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Abstract: Within traditional design processes, decisions are often made based on individualistic
values and late-stage assessments conducted on a predefined set of design alternatives potentially
leading to suboptimal design decisions and conflicts. The issues are further amplified by the growing
complexity of construction project management where an increasing number of stakeholders are
involved. To address those issues, a shift is needed towards a collaborative early stage optimization-
based design process. The current optimization-based design approaches are not appropriately
integrating stakeholders and their preferences in the optimization process and thereby not reflecting
the real-life design and construction process. In this study, we present a pioneering multi-stakeholder
design methodology combining preference function modeling theory and a priori optimization
enabling stakeholders to find the group-optimal design fairly representing their preferences. The
application of the developed methodology is demonstrated on a real-life multi-storey building
design case. The study provides a novel approach for managing design and construction projects
for academic and industry stakeholders. It also sets the foundation for the further development of
stakeholder-oriented optimization-based design.

Keywords: design and construction management; preference function modeling; multi-stakeholder
decision-making; concurrent design optimization; multi-objective optimization; feasibility and
desirability integration

1. Introduction

The global challenges caused by global warming, rapid urbanization, economic insta-
bility, and the ever-reducing affordability of housing call for rethinking and improvement
of the ways we design and construct new buildings and renovate the existing ones. Aiming
to answer this call, the research agenda of “better buildings” has been expanding rapidly
over the last several decades, resulting in the development of multiple research domains
and themes such as green buildings [1–4], low- and zero-carbon buildings [5–8], passive
buildings [9,10], sustainable buildings [11,12], circular buildings [13,14], resilient build-
ings [15,16], smart buildings [17,18], and healthy buildings [19,20]. Some of the themes
have made their way to statutes, building codes, standards, and certification schemes and
certain ideas have been adopted by practitioners but there is still a very long way to go if
we want to meet present and future challenges.

Moving towards practical implementation of “better construction” will have a major
effect on the way construction projects are being developed. The project development and
design processes in the construction industry are still often disconnected and based on
individualistic principles where each involved party seeks to maximize their own local gains
and optimize their own part of the project development chain, which can result in suboptimal
performance on the project level [21,22]. With the increasing complexity of the projects and
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a greater number of internal and external stakeholders and perspectives involved, it will
become harder to come to a consensus and that, as a consequence, could result in conflicts,
project delays, and expanding project costs [4,23–26]. Moving forward, the process will need
to become more integrated, streamlined, and actively involve multiple stakeholders at all
the stages of project development, starting from the earliest ones [21,25,27,28].

Further, effective implementation of “better construction” will not be possible without
a shift away from the currently prevailing assessment-based project development approach.
Assessments play an important role in the construction sector but, in their current form, they
cannot ensure the optimality of the final design. For example, LCA is a well-developed and
standardized assessment method that sees ever-increasing adaptation by the construction
sector. In the Netherlands and France, it is now mandatory to conduct an LCA for all
new construction projects [29]. However, it relies on comprehensive and detailed data that
are often not available in the early stages of project development. Thus, LCAs (and other
assessments) are often conducted in the late stages of project development when it is hard
or not even possible to change the final design [30]. In addition, assessments often imply
that the choice is made among a set of predefined alternatives, but this approach cannot
guarantee that there is no superior design option that was for some reason not included in
the assessment.

The shift from assessment-based methods to optimization-based ones promises a
number of major benefits. It can enable stakeholders’ collaboration from the early stages
of the project’s development, help in finding a consensus, ensure that the stakeholder’s
preferences (here and in the following text we use the term “preference” to define the
expected value (economic, environmental, social, aesthetic, or any other) of the object
designed for a stakeholder in an a priori optimization-based design process) are reflected in
the final design, speed up the project’s development and delivery, and, ultimately, provide
a higher value for stakeholders involved. Not surprisingly, this area has received a lot
of attention in recent years; e.g., refs. [31,32] provided a review of algorithms and tools
used in building design optimization, ref. [33] developed a review of simulation-based
optimization methods with a focus on the challenges that the field is facing, and [34]
reviewed the energy-efficiency optimization of buildings from the perspective of architects.

As pointed out above, the number of studies on optimization in building design is
quite large. Nevertheless, there are still some issues that have not been addressed and
there is space for improvement. Most of the studies on building design optimization
that can be found in the literature focus on the technical aspect of the process, ignoring
the stakeholders’ involvement component and the group dynamics of the real-world
design process. Those studies are predominantly based on a posteriori approaches and
the construction of Pareto frontiers for multiple conflicting objectives (e.g., [31,35–38]). In
such approaches, stakeholders are mostly seen as taking part at the end of the optimization
process and selecting an alternative from the Pareto frontier or are not even considered
at all. However, in real-world design processes, stakeholders are an essential part of the
process and if we want to fairly model a group decision-making process, the result of the
optimization should respect their preferences. Further, while a posteriori approaches have
their advantages, they imply that stakeholders and their preferences come at the end of the
optimization process. In contrast, the real-world design process starts from stakeholders
and their preferences and it is, thus, inherently an a priori preferences-first process. In
addition, a posteriori optimizations can become very complex and hard for stakeholders to
understand as the number of objectives increases. Those approaches are also generally very
computationally demanding and slow as they rely on the calculation of multiple optimal
solutions (and there can be hundreds or thousands) and each solution requires a separate
optimization run [39].

Some studies have coupled a posteriori optimization and a Pareto frontier search with
a consequent selection of the final solution utilizing multi-criteria decision-making methods
(MCDMs) (see, e.g., [40–43]). While those approaches are a logical extension of pure a
posteriori optimization and make the decision-making process easier for stakeholders, they



Buildings 2022, 12, 527 3 of 21

are still not without issues. The whole process becomes even more resource-demanding
and complex as, in addition to the generation of multiple solutions, an MCDM process
needs to take place. Making on-the-fly changes to the problem configuration (e.g., adding
another objective) in such systems is hard and time-consuming as it would require a full
recalculation of Pareto frontiers and re-evaluation of the consecutive MCDM process.

