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Abstract: High-speed railway construction is extending to mountainous areas, and the harsh envi-
ronment and complex climate pose various risks to the slope construction. This seriously threatens
human lives and causes huge economic losses. The existing research results on the construction safety
risks of high cutting slope construction in HSRs are limited, and a complete set of safety risk assess-
ment processes and methods has not yet been formed. Therefore, in this study, we aimed to develop
a safety risk assessment model, including factor identification and classification and assessment data
processing, to help project managers evaluate safety risks in high cutting slope construction. In this
study, comprehensive identification of high cutting slope construction safety risks was carried out
from three dimensions, risk technical specification, literature analysis, and case statistical analysis,
and a list of risk-influencing factors was formed. Based on the historical data, a high side slope risk
evaluation model was established using a BP neural network algorithm. The model was applied
to the risk evaluation of HF high cutting slopes. The results show that the risk evaluation level is
II; the main risks are earthwork excavation method, scaffolding equipment, slope height, slope rate,
groundwater, personnel safety awareness, and construction safety risk management system. Finally,
a case study was used to verify the proposed model, and control measures for safety risks were
proposed. Our findings will help conduct effective safety management, add to the knowledge of
construction safety risk management in terms of implementation, and offer lessons and references for
future construction safety management of HSR.

Keywords: high cutting slope; risk assessment; BP neural network

1. Introduction

The high-speed railway (HSR) has become a common solution to relieve the pressure
on transportation systems worldwide, especially in China. HSR provides a fast and robust
travel option that enhances the movement of people as a critical national infrastructure
system. In China, the construction of HSR is extending to the mountainous areas; the poor
construction environment and the complex and diverse climate make the construction
personnel face various risks, some of which even threaten the safety of life [1]. When the
HSR line passes through adverse geological sections, manual excavation and reinforcement
are required [2]. Accidents such as slope instability, slump, gushing water, mechanical
injury, electric shock, and falls are prone to occur during slope construction [3]. Especially
in recent years, more and more slope disasters have caused extensive losses worldwide
of human life and property [4]. Therefore, it is vital to develop a safety risk assessment
system to avoid or mitigate those slope disasters.

The high cutting slope refers to a soil slope with a height greater than 20 m and less
than 100 m or a rocky slope with a height greater than 30 m and less than 100 m [5]. The
study of high cutting slope construction originated from the study of slope stability, which
is important for the safety of slope construction. Slope stability is generally influenced
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by soil, hydrology, vegetation, earthquakes, climate, geological conditions, groundwater,
slope height, slope rate, and other factors [6]. The study of risk in slope engineering started
in the 1980s, and the initial stage of the research was mainly to clarify the existence of
inherent uncertainty in geotechnical engineering and to try to characterize the uncertainty
of geotechnical engineering by using probabilistic methods [7].

Current studies generally use reliability analysis, the limit equilibrium method, and the
strength reduction method for slope stability. Reliability analysis was applied to the study
of slope sexual stability using soil parameter data extracted from field and laboratory data,
and the relative contribution of the uncertainty of different parameters to slope reliability
varies [8]. The impact of uncertainty on the reliability and performance evaluation of
slope design is often significant. Traditional safety factor-based slope practices can not
explicitly address uncertainty and thus affect the adequacy of predictions [9]. For simple
homogeneous soil slopes, the calculation results of the limit equilibrium method and
strength reduction method are essentially the same [10].

For slope construction safety, the stability of slopes has also been analyzed using
kinematic laws and digital elevation models. Ref. [11] used kinematic laws and digital
elevation models for the study area to develop probabilistic risk maps for planar, tipping,
and wedge damage. By comparing the actual fault distribution in the area with the
probabilistic risk map prepared for the study area, it was found that the identified faults
were located in the higher risk areas on the probabilistic risk map. Ref. [12] analyzed the
fundamental changes of a particle subjected to flow dynamics, deposition, and erosion
processes at high slope angles. Ref. [13] developed a nonlinear mathematical model
for the degradation of sensitive clay soils after peak undrained shear strength based on
experimental results.

