integrated green plants for energy saving. Energy Explor. Exploit. 2019, 38, 222–234. [Google Scholar] [CrossRef]
- Shafiee, E.; Faizi, M.; Yazdanfar, S.-A.; Khanmohammadi, M.-A. Assessment of the effect of living wall systems on the improvement of the urban heat island phenomenon. Build. Environ. 2020, 181, 106923. [Google Scholar] [CrossRef]
- Andric, I.; Kamal, A.; Al-Ghamdi, S.G. Efficiency of green roofs and green walls as climate change mitigation measures in extremely hot and dry climate: Case study of Qatar. Energy Rep. 2020, 6, 2476–2489. [Google Scholar] [CrossRef]
- Sierra-P´erez, J.; Rodríguez-Soria, B.; Boschmonart-Rives, J.; Gabarrell, X. Integrated life cycle assessment and thermodynamic simulation of a public building’s envelope renovation: Conventional vs. Passivhaus proposal. Appl. Energy 2018, 212, 1510–1521. [Google Scholar] [CrossRef] [Green Version]
- Daemei, A.B.; Azmoodeh, M.; Zamani, Z.; Khotbehsara, E.M. Experimental and simulation studies on the thermal behavior of vertical greenery system for temperature mitigation in urban spaces. J. Build. Eng. 2018, 20, 277–284. [Google Scholar] [CrossRef]
- Battista, G.; Evangelisti, L.; Guattari, C.; Vollaro, E.D.L.; Vollaro, R.D.L.; Asdrubali, F. Urban heat Island mitigation strategies: Experimental and numerical analysis of a university campus in Rome (Italy). Sustainability 2020, 12, 7971. [Google Scholar] [CrossRef]
- Mutani, G.; Todeschi, V. The Effects of Green Roofs on Outdoor Thermal Comfort, Urban Heat Island Mitigation and Energy Savings. Atmosphere 2020, 11, 123. [Google Scholar] [CrossRef] [Green Version]
- Guattari, C.; Evangelisti, L.; Asdrubali, F.; Vollaro, R.D.L. Experimental Evaluation and Numerical Simulation of the Thermal Performance of a Green Roof. Appl. Sci. 2020, 10, 1767. [Google Scholar] [CrossRef] [Green Version]
- Todeschi, V.; Mutani, G.; Baima, L.; Nigra, M.; Robiglio, M. Smart Solutions for Sustainable Cities—The Re-Coding Experience for Harnessing the Potential of Urban Rooftops. Appl. Sci. 2020, 10, 7112. [Google Scholar] [CrossRef]
- Wong, N.H.; Kwang Tan, A.Y.; Tan, P.Y.; Chiang, K.; Wong, N.C. Acoustics evaluation of vertical GSs for building walls. Build. Environ. 2010, 45, 411–420. [Google Scholar] [CrossRef]
- Pérez, G.; Coma, J.; Barreneche, C.; de Gracia, A.; Urrestarazu, M.; Burés, S.; Cabeza, L.F. Acoustic insulation capacity of Vertical Greenery Systems for buildings. Appl. Acoust. 2016, 110, 218–226. [Google Scholar] [CrossRef] [Green Version]
- Sims, A.W.; Robinson, C.E.; Smart, C.C.; O’Carroll, D.M. Mechanisms controlling green roof peak flow rate attenuation. J. Hydrol. 2019, 577, 123972. [Google Scholar] [CrossRef]
- Liu, W.; Wei, W.; Chen, W.; Deo, R.C.; Si, J.; Xi, H.; Li, B.; Feng, Q. The impacts of substrate and vegetation on storm water runoff quality from extensive green roofs. J. Hydrol. 2019, 576, 575–582. [Google Scholar] [CrossRef]
- Madre, F.; Clergeau, P.; Machon, N.; Vergnes, A. Building biodiversity: Vegetated façades as habitats for spider and beetle assemblages. Glob. Ecol. Conserv. 2015, 3, 222–233. [Google Scholar] [CrossRef] [Green Version]
- Chiquet, C.; Dover, J.W.; Mitchell, P. Birds and the urban environment: The value of green walls. Urban Ecosyst. 2012, 16, 453–462. [Google Scholar] [CrossRef]
- Theodoridou, I.; Karteris, M.; Mallinis, G.; Papadopoulos, A.; Hegger, M. Assessment of retrofitting measures and solar systems’ potential in urban areas using Geographical Information Systems: Application to a Mediterranean city. Renew. Sustain. Energy Rev. 2012, 16, 6239–6261. [Google Scholar] [CrossRef]
- Magliocco, A.; Perini, K. The perception of green integrated into architecture: Installation of a green facade in Genoa, Italy. AIMS Environ. Sci. 2015, 2, 899–909. [Google Scholar] [CrossRef]