When it comes to a priori approaches where stakeholders provide their preferences up
front and separate objectives are aggregated into one with a consequent single-objective
optimization run, only a few studies can be found that apply it to building design opti-
mization and decision-making [44–46]. Yet, those studies only consider objectives’ weights
as a form of representing stakeholders’ preferences. In real-world scenarios, however,
stakeholders also have some wishes and preferences regarding the numerical values of
objectives they are willing to achieve but those considerations are not taken into account.
For example, if a stakeholder wants to maximize the profit, they also normally have some
expectations for the profit level they are targeting, the level that is below the target but still
deemed to be acceptable, and the level that is not acceptable.

A priori approaches are sometimes criticized for their inability to illustrate the trade-
offs between objectives in a way that a Pareto frontier can. However, making the a priori
process iterative or adding a sensitivity analysis can help to resolve this. In particular,
through an iterative approach stakeholders can learn how their inputs and changes are
impacting the optimum and provide a similar illustration of the underlying trade-offs and
interplays between the objectives. In addition, a priori approaches are more stakeholder-
oriented, faster, and easier to understand. They are also sufficiently more flexible when
it comes to making changes to the optimization problem configuration. Due to these
qualities, their application can make the design process more dynamic and flexible and
foster collaboration.

Another general shortcoming of most of the studies on building design optimization
and decision-making is in their approach to measuring and modeling stakeholders’ prefer-
ences for multiple objectives. As mentioned before, in building design optimization studies,
stakeholders’ preferences at best are provided in the form of objectives’ weights. A notable
exception to this is a series of studies by Geyer [47–49] that utilized preference functions
(or utility functions, as they are called by the author) to describe the variation in the de-
sirability of different numerical values of objectives for stakeholders. However, those
studies are still reliant on the building of Pareto frontiers with the associated downsides
already mentioned above. When it comes to studies utilizing MCDMs, most are based
on methods (with the most common being analytic hierarchy process (AHP) [50,51]) that,
as was shown by Barzilai in [52], do not measure and aggregate preferences in a mathe-
matically correct way and utilize the operations of addition and multiplication on scales
where those operations are not defined. Barzilai has also proposed an alternative theory
for preference modeling that overcomes the shortcomings of the existing methods, the
preference function theory (PFM) [52]. Binnekamp [53] has made the first step in applying
this theory within the built environment domain. However, this work only presented an
initial proof of concept and not an operational optimization-based design methodology
that can be applied to real-world projects.

To address the abovementioned issues, this work aims to answer the following questions:

• How can early stage design optimization be implemented?
• How can we ensure that the design optimization properly reflects the real-world

design and construction processes?
• How can we better involve stakeholders in the design optimization process?
• How should stakeholders’ preferences be measured and used within the optimization?
• How can optimization and stakeholder-driven design be integrated within a decision-

making tool for construction management?

To answer these questions and fill the existing gaps, this paper focuses on the main
objective of developing a novel methodology for integrated stakeholder-oriented building
design optimization that is based on an iterative a priori approach for finding the best-
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fitting design solution. The methodology is operationalized by means of a multi-criteria
design optimization and decision-making tool that:

• Reflects the real-world project design and construction process where stakeholders
play an essential role;

• Automates the decision-making process within building design and construction;
• Uses a mathematically correct way of preference modeling by utilizing the PFM theory;
• Is not computationally demanding, intuitive in use, and adaptive to changing stake-

holders’ demands;
• Can be applied to the early stages of design and construction development.

Tied to the main objective, this work also addresses the two ancillary objectives of
applying the proposed methodology and the tool developed to a demonstrator case of early
stage multi-storey building design optimization and outlining the directions for the further
development of stakeholder-oriented optimization-based design.

2. Materials and Methods

This section describes the developed methodology step-by-step and Figure 1 shows the
overall flowchart of the methodology. The numbers in the figure refer to the steps below.
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Step 1. Defining the design problem

Our method starts with stakeholders, who provide the necessary information to set
up the design problem. They start by defining design variables (defined by a vector x =
(x1, x2, . . . xN)) that represent the design parameters that can be varied; the bounds of the
design variables (lbi ≤ xi ≤ ubi, i = 1 . . . N) that provide the interval in which the design
variables can change; objectives ( f1(x), f2(x), . . . fM(x)) that quantify the performance of
the design across different domains (economic, environmental, social, functional, aesthetic,
and so on); inequality constraints (gj(x) ≤ 0, j = 1, 2, . . . J); and equality constraints
(hk(x) = 0, k = 1, 2, . . . K).

Step 2. Finding the minima and maxima of the objective functions

At the next step, we run multiple optimizations (the total number of which is equal
to 2 ∗M) in Matlab to find the minima and maxima of the objective functions given the
data on design variables, bounds, and constraints. The optimization problems are defined
as follows:

min
x

fm(x), m = 1, 2, . . . M (1)

min
x
− fm(x), m = 1, 2, . . . M (2)

subject to
gj(x) ≤ 0, j = 1, 2, . . . , J (3)

hk(x) = 0, k = 1, 2, . . . , K (4)

lbi ≤ xi ≤ ubi, i = 1, 2, . . . , N (5)

For compactness, linear and nonlinear constraints are grouped together: gj(x) in-
cludes both linear and nonlinear inequality constraints and hk(x) includes both linear and
nonlinear equality constraints. The algorithm used in the optimizations is selected based
on the objective functions on hand.

Step 3. Defining preferences

As was mentioned in the Introduction section, the studies that are currently available
in the literature either do not utilize preferences at all (e.g., in most a posteriori studies
based on building a Pareto frontier), utilize them only partially (e.g., only use objectives’
weights as stakeholders’ inputs), or rely on preference modeling approaches that were
shown to have issues when it comes to the mathematical foundations. For example, in
the case of one of the most commonly used decision-making methods—analytic hierarchy
process (AHP)—the preference is measured by defining the ratio p1/p2, where p1 and p2
are preferences for two alternatives. However, as Barzilai argues in [52], such a ratio is not
well defined as a ratio is not defined for two time values or potential energies.