In summary, the existing research mainly focuses on the stability analysis of slopes and
the analysis of landslide hazard risk during the operation period of HSR, while the research
on the safety risks occurring during the construction period of HSR is relatively rare. In
actual engineering practice, the existing analysis of sliding stability of high cutting slopes
mostly adopts the deterministic analysis method, which determines whether the damage
will occur by calculating the safety coefficient of anti-sliding stability. The deterministic
analysis method is more frequently used because the calculation is relatively simple and
the result is more intuitive. However, there are a lot of uncertain parameters in the actual
construction process of the high cutting slope of HSR, and the deterministic analysis
method can not consider the influence of parameter uncertainty. Therefore, consideration
of random factors and their construction dynamics in the analysis of the high cutting slope
of HSR deserves further discussion and has important research value.

In 1943, the first neuronal M-P model was proposed by McCulloch-Pitts, and the
research on neural networks began [14,15]. Since then, more derivative models of neural
networks have emerged. After Rosenblatt’s first perceptron model in 1957, many influential
models have been proposed [16,17]. Neural networks rapidly developed and were used
within different fields [18]. Neural networks have various functions, such as learning,
training, simulation, storage, and error removal, which allow them to develop rapidly in
many fields and achieve great success in signal processing, pattern recognition, etc. In recent
years, more and more scholars have applied them in the research of artificial intelligence [19–25].
Scholars have applied BP neural networks to construction risk assessment and achieved
a large number of results, which fully demonstrate the feasibility of BP neural networks
for construction risk assessment [2,26–28]. A BP neural network is a nonlinear dynamical
system that constructs a model to realize nonlinear analysis by learning and understanding
historical data. Compared with the conventional linear analysis methods, a BP neural
network has the following advantages [29,30]: (i) it can process data with ambiguous
feature performance and logical relationships; (ii) it can process nonlinear characteristic
random noisy data; and (iii) it does not require an in-depth understanding of the simulation
process. In the case of having more uncertainty, the neural network model can fully



Buildings 2022, 12, 598 3 of 17

demonstrate its superiority in processing data. Based on the above advantages, a BP neural
network was selected as the model for risk evaluation in this study.

The paper is organized as follows. Section 2 introduces the data and methods, which
includes factor identification and classification (Sections 2.1–2.3), construction safety risk
assessment index system (Section 2.4), risk classification criteria (Section 2.5), and assess-
ment model (Section 2.6). Section 3 presents a case study to verify the practicality of the
proposed model and discusses the results, then, major conclusions and implications are
drawn (Section 4).

2. Data and Methods

Many factors that are not interconnected are stimulated by a certain condition to
produce a chain reaction leading to the existence of risk. Thus, the existence of accidents is
not caused by a single factor. The construction safety risk of the high cutting slope of HSR
has the characteristics of suddenness, damage, complexity, objectivity, and development.
This also determines the unpredictability and diversity of its risk-influencing factors.

This study started with the technical specification of railway roadbed risk management
to grasp the process of high cutting slope engineering of HSR and the common accidents and
problems in the process of slope construction. Our goal was to make it easier to understand
construction safety risks. Through literature review and practical research on slope stability,
the main influencing factors of instability were studied. The occurrence of accidents is often
related to people, materials, the environment, construction management, and other factors.
Therefore, through the collection of relevant information and cases to supplement the
construction safety risk factors of HSR, the personnel factors and construction management
factors were fully considered to form a comprehensive list of construction safety risks.

2.1. Construction Safety Risk Identification Based on Technical Specifications

Technical code for risk management of railway subgrade engineering [31] gives the
influencing factors of the construction safety risks of the high cutting slope, which play a
reference role in the selection of risk factors in this study. Construction safety risk factors
identified for the high cutting slope in HSR are shown in Table 1.

Table 1. Construction safety risk factors based on technical specifications.

Classification Risk Factors

Natural factor Topography, surface water, groundwater, scenic nature reserve, existing buildings (structures)
and pipelines, rainstorms, floods, avalanches, thunder and lightning, etc.

Geological factor Degree of rock weathering, landslides, cave strata such as karst and mined-out regions, regional
subsidence, swelling rock (soil), permafrost, soft soil, collapsible loess, liquid formation, etc.