- Ichihara, K.; Cohen, J.P. New York City property values: What is the impact of green roofs on rental pricing? Lett. Spat. Resour. Sci. 2010, 4, 21–30. [Google Scholar] [CrossRef]
- Bustami, R.A.; Belusko, M.; Ward, J.; Beecham, S. Vertical greenery systems: A systematic review of research trends. Build. Environ. 2018, 146, 226–237. [Google Scholar] [CrossRef]
- Abdo, P.; Huynh, B.P. An experimental investigation of green wall bio-filter towards air temperature and humidity variation. J. Build. Eng. 2021, 39, 102244. [Google Scholar] [CrossRef]
- Kenai, M.-A.; Libessart, L.; Lassue, S.; Defer, D. Impact of green walls occultation on energy balance: Development of a TRNSYS model on a brick masonry house. J. Build. Eng. 2021, 44, 102634. [Google Scholar] [CrossRef]
- Seyam, S. The impact of greenery systems on building energy: Systematic review. J. Build. Eng. 2019, 26, 100887. [Google Scholar] [CrossRef]
- Olivieri, F.; Neila, J. Experimental study of the thermal-energy performance of an insulated vegetal façade under summer conditions in a continental mediterranean climate. Build. Environ. 2014, 77, 61–76. [Google Scholar] [CrossRef]
- Tseng, Y.-C.; Lee, D.-S.; Lin, C.-F.; Chang, C.-Y. A Novel Sensor Platform Matching the Improved Version of IPMVP Option C for Measuring Energy Savings. Sensors 2013, 13, 6811–6831. [Google Scholar] [CrossRef] [Green Version]
- Hao, X.; Xing, Q.; Long, P.; Lin, Y.; Hu, J.; Tan, H. Influence of vertical GSs and green roofs on the indoor operative temperature of air-conditioned rooms. J. Build. Eng. 2020, 31, 101373. [Google Scholar] [CrossRef]
- Mangone, G.; Kurvers, S.; Luscuere, P. Constructing thermal comfort: Investigating the effect of vegetation on indoor thermal comfort through a four season thermal comfort quasi-experiment. Build. Environ. 2014, 81, 410–426. [Google Scholar] [CrossRef]
- Yeom, S.; Kim, H.; Hong, T. Psychological and physiological effects of a green wall on occupants: A cross-over study in virtual reality. Build. Environ. 2021, 204, 108134. [Google Scholar] [CrossRef]
- Chen, Q.; Li, B.; Liu, X. An experimental evaluation of the living wall system in hot and humid climate. Energy Build. 2013, 61, 298–307. [Google Scholar] [CrossRef]
- Haggag, M.; Hassan, A.; Elmasry, S. Experimental study on reduced heat gain through green façades in a high heat load climate. Energy Build. 2014, 82, 668–674. [Google Scholar] [CrossRef]
- Yang, F.; Yuan, F.; Qian, F.; Zhuang, Z.; Yao, J. Summertime thermal and energy performance of a double-skin green facade: A case study in Shanghai. Sustain. Cities Soc. 2018, 39, 43–51. [Google Scholar] [CrossRef]
- Long, T.; Zhao, N.; Li, W.; Wei, S.; Li, Y.; Lu, J.; Huang, S.; Qiao, Z. Natural ventilation performance of solar chimney with and without earth-air heat exchanger during transition seasons. Energy 2022, 250, 123818. [Google Scholar] [CrossRef]
- Cao, Y.; Pan, S.; Liu, Y.; Yu, H.; Wang, X.; Chang, L.; Ni, M.; Liu, H. The window opening behavior of infant families: A case study during transition season in the cold region of China. Energy Build. 2021, 254, 111588. [Google Scholar] [CrossRef]
- Yu, T.; Wang, D.; Zhao, X.; Liu, J.; Kim, M.K. Experimental and Numerical Study of an Active Solar Heating System with Soil Heat Storage for Greenhouses in Cold Climate Zones. Buildings 2022, 12, 405. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- ISO 7726:1998; Ergonomics of the Thermal Environment—Instruments for Measuring Physical Quantities. ISO: Geneva, Switzerland, 1998.
- American Society of Heating. Refrigerating and Air-Conditioning Engineers (ASHRAE). In ASHRAE Handbook-Fundamentals; ASHRAE: Atlanta, GA, USA, 2009. [Google Scholar]
- QX/T 152:2012; China Meteorological Administration. Standard for Division of Climatic. Meteorological Press: Beijing, China, 2012.