The design optimization methodology proposed in this study is based on the PFM
theory proposed by Barzilai [52]. Instead of commonly used utility and ratio scales, the
method relies on measuring preferences on affine scales, thus making the mathematical
operations possible. The affine scale is defined as:

k =
p1 − p2

p3 − p4
(6)

where p1, p2, p3, p4 are four preference points on an affine scale defined by the scalar
value k. The number of points needed to define the scale can be reduced to three
(in this case, k = p1−p2

p2−p3
) but not less than that. By measuring preferences in this way,

we avoid issues related to the selection of the unit and the absolute zero of measurement
that are inherent in other methods commonly used in the literature. This enables us to use
preferences as a part of the design optimization and group decision-making process. In
this paper there is no room for an extensive description to the fundamentals of PFM theory
and only the necessary high-level findings are incorporated. For further details the reader
is referred to Barzilai [52].
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In our method, the elicitation of preferences is implemented in a visual manner. In
accordance with the PFM methodology, preferences are measured on a preference scale that
ranges from 0 to 100. For each of the objectives, a stakeholder needs to provide three points
that represent the worst possible case (measured at 0 on the preference scale), the best
possible case (measured at 100 on the preference scale), and a point in-between. In order to
simplify the task for the stakeholders, we calculate the minima and maxima of each of the
objective functions (see the previous step) and select those as the worst and the best cases.
Then, stakeholders need to provide only a single in-between point. However, there might
be cases where a stakeholder disagrees with the predefined best and worst options. In
this case, the values can be over-ridden and the stakeholder can indicate their own values
for the best and worst options. Currently, we are working with three preference points.
However, within a satellite research project, we are also conducting experiments with
real-world stakeholders to determine the optimal way of collecting preference information.
If the current three-point method is found to not be flexible enough, we could provide
stakeholders with the possibility of selecting more points.

When three points are provided, we can build a curve that passes through them—
a so-called preference curve. The mathematical representation of a preference curve is
referred to as the preference function. In order to fit a curve passing through three points,
we use the Piecewise Cubic Hermite Interpolating Polynomial (PCHIP). Compared with
the standard cubic spline, the PCHIP eliminates overshoots (the fitted curve never goes
above the highest point), which is an important quality when dealing with preferences that
should be mapped on a fixed interval. Figure 2 shows an illustration of a preference curve
building on a hypothetical example of a construction costs objective.
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By means of preference functions (p1( f1), p2( f2), . . . , pM( fM)), we convert our prob-
lem into the preference form where the ultimate goal is to maximize the aggregated prefer-
ence score. Our objectives can, thus, be rewritten as:

f ∗1 (x) = p1( f1(x)), f ∗2 (x) = p2( f2(x)), . . . , f ∗M(x) = pN( fN(x)) (7)

All objectives are now measured on the preference scale, thus avoiding the issues
arising from the difference in the unit of measurement between the objectives.

Step 4. Specifying weights

Stakeholders provide weights (w1, w2, . . . , wM) for each of the objectives. The weights
should give 1 in sum. Within a collaborative design process, one might expect the weights
to be spread among the objectives. However, in some cases, there might be a single
stakeholder whose preferences dominate the rest of the stakeholders (e.g., the investor).
In this case, most or even all of the weight can be put towards this stakeholder and the
problem will turn into a single-stakeholder one. The resulting design solution will be the
one that satisfies the preferences of this single stakeholder.

Step 5. Setting up the optimization problem

The design variables, their bounds, the objectives, and the constraints are now fed into
Matlab and the optimization problem is set up. Various algorithms and approaches can be
utilized at this step. We use a genetic algorithm (GA) as it can handle complex nonlinear
mixed-integer optimization problems.

Step 6. Initial population generation

Based on the input data, the GA generates the initial population where each member
of the population represents a possible design solution. For each member, we calculate the
values of the objective functions in the preference form (measured on the preference scale).

Step 7. Preference aggregation and evaluation

Now, when we have preference scores for each of the objectives for all members
of the population, we need to aggregate those preferences into a final score that best
reflects all the individual values. This aggregated preference score is used as the final
optimization objective that the GA is trying to maximize. A straightforward and commonly
accepted approach for aggregating preferences is to use the weighted mean of the individual
preferences. However, this is not correct as the operations of addition and multiplication
are not defined on this scale (see the information on the measurement of preferences
above). Instead, aggregation should be done within the affine space to synthesize an
overall preference score that provides the “best” fit of all weighted (relative) scores for all
the stakeholders’ objectives. In other words, the correct way of aggregating preference
scores is based on finding the aggregated preference that minimizes the least-squares
difference between this overall preference and each of the individual scores in the affine
space (Barzilai [52]).

Therefore, our final optimization problem can be rewritten as:

min
x
− P∗( f ∗1 (x), f ∗2 (x), . . . , f ∗M(x), w1, w2, . . . , wM) (8)

subject to
gj(x) ≤ 0, j = 1, 2, . . . , J (9)

hk(x) = 0, k = 1, 2, . . . , K (10)

lbi ≤ xi ≤ ubi , i = 1, 2, . . . , N (11)

where P∗ is the aggregated preference score calculated using the PFM theory.
The synthesis of the aggregated preference using the PFM theory was implemented

as a solver inside of the software tool called Tetra [54]. Tetra is a standalone multi-criteria
decision-making program that enables the selection of the best alternative for both single-
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and multi-stakeholder cases. However, since Tetra was originally developed as a tool for
decision-making, it relies on stakeholders providing a list of possible alternatives to select
from and, thus, is not well-suited for use in optimization problems where the alternatives
are generated and not predefined. To overcome this, instead of the desktop version, we use
a web version of Tetra ver. 3.5.1. It runs on a server and accepts data (preference scores
and weights) in a special format based on XML. The calculations take place on the server
and the results are provided as an XML file. In our case, the resulting file contains the
aggregated preference scores for each member of the population. Tetra, thus, plays the role
of an external objective function connected to the GA in Matlab.

The results are then evaluated by the GA and the algorithm checks the termination
criteria. If none are satisfied, it proceeds to the next generation (Step 8). If a termination
criterion is satisfied, we proceed to Step 9.