Technical factor
Improper classification and protection schemes of soil and rock, improper excavation methods,
inadequate foundation treatment, staffing, mechanical equipment, material factors, disposal sites,
and protection.

Social factor Land acquisition and demolition, external influence, humanistic environment.

2.2. Construction Safety Risk Identification Based on Documentary Data

Through combing and screening statistics of related literature, the factors affecting the
construction safety of the high cutting slope in HSR were derived, as shown in Table 2.
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Table 2. Construction safety risk factors based on literature.

Literature Resources Risk Factors

Seibold & Hinz [32] Water movement, geological factors, slope construction process.

Li et al. [33] Engineering geological conditions, construction methods, landslide treatment plans, slope
construction remediation plans.

Cunsen et al. [34] Topography, geomorphology, stratigraphic lithology, geological structure, hydrogeological
conditions, slope design scheme, slope construction technology.

Jiang et al. [35] Slope excavation methods, anchor cable arrangement, anchor section grouting, climatic factors,
slope drainage facility.

Wei et al. [36] Slope scouring, climatic factors, geological conditions, groundwater.

Park et al. [37] Discontinuity of structural surface, lithological weathering and erosion, climatic
conditions, groundwater.

Zhou et al. [38] Implementation strength of construction organization design, construction wiring survey,
earthwork excavation, surface drainage, anchoring engineering construction.

Wyllie & Mah [39] Design of slope rate, reinforcement engineering, protection engineering, construction technology,
construction wiring survey, geological conditions, groundwater displacement detection.

Scarpelli et al. [40] Soil support structure, preliminary geological exploration, excavating sequence, terrain monitoring.
Fell & Hartford [41] Geological conditions, climate, pre-reinforcement construction technology.
Tiwari & Upadhyaya [42] Rainfall, groundwater, slope rate, adjacent buildings construction.
Zhang et al. [43] Excavation height, slope rate, differences between stratigraphic and topographic

He et al. [44] Slope height, slope shape, slope ratio, geological conditions, design plan of blasting, blasting
environment, safety supervision, management factors.

Dahal et al. [45] Excavation, surface water drainage system, anchor construction, planting bag construction, slope
skeleton protection.

Abdulwahid & Pradhan [46] Construction scale, geological conditions, construction environment, data integrity.

2.3. Construction Safety Risk Identification Based on Statistical Analysis of Cases

The construction safety risk identification was carried out through the high cutting
slopes related to HK and HSH, two high-speed railways in China, and the risk identification
table for the statistical analysis of the cases was formed as shown in Table 3.

Table 3. Construction safety risk identification based on statistical analysis of cases.

Cases Risk Factors

HK DK438 + 355~ + 510
Soft rock high cutting slope. The main risk factors are slope excavation, geological
environment, rainfall, personnel safety awareness, prestressing tensioning equipment,
monitoring program reasonableness, mechanical excavation, and slope repair equipment.

HK DK830 + 955~DK831 + 020
Hard rock high cutting slope, smooth blasting. The main risk factors are slope excavation,
rock blasting, blasting material, rockfall, falling objects, and the perfection of emergency
rescue measures.

HSH DK35 + 309.83~ + 392.00 Soft rock high cutting slope, the groundwater is developed. The main risk factors are
drainage tunnel technology and groundwater.

HSH DK97 + 006.89~DK99 + 227.52 Expansive soil high cutting slope. The main risk factors are slope excavation, rainfall,
surface drainage system, and data integrity of monitoring program.

HSH DK123 + 612.32~DK124 + 312.50 Bedding high cutting slope. The main risk factors are slope structure, formation lithology,
rainfall, slope excavation, and drilling rig equipment.

HSH DK269 + 378.81~ + 703.75
Expansive soil high cutting slope with buildings around. The main risk factors are
anti-slip pile technology, rainfall, groundwater, geological condition, and
surrounding buildings.

HSH DK270 + 262.11~ + 411.00
Bedding high cutting slope. The main risk factors are slope excavation, prestressing
anchoring engineering technology, anchor cable material, geological condition, and
scaffolding equipment.