- ASHRAE Standard 55:2017; Thermal Environmental Conditions for Human Occupancy. ASHRAE: Atlanta, GA, USA, 2017.
- ISO 7730:2005; Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria. ISO: Geneva, Switzerland, 2005.
Parameter | Sampling Interval | Measuring Device | Measuring Range | Accuracy |
---|---|---|---|---|
Air temperature (°C) | 1 min | Temp self-recording meter | −40~100 °C | ±0.5 °C |
Relative humidity (%) | 1 min | RH self-recording meter | 0~100% | ±3% |
Black globe temperature (°C) | 1 min | BGT self-recording meter | −20 °C~+80 °C | ±0.4 °C |
Surface temperature of wall (°C) | 1 min | T-type thermocouple | −200 °C~300 °C | ±0.5 °C |
Solar radiation intensity (W/m2) | 1 min | Pyranometer | 0~2000 W/m2 | ±5% |
Maximum | Minimum | Average | |
---|---|---|---|
Outdoor DBT (°C) | 36.3 | 12.5 | 21.9 |
Outdoor RH (%) | 96.8 | 36.6 | 78.0 |
Solar radiation (W/m2) | 901.9 | 0 | 112.7 |
DBT (°C) | RH (%) | |||||||
---|---|---|---|---|---|---|---|---|
Maximum | Minimum | Average | MDTR | Maximum | Minimum | Average | MDRHR | |
VGRoom | 32.5 | 13.0 | 22.1 | 14.5 | 93.2 | 42.8 | 77.7 | 38.1 |
RefRoom | 37.8 | 11.9 | 23.0 | 18.0 | 93.3 | 34.7 | 75.7 | 50.5 |
East Wall | West Wall | South Wall | North Wall | Roof | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Int. surf. | Ext. surf. | Int. surf. | Ext. surf. | Int. surf. | Ext. surf. | Int. surf. | Ext. surf. | Int. surf. | Ext. surf. | ||
VGRoom | Maxi. | 33.6 | 32.8 | 33.5 | 34.7 | 34.1 | 32.8 | 33.5 | 34.0 | 33.8 | 38.6 |
Mini. | 11.8 | 9.6 | 11.9 | 9.4 | 12.8 | 9.8 | 11.8 | 9.4 | 12.0 | 9.1 | |
Aver. | 21.7 | 20.6 | 21.7 | 20.7 | 22.3 | 20.7 | 21.6 | 20.7 | 21.6 | 19.9 | |
RefRoom | Maxi. | 38.6 | 54.1 | 41.4 | 63.8 | 39.0 | 46.0 | 39.3 | 40.9 | 43.2 | 68.1 |
Mini. | 11.1 | 9.1 | 11.2 | 8.7 | 10.9 | 9.1 | 10.9 | 8.9 | 10.7 | 7.6 | |
Aver. | 22.7 | 22.9 | 22.7 | 23.1 | 22.5 | 22.3 | 22.6 | 22.3 | 22.9 | 24.0 |
DBT | RH | |||||
---|---|---|---|---|---|---|
p1 | p2 | R2 | p1 | p2 | R2 | |
VGrRoom | 0.7942 | 4.666 | 0.9215 | 0.7492 | 19.28 | 0.8822 |
RefRoom | 0.9859 | 1.338 | 0.9141 | 0.9392 | 2.414 | 0.8970 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, X.; Liu, L.; Tan, H.; Lin, Y.; Hu, J.; Yin, W. The Impacts of Greenery Systems on Indoor Thermal Environments in Transition Seasons: An Experimental Investigation. Buildings 2022, 12, 506. https://doi.org/10.3390/buildings12050506
Hao X, Liu L, Tan H, Lin Y, Hu J, Yin W. The Impacts of Greenery Systems on Indoor Thermal Environments in Transition Seasons: An Experimental Investigation. Buildings. 2022; 12(5):506. https://doi.org/10.3390/buildings12050506
Chicago/Turabian StyleHao, Xiaoli, Liping Liu, Hang Tan, Yaolin Lin, Jinhua Hu, and Wei Yin. 2022. "The Impacts of Greenery Systems on Indoor Thermal Environments in Transition Seasons: An Experimental Investigation" Buildings 12, no. 5: 506. https://doi.org/10.3390/buildings12050506
APA StyleHao, X., Liu, L., Tan, H., Lin, Y., Hu, J., & Yin, W. (2022). The Impacts of Greenery Systems on Indoor Thermal Environments in Transition Seasons: An Experimental Investigation. Buildings, 12(5), 506. https://doi.org/10.3390/buildings12050506