Step 8. Next generation

The GA obtains the next generation of the population by the means of survival,
mutation, and crossover and iterates through Step 7.

Step 9. Selecting the best individual

When a termination criterion is satisfied, the GA selects the best individual from the
population. The best individual is a representation of the optimal design solution.

Step 10. Results verification

The solution is then presented to stakeholders. If the result satisfies the stakeholders
and no changes to the problem configuration are necessary, it is selected as the final design.
Otherwise, the stakeholders can decide to change some parameters of the design problem or
modify their inputs. For example, they might want to modify their preferences or objective
weights or bring more stakeholders to the table. In that case, the process returns to the
beginning and starts again.

After each iteration, the stakeholders can compare the optimal designs from each run
between each other. Through that, they can obtain an understanding of how their actions
are influencing the result. This can help to uncover bottlenecks and have an educational
effect. The process stops when the stakeholders agree that no more changes are required.

3. Demonstrator Case
3.1. Description of the Demonstrator Case Building

The demonstrator case was developed in cooperation with Heijmans (Rosmalen,
the Netherlands), one of the largest design and construction contractors in the Nether-
lands. The selected case aims to demonstrate the application of the methodology de-
scribed above and is applied to the early design stage of non-residential multi-storey
building development.

The demonstrator case is based on Autodesk Revit models provided by Heijmans. As
our case is concerned specifically with the early stages of project development, the building
models only included three of six shearing layers: Site, Structure, and Skin (in accordance
with the classification by Stewart Brand [55]). The original models were not parametrized
and had a fixed gross floor area (1000 m2) and number of floors (5). In total, three complete
building models were shared with us, each characterized by different sets of materials used
for the façade and the structural elements:

• A concrete frame and brick façade with Rockwool insulation;
• A structural steel profile frame and hollow concrete slabs with a steel sandwich panel

façade with polyisocyanurate insulation;
• A cross-laminated timber frame with a wooden joist floor and a timber frame façade

with mineral wool insulation.

The models are shown in Figure 3. Details of the material composition for each model
can be found in Appendix A.
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by Heijmans.

In order to use the models in the optimization, they were parametrized in the
following way:

• First, for each of the models, the amount of materials per floor was calculated. As
each model includes two parts—a façade and a frame—separately, in total six initial
calculations were made. The materials used in Autodesk Revit models were mapped
to the closest possible analogues available in the LCA software OneClick LCA [56];

• The scaling of the floor area was implemented in relation to the original total
gross area:

a. It was assumed that the window-to-wall ratio (WWR = 0.35) and the ratio
of length to width of the building (3.49) will be preserved when the floor
area changes;

b. The total volume of materials used in the ceiling and vertical structural elements
was assumed to change proportionally to the total floor area;

c. The total volume of materials used in walls was assumed to change proportion-
ally to the perimeter length of the building whilst taking into account the scaling
of the windows’ area;

d. The total volume of materials used in horizontal structural elements was as-
sumed to be proportional to the length or the width of the building (depending
on the element orientation);
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• To estimate the total volume of materials used in a building, first, the volume per storey
was calculated based on the floor area and then the resulting value was multiplied by
the number of floors;

• The resulting total volume of materials used in a building was calculated based on
the floor area and the number of floors. The foundation of all building variants was
assumed to be the same (500 mm thick concrete).

The material characteristics (embodied carbon emissions and prices) were obtained
from the database available inside of OneClick LCA [56]. Embodied carbon emissions are
based on environmental product declarations with emissions from transportation added to
them. Table 1 provides information on all material characteristics used in the model.

Table 1. Characteristics of materials that were used in this study.

Material (the Full Name as it Appears in OneClick LCA) Unit
Embodied
Carbon, kg
CO2eq/Unit

Total Emissions
from Transport,
kg CO2eq/Unit

Price, EUR/Unit

Ready-mix concrete, normal strength, generic, C 28/35 (4000/5000 PSI) with
CEM I, 0% recycled binders (300 kg/m3; 18.7 lbs/ft3 total cement) m3 292.13 18.72 344.87

Ready-mix concrete, normal-strength, generic, C 40/50 (5800/7300 PSI), 0%
recycled binders in cement (400 kg/m3/24.97 lbs/ft3) m3 386.96 18.72 348

Rock wool insulation, unfaced, L = 0.035–0.04 W/mK, 40 mm, 1.2 kg/m2, 30
kg/m3, Lambda = 0.035 W/(m.K), ProRox LF 970 (ROCKWOOL) m3 35.25 0.07 57

Wall bricks, 575 kg/m3 (Ziegel) m3 138.29 1.32 115
Hot-dip galvanised structural steel, 0.45–1.5 mm, 7850 kg/m3 (Ruukki) m3 20,794.65 111.24 5976.96

Structural steel profiles, generic, 90% recycled content (typical), I, H, U, L,
and T sections, S235, S275 and S355 m3 6033.17 111.24 5976.96

Hollow core concrete slab, HDF27, C 40/50, 270 mm, 344 kg/m2, reinforcing
12.7 kg/ton (Strängbetong) m2 46.78 0.79 60.64

Aluminium profile, 2700.0 kg/m3 m3 29,289 48.60 8920
Sandwich panel with polyisocyanurate (PIR) foam and double steel siding,
U = 0.21 W/(m2K), 100.9 mm (Total), 0.5 mm (Outer sheet), 0.4 mm (Liner
sheet), 100 mm (Insulation), 12.11 kg/m2, 120.02 kg/m3, SAB WB 100.1000

(SAB-profile, Tata Steel Europe)

m2 37.2 0.20 49.92

Aluminium profiled sheets, thickness 0.7 mm, height of profile 65 mm, 2.9
kg/m2 (European Association for Panels and Profiles) m2 27 0.03 6.24

Cross-laminated timber, 491.65 kg/m3, T: 51–500 mm, max width: 2.95–4.80
m, max length: 16–20 m, X-Lam (Studiengemeinschaft Holzleimbau e.V.) m3 187.23 4.15 544.93

Wooden joist floor assembly, 278 mm, incl. 225 mm mineral wool insulation m2 36 0.45 132
Timber frame external wall assembly, incl. mineral wool insulation m2 65 0.73 110

3.2. Design Problem Specification

For the demonstrator, we assumed the following set of design variables: floor area,
number of floors, set of the building’s envelope materials, set of the building’s internal
structural frame materials, and distance from the nearest railway station (see Table 2).