HSH DK294 + 533.51~295 + 069.22
Soft rock high cutting slope. The main risk factors are slope excavation, slope rate, slope
skeleton protection, mechanical excavation and slope repair equipment, implementation
of safety management measures, and concrete material.

HSH DK318 + 237.71~ + 558.50
Bedding high cutting slope. The main risk factors are prestressed anchorage engineering
technology, slope protection, personnel safety awareness, prestressed anchor anti-slip pile
technology, and rainfall.



Buildings 2022, 12, 598 5 of 17

2.4. Construction Safety Risk Assessment Index System for High Cut Slope of HSR

Through SPSS software for analysis, combined with engineering practice, the con-
struction safety risk factors were classified and summarized according to the principle
of systemic feasibility. The secondary risk indicators include 5 items such as personnel
risk, and the tertiary risk indicators include 39 items such as earth excavation. The risk
assessment index system is formed in Table 4.

Table 4. Safety risk assessment index system for high cutting slope construction of HSR.

Goal Layer Criterion Layer Indicator Layer

Safety risk assessment
indicator system for
high cutting slope

construction of HSR

Risk factors of construction technology (CT)

Earthwork excavation method CT1
Rock blasting CT2

Surface drainage system technology CT3
Anti-slip retaining wall technology CT4

Anti-slip pile technology CT5
Prestressed anchorage technology CT6
Prestressed anchor cable anti-slide pile

technology CT7
Grouting micro-pile technology CT8

Tunnel drainage technology CT9
Slope skeleton protection CT10
Slope surface protection CT11

Risk factors of material and equipment (ME)

Blasting materials ME1
Anchor cable materials ME2

Concrete materials ME3
Mechanical excavation and repairment

equipment ME4
Drilling rig equipment ME5
Scaffolding equipment ME6

Prestressed tensioning equipment ME7

Risk factors of personnel (P)

Basic quality level of personnel P1
Personnel working level P2

Personnel operation error P3
Personnel safety awareness P4

Staffing level P5

Risk factors of the environment (E)

Slope height E1
Slope rate E2
Rainfall E3

Surrounding buildings E4
Falling objects E5
Groundwater E6

Geological conditions E7

Risk factors of construction management
risk (CM)

Quality assurance measures CM1
Quality testing standards CM2

Perfection of emergency rescue measures CM3
Degree of implementation of safety management

fee CM4
Degree of implementation of construction

organization design CM5
Reasonableness of monitoring program CM6

Completeness of monitoring data CM7
Communication and coordination among all parties

involved in the project CM8
Construction safety risk management system CM9

2.5. Risk Classification Criteria of Safety in Construction

With a large number of risks and a variety of risk control measures in the construction
of high cutting slopes in HSR., it is necessary to evaluate risks reasonably, effectively, and
objectively, select appropriate risk control measures, and carry out scientific engineering
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decisions and risk evaluation. A key part of the evaluation is the need to study the corre-
sponding risk acceptance criteria and control countermeasures. According to the Technical
Code for Risk Management of Railway Construction Engineering [47], the risk acceptance
criteria for high cutting slopes in HSR are shown in Table 5.

Table 5. Risk acceptance criteria.

Risk Level Acceptance Level

Level I (lower risk) Negligible
Level II (medium risk) Acceptable

Level III (high risk) Unexpected
Level IV (very high risk) Unacceptable

2.6. BP Neural Network Model
2.6.1. Design of Network Topology

According to the risk assessment index system established above, combined with the
BP network theory, three levels of indicators are used as the input layer, and risk levels are
the output layer. Among them, the input layer has 39 indicators, and the output layer is
the project risk level. The trial-and-error method was adopted to determine the number of
hidden nodes corresponding to the fastest convergence and smallest error of the network.
The operating mechanism diagram is shown in Figure 1.
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2.6.2. Select the Activation Function of the Feedforward Neural Network

In this model, the maximum number of trainings is set to 20,000, after which the
training is terminated. The error accuracy is set as 1× 10−6, and the operation is terminated
when the accuracy is less than this error number. The model of this training is nonlinear,
and the data need to be normalized to a certain extent before being brought in; therefore,
the S-type function was chosen for this model.