Table 2. Design variables used in the demonstrator case.

Name Bounds Type

Floor area 700–2500 m2 Continuous
Number of floors 2–10 Integer

Set of the building’s
facade materials

1—Brick and Rockwool insulation
2—Steel sandwich panel façade
with polyisocyanurate insulation
3—Timber frame façade with
mineral wool insulation

Categorical

Set of the building’s structural
frame materials

1—Concrete frame
2—Structural steel profile frame
and a hollow concrete slabs floor
3—Cross-laminated timber frame
with a wooden joist floor

Categorical

Distance from a railway station 0.2–15 km Continuous
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For objectives, the following were selected:

• Construction costs (EUR) (only includes the cost of materials, and all other costs
(e.g., labor) were assumed to be constant);

• Embodied carbon emissions (kg CO2eq) (based on environmental product declarations
(EPDs));

• Expected profit from renting the building out (EUR/month) (based on the total floor
area of the building and the rental costs per m2);

• Location (km) (characterized by the distance from the nearest railway station to a
planned construction site).

The final equations used for the calculation of objectives can be found in Appendix B.
It is worth mentioning that in real-world problems such a simplification of objectives
is often not possible. However, as was mentioned above, the purpose of the simplified
demonstrator case is to illustrate the methodology developed. In the future, we expect to
work with more comprehensive building design cases where the calculations of objectives
(building performance indicators) will be performed using external software tools such
as EnergyPlus [57] for building energy consumption, OpenLCA [58] or Brightway2 [59]
for the calculation of environmental impacts, etc. The methodology presented in this
paper is universal and acts as a decision-making layer that can be built on top of any
underlying calculations.

For this demonstrator, we did not include any constraints and the solution space is
only limited by the design variables’ boundaries. However, the model can work with both
linear and non-linear constraints.

3.3. Optimization Problem Specification

Given the design variables (Table 1) and objectives (refer to Appendix B for the
equations), the optimization problem we are dealing with is a mixed-integer nonlinear
optimization problem. To solve the optimization problem, we used the ga solver in Matlab.
The parameters of the solver were tweaked over time in order to ensure the desired speed-
to-precision ratio. In order to decrease the running time and the number of requests sent
to the server, the algorithm was set up to work in the vectorized form. The final chosen
parameters of the solver are provided in Table 3. If a parameter is not mentioned in the table,
the default value provided in Matlab was used. A relatively low value of the crossover
fraction was selected in order to preserve the diversity of the population. It was also
observed that this ratio results in shorter running times compared with other values.

Table 3. ga solver parameters.

Parameter Value

Population size (‘PopulationSize’) 250
Max. generations (‘MaxGenerations’) 400

Max. stall generations (‘MaxStallGenerations’) 20
Function Tolerance (‘FunctionTolerance’) 1E-9

Vectorized form (‘UseVectorized’) true
Elite population size (‘EliteCount’) 30

Crossover fraction (‘CrossoverFraction’) 0.5

As was mentioned in the Methods section, before running the main optimization
routine, we first found the minima and maxima for all of the objective functions taking into
account the design variables’ bounds. Table 4 provides those values for all objectives used
in the demonstrator.
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Table 4. Minima and maxima of objective functions.

Name Minimum Value Given the
Design Variables’ Bounds

Maximum Value Given the
Design Variables’ Bounds

Embodied carbon, kg CO2eq 241,950 3,992,042
Construction costs, EUR 272,675 5,636,095

Profit from rent, EUR 288,978 5,162,471
Location, km 0.2 15

Once the minima and maxima have been calculated, stakeholders construct preference
curves for objectives they are interested in. For the first demonstrator case, we did not
involve real stakeholders and instead provide a possible scenario of the design development.
In order to illustrate the iterative nature of our method, we simulated a five-iteration design
optimization process. Thus, the optimization model was run five times with different
input parameters. For the purposes of comparison, we also ran the same optimization
but using the weighted mean of preferences instead of Tetra for the aggregation of the
individual preference scores. A detailed description of the parameters used in each iteration
is provided in the next section.

3.4. Description of the Design Process Iterations Used in the Study

The iterative a priori process is one of the key features of the proposed method.
It makes it possible to make major changes to the problem configuration (e.g., adding
or removing objectives, changing stakeholders’ preferences, or modifying constraints)
with relative ease and quickly see the outcome of those changes. It allows stakeholders
to explore the underlying causal relationships and collaborate in real-time and has an
educational effect.

We illustrate the iterative process and a possible design problem evolution on the
demonstrator case. Figure 4 panel (a) provides a visual overview of the iterations and the
corresponding input parameters used in the optimization runs.
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Iteration 1

In the first iteration, we assumed that stakeholders are only interested in minimizing
the construction costs and maximizing the profit from rent. These two objectives have an
equal weight of 0.5 and the two other objectives were omitted and, thus, have no weight.
The preferences are linear on the interval of values that the objective functions take.

Iteration 2

The stakeholders have made changes to their preference inputs that are now nonlinear.
The requirement for Construction costs has become more strict (the preference score for
the middle point decreased from 50 to 20), while for Profit from rent the change is in
the opposite direction, as it has been relaxed (the preference score for the middle point
increased from 50 to 80).

Iteration 3

It was decided that Location should also be considered one of the objectives. This
third objective was brought in, and the preference curve was defined as being equal to 0 at
the extreme points (0.2 km and 15 km) with a peak preference at 5 km. All three objectives
have equal weights.

Iteration 4

A new stakeholder was involved that is interested in bringing in environmental
considerations. Thus, a fourth objective—Embodied carbon emissions—has been added.
The preference curve for Embodied carbon emissions was assumed to be linear and the
weights of all four objectives to be equal.