2.6.3. Selection of Samples

The processing of samples directly affects the generalization mapping ability of BP
networks [48]. When selecting the samples, we need to consider the engineering require-
ments and characteristics [49,50]. In this study, the sample parameters were obtained via a
questionnaire survey; a total of 216 high cutting slopes in HSR of HK, HF, YG, and HSH
were selected for the collection. The data were quantified by combining Table 7 and the
method of expert interrogation. If the collected samples are evenly distributed, it is more
conducive to the training of neural networks and can make a better prediction of the risk
level of the cases.
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2.6.4. Pretreatment of Input and Output Data

The collected data were divided into input data and output data, of which 80% were
used as training samples and 20% as testing samples. The processed data of input nodes
were regarded as the input layer, which was denoted by x. The processed data of output
nodes were regarded as the output layer, which was denoted by y. In this study, the number
of samples obtained was 216, denoted by m. The network inputs and outputs are shown in
Table 6.

Table 6. Inputs and outputs data of network.

Input Data Output Data

x11, x12, · · · x1n y1
x21, x22, · · · x2n y2

...
...

xn1, xn2, · · · xnn yn

Each indicator has a different dimension; if the initial data are used directly, it will
be difficult to ensure that indicators are in the same dimension, which will make the
BP network converge slowly. If the indicators have the same dimension, the S-shaped
function in the BP network can be fully utilized and the saturation area of the function
can be avoided, thus enhancing the sensitivity of the BP neural network to the indicators.
Therefore, it is important to reduce the magnitude of the variation of the sample values
and to lock the interval of the definition domain of the samples within a certain range. This
ensures that the derivative values of the input function are within the appropriate interval
and have an important role in the training of the neural network and the prediction of the
samples. Therefore, in this study, the collected sample data were normalized to reduce the
magnitude variation of the predicted values. Firstly, each risk indicator was evaluated by
the table of construction safety risk assessment of high cutting slopes in HSR (Table 7) and
the method of expert interrogation. The statistical data were then normalized to obtain
the risk value of relevant indicators. For example, the transformation of construction
technology risk (CT) is shown as Formulas (1)–(3). The expression of the input value of the
whole indicators system is shown as Formula (4).

CTi =
11

∑
j=1

CTij/11 i = (1, 2, . . . , 11) (1)

CTi =
cti − X(min)

X(max)− X(min)
(i = 1, 2, 3, · · · , 11) (2)

CT = (CT1, CT2, . . . , CT11) (3)

All = (CT, ME, P, E, CM)T (4)

Table 7. Construction safety risk evaluation levels.

Comprehensive Risk
Evaluation Value [0~0.25] (0.25~0.5] (0.5~0.75] (0.75~1]

Risk Level Low risk Medium risk High risk Extremely
high risk

According to Table 5, combined with engineering practice, the construction safety risk
evaluation levels can be divided into four levels, as shown in Table 7.
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2.6.5. Selection of Initial Parameters

In this study, the BP neural network toolbox in MATLAB was used for simulation
training, and the appropriate model parameters played a decisive role in the training
quality and accuracy. The network creation function was debugged in the toolbox operation
interface of the BP neural network, which is the first step to building the network object.
Then, the transfer function was debugged. The transfer function represents the input and
output objects with a correlation function using the logsig function. The learning function
is to adjust the local error value size, and the training function is to adjust the global error
value size; learngdm was chosen as the learning function, traingdx as the training function,
and the network error performance function was the default MSE function of the toolbox.
The network model parameters are set in Table 8.

Table 8. BP network model parameters.

Network
Creation
Function

Transfer
Function

Learning
Function

Training
Function

Network Error
Performance

Function

Error
Precision

newff logsig learngdm traingdx MSE 0.0003

2.6.6. Objective Function of Network Training

The initial expected predicted value of the objective function is Xk(k = 1, 2, · · · , N),

the output value of the final function is
∧
Xk = (k = 1, 2, · · · , N), and the prediction error

e is e = (e1, e2, · · · , eN) =
(

x1 −
∧
x1, x2 − x2, · · · ,

∧
xN −

∧
xN

)
. In the study, SSE was used to

represent the evaluation value of neural network training maturity, which is shown in
Formula (5).