Iteration 5

It was decided that the profit objective is more important than the other objectives.
Thus, the weights of the objectives were modified. The weight for the Profit from rent
objective was increased to 0.4 while all other objectives had an equal weight of 0.2.

4. Results of the Demonstrator Case

Figure 4 panel (b) shows how the optimum design changes at each iteration. The top
row shows the optimal values of variables and the bottom row shows the corresponding
values of the objective functions. Our starting design at Iteration 1 is characterized by the
largest possible Profit from rent. When the preference curve for Construction costs was
modified to be more strict at Iteration 2, the optimum shifted significantly and the floor area
decreased from 2500 m2 to 1180 m2. As a consequence, the profit saw a two-fold decrease
while construction costs reduced from 3.3 million EUR to 1.5 million EUR. The introduction
of the third objective at Iteration 3 resulted in Distance to a railway station increasing from
0.2 km to 5 km. The floor area has seen a slight increase (by 51 m2), resulting in a minor
increase in Construction costs and Profit from rent. The inclusion of Embodied carbon
emissions into the model at Iteration 4 had a major effect on the optimum: the number of
floors and the floor area reached their lower boundaries. In this configuration, Construction
costs reached the absolute possible minimum. Embodied carbon emissions were also close
to the absolute minimum. However, while the preferences related to Construction costs
and Embodied carbon emissions were well-satisfied, Profit from rent decreased from the
best possible value of 5.2 million EUR/month at Iteration 1 to a near-bottom value of
0.3 million EUR/month. Increasing the weight of Profit from rent at Iteration 5 resulted in
it growing to 4.2 million EUR/month. The floor area increased to 2031 m2 and the number
of floors moved back from 2 to 10. In addition, the optimum set of the building’s structural
frame materials changed from 2 (Structural steel profile frame and a hollow concrete slabs
floor) to 3 (Cross-laminated timber frame with a wooden joist floor).

From the simulation results, it can be observed that the floor area is the most sensitive
variable to the model parameters. The set of the building’s facade materials variable, on the
contrary, is not sensitive and did not change in any of the iterations. Comparing the results
obtained using Tetra for handling the preferences and the aggregation using the weighted
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mean, it can be seen from Figure 4 panel (b) that the difference in the optimal design is large.
While in the simplest configuration with two objectives and linear preferences at Iteration 1
the optima were exactly the same, the difference grew with each new iteration and reached
its peak at the final iteration. Thus, the importance of using a correct method for handling
the preferences increases with the complexity of the problem. While our demonstrator
case was relatively simple, many of the real-world design optimization problems would
include even more stakeholders and objectives and using a simplistic method of preference
aggregation (such as the weighted mean) can result in a suboptimal design.

5. Discussion
5.1. Limitations

The limitations of this study are related to the demonstrator case. Since the main aim
of the paper was to present a novel methodology for design optimization and decision-
making, the demonstrator case was chosen to be relatively simplistic. Only a limited
set of variables and objectives was used. The building model was not detailed (it was
only concerned with the Site, Structure, and Skin shearing layers) and was manually
parametrized in a simple manner that leaves some room for improvement. Further, the
approach to the data collection was also simplified and most of the data originated from
OneClick LCA. Moreover, the iterative design process and all the corresponding parameters
used in the demonstrator did not involve real stakeholders and were pre-defined. Lastly, we
assumed that in our case each stakeholder only provides preferences for a single objective.
In real-world scenarios, there can be cases where several stakeholders have overlapping
preferences for a single objective. Such cases can be handled within the PFM methodology
but have not been considered yet.

Nonetheless, despite the abovementioned simplifications, we believe that the demon-
strator case study developed was more than enough to illustrate the application of the
proposed method. Its relative simplicity also made it easier to visualize the results. Our
future work will aim to address all the limitations and apply the model to more complex
real-world design projects.

5.2. Steps for Further Development

Our future work will focus on refining and extending the proposed methodology
and applying it to more complex real-world design and construction problems. The next
steps include:

• Developing the user interface and running a series of workshops with real-world stake-
holders in order to obtain feedback and refine the methodology and the
tool (‘Preferendus’);

• Validation of the methodology and the developed tool in design offices on more
complex cases that include more objectives from different domains (expanding it
to cover energy modeling, social aspects, circularity, resilience, ecosystem services
provision, and more) and more complex stakeholder structures (e.g., stakeholders
with overlapping preferences);

• In addition to whole-building design, implementing the methodology for more specific
cases of design decision-making and specifically the selection of building materials.
The selection of building materials is a challenging topic due to the overwhelming
number of existing options, each promising specific advantages (e.g., traditional
mass-market materials vs. circular materials vs. low-carbon materials vs. bio-based
materials), and the selection process can be streamlined and simplified by imple-
menting an automated preference-based decision-making system. In this context, the
methodology will also be applied to a case of insulation material selection within the
NRG-Storage Horizon 2020 project that this work is affiliated with;

• Integration of the methodology with parametric building design software (e.g., Rhino
Grasshopper). Parametric design software allows us to seamlessly connect the building
design variables to multiple different objectives such as energy consumption, envi-
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ronmental impacts, thermal comfort, and structural strength. Building a stakeholder-
oriented layer on top of the existing parametric design functionality would allow us
to properly account for stakeholders’ preferences and have a fully integrated design
process from preferences to the final CAD model;

• Extending the methodology to include a stalemate resolver for the automated resolu-
tion of design deadlocks where the design solution space becomes over-constrained
by stakeholders and no feasible solution can be found without relaxing some of the
negotiable constraints (by negotiable constraints, we mean design constraints specified
by stakeholders that can, in theory, be moved and modified during the design process
such as the maximum budget, etc.);

• Developing the methodology to further allow for finding a compromise design solution
using a preference-based goal attainment approach;

• As the core methodology presented in this study can be applied to preference-based
optimization (any optimization process that should consider stakeholders’ preferences)
in any context, exploring the possibility of expanding the tool to be applicable in other
fields such as supply chain management, asset management, etc.