SSE =
1
2∑

(
xk −

∧
xk

)2
(5)

where, xk is the expected output and
∧
xk is the actual output.

Simulation training was performed according to the neural network toolbox to achieve
the minimum error criterion. If the trained neural network does not meet the error criterion,
the BP neural network model parameters need to be readjusted to achieve a suitable neural
network structure.

2.6.7. Selection of Output Node

The output node refers to the final information output, which is also the global control
of the neural network training. The output nodes should be selected with reasonable and
high credibility as often as possible to facilitate the collection of data and to normalize the
sample data to obtain the output data that are beneficial to the neural network training. The
sample data of the output nodes in this study were based on the risk levels corresponding
to Table 7.

3. Results
3.1. Case Background

Hefei-Fuzhou HSR is an important part of Beijing-Fuzhou HRR; DK592 + 532.00~ + 562.00
is a section of the high cutting slope (Figure 2). The area is low and hilly with gentle terrain
and developed vegetation. The groundwater is bedrock fracture water, which is more
developed. The groundwater is not chemically erosive (judged by the chloride ion content,
without chloride salt erosive).
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3.2. Establish BP Neural Network Model

The samples of this case came from a total of 216 high cutting slopes of the HK, HF, YG,
and HSH high-speed railway. By collecting the geological situation, special construction
plan, and minutes of each high cutting slope and considering the relevant indicator rating
methods in risk guidance combined with engineering practices and expert interviews, the
indicators in each sample were assigned values according to Table 7, and all data were
normalized. The details of the data processing are shown in the Appendix A. The Ordered
Weighted Averaging is used to determine the weights of indicators at all levels, and the
weight determination method is shown in Formula (6).

w = wi

/
j

∑
i=1

wi , i = 1, 2, · · · , n j = i = 1, 2, · · · , m (6)

The weight values of CT, ME, P, E, and CM were 0.328, 0.104, 0.189, 0.258, and 0.121
respectively, as shown in Figure 3. From Figure 3, it can be seen that the risks of construction
technology and environment have a relatively strong influence on the construction safety
of high cutting slopes in HSR, and the risk of material and equipment, personnel, and
construction management have a relatively weak influence on it.
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3.3. Training Simulation

According to the BP neural network algorithm, Matlab was used to create the neural
network and run the results. After 11 iterations, the training MSE value of the simulation
training was 0.000176, which is less than the target value of 0.0003. This met the predeter-
mined accuracy requirements, and the BP neural network model achieved convergence.
The simulation results are shown in Figure 4; it can be seen that the R-values of the train-
ing set and test set are 0.947 and 0.808, which indicate that the model fits the observed
values well.
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The results of the error analysis for the test set data are shown in Figure 5. It can be
seen that the maximum absolute value of the error is 8.22%; therefore, the training effect of
the model is satisfactory.

3.4. Discussion

The trained BP artificial neural network was used to predict the risk of an HF grade
eight high cutting slope construction project. After normalizing the data for each risk
indicator (0.788, 0.394, 0.303, 0.303, 0.273, 0.455, 0.303, 0.303, 0.485, 0.273, 0.485, 0.273, 0.364,
0.485, 0.424, 0.212, 0.576, 0.278, 0.364, 0.389, 0.212, 0.697, 0.303, 0.818, 0.576, 0.273, 0.485,
0.424, 0.636, 0.394, 0.455, 0.364, 0.364, 0.394, 0.212, 0.394, 0.333, 0.424, 0.758), they were
entered into the network to obtain the predicted value of 0.479. According to Table 7, the
construction safety risk of the high cutting slope is predicted to be a medium risk, which is
consistent with the risk level of the project; thus, the model fit is excellent.

According to the input value of each risk factor, the risk index greater than 0.5 is the
main risk. It is known that the main risks of this high cutting slope construction are earth-
work excavation method, scaffolding equipment, slope height, slope rate, groundwater,
personnel safety awareness, and construction safety risk management system, and these
influencing factors have a greater impact on the construction safety management of the
project. Therefore, the safety control of this high cutting slope construction focuses on
slope excavation risk control, slope reinforcement, waterproof measures, and construc-
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tion safety management measures. The following control measures are proposed for the
construction safety risks of this high cutting slope project: (1) choosing a reasonable earth
excavation method; (2) setting up reinforcement protection measures; (3) strengthening of
waterproof design; (4) conducting pre-reinforcement treatment; (5) monitoring stability;
(6) strengthening construction management measures.
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4. Conclusions

In this study, the safety risks of high cutting slope construction in HSR were identified
in all aspects from three dimensions, risk technical specification, literature analysis, and
case statistical analysis, and a list of risk influencing factors was formed. The evaluation
indicator system was constructed by designing questionnaires and analyzing them with
SPSS data statistical software. The assessment model was established by a BP neural
network, and the pre-control measures were proposed for the risk factors. The construction
safety risks of a high cutting slope of HF high-speed railway was analyzed and evaluated.
The main findings of this study are (1) a list of construction safety risks of high cutting
slopes in HSR was formed; (2) a risk assessment indicator system of high cutting slopes in
HSR was constructed; (3) a construction safety risk assessment model based on a BP neural
network was established; and (4) the feasibility of the assessment model was verified.

The limitation of this study is the identification and analysis of construction risk factors
with a certain one-sidedness and subjectivity. Combined with the dynamic and difficult
quantitative nature of construction risks, it needs to be further combined with engineering
practice to refine and improve the construction safety impact factors. In addition, the
number and authenticity of the learning samples directly ensure the feasibility of the
trained neural network, and more samples need to be collected to improve the sample
credibility. Finally, the BP neural network training process is related to set parameters,
which will be combined with more intelligent algorithms for improvement to improve the
accuracy of the training results in the future.
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Appendix A

For the construction technology risk (CT), the collected assessment data are shown in
Table A1.

Table A1. Raw data of construction technical risk (CT).

Indicator
Expert

1 2 3 4 5 6 7 8 9 10 11

CT1 2 2 3 3 2 3 2 3 3 2 2
CT2 3 2 2 2 3 3 2 2 2 3 2
CT3 2 2 1 1 2 2 2 2 3 2 1
CT4 4 3 4 4 4 4 3 3 2 3 3
CT5 2 3 3 3 2 3 2 2 3 3 3
CT6 3 2 3 2 3 3 2 3 2 2 3
CT7 3 3 2 3 2 2 3 3 4 3 4
CT8 2 2 3 2 2 2 2 2 3 2 2
CT9 2 2 1 1 2 2 1 2 2 2 2
CT10 3 3 2 3 3 3 3 3 2 3 3
CT11 2 2 1 2 2 2 2 2 1 2 2

By using Formula (1), data processing is shown in Table A2.

Table A2. Construction technical risk (CT) data processing.

Indicator CT1 CT2 CT3 CT4 CT5 CT6

Data processing 2.455 2.364 1.818 3.364 2.636 2.545

Indicator CT7 CT8 CT9 CT10 CT11

Data processing 2.909 2.182 1.727 2.818 1.818

The output values were normalized according to Formula (2), and the results are
shown in Table A3.

Table A3. Normalized data of construction technical risk (CT).

Indicator CT1 CT2 CT3 CT4 CT5 CT6

Normalized data 0.485 0.455 0.273 0.788 0.545 0.515

Indicator CT7 CT8 CT9 CT10 CT11

Normalized data 0.636 0.394 0.242 0.606 0.273

For material and equipment risk (ME), the assessment data collected are shown in
Table A4.
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Table A4. Raw data of material and equipment risk (ME).

Indicator
Expert

1 2 3 4 5 6 7 8 9 10 11

ME1 3 3 2 3 2 3 2 3 3 2 1
ME2 2 1 1 2 1 1 1 1 1 1 2
ME3 2 2 1 2 1 2 2 2 1 1 1
ME4 2 1 1 1 1 1 1 1 2 2 2
ME5 3 2 2 2 2 3 2 3 2 2 2
ME6 4 3 3 3 3 3 3 3 3 3 3
ME7 1 2 2 2 2 2 2 2 2 2 2

By using Formula (1), data processing is shown in Table A5.