6. Conclusions

The novel methodology presented in this study fills the existing gaps outlined in the
Introduction section. We showcased a new multi-criteria optimization and decision-making
tool that better reflects the real-world design process and utilizes the preference function
modeling theory that resolves issues related to the measurement and aggregation of prefer-
ences found in the literature. The tool enables decision-makers to find the final design that
reflects all stakeholders’ concurrent preferences: the best fit for common purpose. Based
on the iterative a priori approach, the tool has the advantage of being flexible and fast,
allowing stakeholders to explore and learn about the consequences of their actions.

The application of the tool was demonstrated on a multi-storey building design
optimization case study with a focus on early stage design. The case highlighted the main
difference of the tool compared with the existing solutions—the stakeholder-first approach.
The preferences of stakeholders were considered as a starting point and the solution
obtained reflected the preferences of all stakeholders involved. Compared to the most
commonly used a posteriori approaches, our study expands the commonly used notion
of preference, as we consider not only the weights of objectives but also the expectation
levels for different numerical values of objective functions. This makes it possible to ensure
that the optimum obtained has a better alignment with the predetermined expectations of
stakeholders that always exist.

The flexibility and the iterative nature of the tool were showcased through a five-
iteration design process where the problem configuration was adjusted between iterations.
Even major changes to the configuration—such as adding an objective—were easy to
execute. The combination of the fast speed of the selected a priori approach and the aggre-
gation of multiple objectives into one makes the tool well-suited as a collaborative learning
and exploration tool. Stakeholders can easily change the parameters and quickly see how
the result changes, allowing them to learn about the underlying causal relationships.

Comparing the results obtained using the PFM methodology for preference modeling
and a simple weighted mean showed major differences in optimal results between the two.
While using the weighted mean could be an attractive option due to the simplicity and
higher speed, our results highlight the importance of using a correct approach to modeling
stakeholders’ preferences for obtaining an accurate solution.
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Appendix A. Material Composition of Frame and Façade Options

The table below shows the material composition of all the structural frame and façade
options used in this study. The values provided are for a single floor with a floor area of
1000 m2. As was mentioned above, the foundation was assumed to be the same for all
design variants; so, it is provided separately in the table as well. Note that the units are
different for different materials.

Table A1. Material composition of structural frame and façade options.

Material Unit

Frame Façade

Foundation
1—

Concrete
Frame

2—
Structural

Steel Profile
Frame and a

Hollow
Concrete

Slabs Floor

3—Cross-
Laminated

Timber
Frame with
a Wooden
Joist Floor

1—Brick
and

Rockwool
Insulation

2—Steel
Sandwich

Panel
Façade with
Polyisocya-

nurate
Insulation

3—Timber
Frame

Façade with
Mineral

Wool
Insulation

Ready-mix concrete, normal strength,
generic, C 28/35 (4000/5000 PSI) with

CEM I, 0% recycled binders
(300 kg/m3; 18.7 lbs/ft3 total cement)

m3 0 329.1 0 0 0 0 0

Ready-mix concrete, normal-strength,
generic, C 40/50 (5800/7300 PSI), 0%

recycled binders in cement
(400 kg/m3/24.97 lbs/ft3)

m3 500.0 14.7 0 0 0 0 0

Rock wool insulation, unfaced,
L = 0.035–0.04 W/mK, 40 mm, 1.2
kg/m2, 30 kg/m3, Lambda = 0.035

W/(m.K), ProRox LF 970 (ROCKWOOL)

m3 0 0 0 0 58.2 0 0

Wall bricks, 575 kg/m3 (Ziegel) m3 0 0 0 0 36.4 0 0
Hot-dip galvanised structural steel,
0.45–1.5 mm, 7850 kg/m3 (Ruukki) m3 0 0 1.2 0 0 0 0

Structural steel profiles, generic, 90%
recycled content (typical), I, H, U, L, and

T sections, S235, S275 and S355
m3 0 0 6.0 3.6 0 0 0

Hollow core concrete slab, HDF27, C
40/50, 270 mm, 344 kg/m2, reinforcing

12.7 kg/ton (Strängbetong)
m2 0 0 945.0 0 0 0 0

Aluminium profile, 2700.0 kg/m3 m3 0 0 0 0 0 0.2 0
Sandwich panel with polyisocyanurate

(PIR) foam and double steel siding,
U = 0.21 W/(m2K), 100.9 mm (Total),
0.5 mm (Outer sheet), 0.4 mm (Liner

sheet), 100 mm (Insulation), 12.11
kg/m2, 120.02 kg/m3, SAB WB 100.1000

(SAB-profile, Tata Steel Europe)

m2 0 0 0 0 0 363.9 0

Aluminium profiled sheets, thickness
0.7 mm, height of profile 65 mm,

2.9 kg/m2 (European Association for
Panels and Profiles)

m2 0 0 0 0 0 363.9 0

Cross-laminated timber, 491.65 kg/m3,
T:51–500 mm, max width: 2.95–4.80 m,

max length: 16–20 m, X-Lam
(Studiengemeinschaft Holzleimbau e.V.)

m3 0 0 0 88.9 0 0 3.1

Wooden joist floor assembly, 278 mm,
incl. 225 mm mineral wool insulation m2 0 0 0 688.1 0 0 0

Timber frame external wall assembly,
incl. mineral wool insulation m2 0 0 0 0 0 0 363.9
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Appendix B

Appendix B.1. Equations for Calculating the Volume of Materials Used in the Model

The material composition of the building influences two of the objectives—Embodied
carbon emissions and Construction costs. As mentioned in Section 3.1, the model was
parameterized in order to make it suitable for use in optimization. The amount of materials
used in the design will, thus, depend on four variables: Floor area a, Number of floors n, Set
of the building’s structural frame materials m1, and Set of the building’s facade materials
m2. The calculations were conducted in matrix form. The total number of unique materials
used in our design optimization problem was 13 (see Table 1) and that was the length
of the material vector that was used as a basis in the problem. For example, the vector
v = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1] includes 1 m3 of “Ready-mix concrete, normal strength,
generic, C 28/35 (4000/5000 PSI) with CEM I, 0% recycled binders (300 kg/m3; 18.7 lbs/ft3
total cement)” and 1 m2 of “Timber frame external wall assembly, incl. mineral wool
insulation”. Note that since the data provided in EPDs can be measured using different
units, the vector contains both values measured in m2 and m3.

As was mentioned in Section 3.1, the original models that were shared with us were
not parameterized and the original gross floor area of those building designs was fixed
at 1000 m2. In further equations, it is denoted as a0. The proportions of the floor area
were assumed to be constant (the length-to-width ratio of the building is equal to 3.49).
The equations provided below are sometimes defined through the length of the building
that—given the fixed proportions—can be defined as:

s =
√

a/3.49

Independently of the design option, the foundation was always assumed to be the
same 0.5 m thick concrete slab. Thus, the vector representing the material composition
related to the foundation can be defined as:

f = [0, a ∗ 0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

The amount of materials used in the internal frame construction was defined as:

M1 =



 (18.8 ∗ s− 27.2) ∗ 0.1+
a ∗ 0.3, 27 ∗ 3.4 ∗ 0.16 ∗ a

a0
,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

, when m1 = 1

0, 0, 0, 0,
27 ∗ 0.046 ∗ a

a0
,

27 ∗ 0.011 ∗ √
(

a
a0

)
+(

s− 3 ∗ 0.3 ∗ √
(

a
a0

))
∗ 0.009 ∗ 2 ∗ a

a0
+(

3.49 ∗ s− 9 ∗ 0.3 ∗ √
(

a
a0

))
∗ 0.023 ∗ 3 ∗ a

a0
+(

3.49 ∗ s− 9 ∗ 0.3 ∗ √
(

a
a0

))
∗ 0.0016 ∗ 4 ∗ a

a0
+

40 ∗ 2 ∗ 0.009+
40 ∗ 2 ∗ 0.0027 ∗ √(0.2 ∗ s),(

s− 0.85 ∗ √
(

a
a0

))
∗
(

3.49 ∗ s− 0.3 ∗ √
(

a
a0

))
,

0, 0, 0, 0, 0, 0



, when m1 = 2



0, 0, 0, 0, 0,
(2 ∗ 27 ∗ 0.021 + 2 ∗ 4 ∗ 0.02 + 2 ∗ 14 ∗ 0.025 + 2 ∗ 7 ∗ 0.037 + 2 ∗ 2 ∗ 0.018) ∗ a

a0
+

2 ∗ 27 ∗ 0.001 ∗ √
(

a
a0

)
+

(6 ∗ 16 ∗ 0.0001 + 6 ∗ 8 ∗ 0.002) ∗ a
a0
+

4 ∗ (3.49 ∗ s− 6) ∗ 0.004, 0, 0, 0, 0,
(4 ∗ 0.483 + 16 ∗ 0.727 + 7 ∗ 1.087) ∗ a

a0
+

(9 ∗ 0.2 ∗ (s− 1.1) + 2 ∗ (3.49 ∗ s− 2.92) ∗ 0.2 + 0.3 ∗ (3.49 ∗ s− 3.2)) ∗ a
a0

,(
3.49 ∗ s2 − 9 ∗ s ∗ √

(
a
a0

)
− 2 ∗ 3.49 ∗ s ∗ √

(
a
a0

)
− 0.7 ∗ 3.49 ∗ s ∗ √

(
a
a0

) )
,

0


, when m1 = 3
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The amount of materials used in the façade was defined as:

M2 =




0, 0,

21.5 ∗ s ∗ 0.16,
21.5 ∗ s ∗ 0.1,

0, 0, 0, 0, 0, 0, 0, 0, 0

, when m2 = 1



0, 0, 0, 0, 0, 0, 0,
4 ∗ 0.005 ∗ a

a0
+

82 ∗ 0.002 ∗ a
a0

,
21.5 ∗ s,
21.5 ∗ s,

0, 0, 0


, when m2 = 2


0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

4 ∗ 0.786 ∗
√(

a
a0

)
,

0,
21.5 ∗ s

, when m2 = 3

Appendix B.2. Calculation of the Objectives

Appendix B.2.1. Embodied Carbon Emissions

The vector of values for embodied carbon emissions can be represented as (the values
are also provided in Table 1):

ee = [292.13, 386.96, 35.25, 138.29, 20794.65, 6033.17, 46.78, 29289, 37.2, 27, 187.23, 36, 65]

In addition to the values provided in EPDs, we also included the transportation
emissions. Those were taken directly from OneClick LCA and converted into the same
units as the corresponding values from EPDs. The vector of transportation emissions can
be written as:

et = [18.72, 18.72, 0.069, 1.32, 111.24, 111.24, 0.79, 48.60, 0.20, 0.03, 4.14, 0.45, 0.73]

The overall emissions vector is a sum of the embodied carbon emissions obtained
from EPDs and the transportation emissions:

e = ee + et

The embodied carbon emissions can be calculated as follows:

E = n ∗
(

MT
1 ·e + MT

2 ·e
)
+ f T ·e

Appendix B.2.2. Construction Costs

The vector of values for costs can be represented as (the values are also provided
in Table 1):

c = [344.87, 348, 57, 115, 5976.96, 5976.96, 60.64, 8920, 49.92, 6.24, 544.93, 132, 110]

The construction costs can be calculated as follows:

C = n ∗
(

MT
1 ·c + MT

2 ·c
)
+ f T ·c
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Appendix B.2.3. Profit from Rent

Expected profit from rent was assumed to be dependent on the total area of the
building and the distance to the railway station (denoted as dist). The objective for the
expected profit from rent was defined as follows:

P = a ∗ n ∗
(

2 ∗ 10−7 ∗ d2 − 0.58 ∗ 10−2 ∗ d + 206.5
)

The part in brackets is based on the average prices for the office space for the four
biggest cities in the Netherlands (Amsterdam, Rotterdam, the Hague, and Utrecht) [60] and
a study on the influence of the distance to a railway station on real estate prices [61].

Appendix B.2.4. Location Objective

Location is simply the distance to the railway station:

L = d
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