Table A5. Data processing of material and equipment risk (ME).

Indicator ME1 ME2 ME3 ME4 ME5 ME6 ME7

Data processing 2.455 1.273 1.545 1.364 2.273 3.091 1.909

The output values are normalized according to Formula (2), and the results are shown
in Table A6.

Table A6. Normalized data of material and equipment risk (ME).

Indicator ME1 ME2 ME3 ME4 ME5 ME6 ME7

Normalized data 0.485 0.091 0.182 0.121 0.424 0.697 0.303

For environmental risk (E), the assessment data collected are shown in Table A7.

Table A7. Raw data of environmental risk (E).

Indicator
Expert

1 2 3 4 5 6 7 8 9 10 11

E1 2 2 1 1 2 1 2 2 3 2 2
E2 2 1 1 1 1 2 2 2 2 2 2
E3 3 2 3 3 2 3 3 2 2 3 2
E4 2 3 3 3 3 2 3 2 3 3 2
E5 1 2 1 1 1 1 2 1 2 2 2
E6 2 1 2 1 2 2 2 2 2 2 1
E7 3 3 3 2 3 2 2 3 2 2 2

By using the Formula (1), data processing is shown in Table A8.

Table A8. Data processing of environmental risk (E).

Indicator E1 E2 E3 E4 E5 E6 E7

Data processing 1.818 1.636 2.545 2.636 1.455 1.727 2.455

The output values were normalized according to Formula (2), and the results are
shown in Table A9.

Table A9. Normalized data of environmental risk (E).

Indicator E1 E2 E3 E4 E5 E6 E7

Normalized data 0.273 0.212 0.515 0.545 0.152 0.242 0.485
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For personnel risk (P), the assessment data collected are shown in Table A10.

Table A10. Raw data of personnel risk (P).

Indicator
Expert

1 2 3 4 5 6 7 8 9 10 11

P1 3 4 3 4 3 2 2 4 2 3 2
P2 1 2 2 2 1 2 1 2 2 2 1
P3 2 2 3 3 2 3 3 2 3 2 2
P4 2 1 2 2 3 1 2 2 2 1 2
P5 2 3 2 2 2 1 2 2 3 2 3

By using Formula (1), data processing is shown in Table A11.

Table A11. Data processing of Personnel risk (P).

Indicator P1 P2 P3 P4 P5

Data processing 2.909 1.636 2.455 1.818 2.182

The output values were normalized according to formula (2), and the results are shown
in Table A12.

Table A12. Normalized data of personnel risk (P).

Indicator P1 P2 P3 P4 P5

Normalized data 0.636 0.212 0.485 0.273 0.394

For construction management risk (CM), the assessment data collected are shown in
Table A13.

Table A13. Raw data of construction management risk (CM).

Indicator
Expert

1 2 3 4 5 6 7 8 9 10 11

CM1 3 2 3 2 2 2 3 2 2 2 3
CM2 3 3 2 2 4 3 3 2 2 3 3
CM3 4 3 3 3 2 3 3 2 3 3 3
CM4 3 3 4 4 4 3 3 4 3 4 2
CM5 4 3 2 2 2 2 3 3 2 3 3
CM6 4 3 2 3 3 3 3 2 2 2 4
CM7 2 3 3 2 3 3 3 2 3 2 2
CM8 2 3 2 3 3 2 4 3 4 3 3
CM9 3 3 3 3 3 3 2 3 3 2 2

By using Formula (1), data processing is shown in Table A14.

Table A14. Data processing of construction management risk (CM).

Indicator CM1 CM2 CM3 CM4 CM5 CM6 CM7 CM8 CM9

Data processing 2.364 2.727 2.909 3.364 2.636 2.818 2.545 2.909 2.909

The output values are normalized according to Formula (2), and the results are shown
in Table A15.
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Table A15. Normalized data of construction management risk (CM).

Indicator CM1 CM2 CM3 CM4 CM5 CM6 CM7 CM8 CM9

Normalized data 0.455 0.576 0.636 0.788 0.545 0.606 0.515 0.636 0.576

Due to space issues, only the first ten groups of case data processing results are listed
in this study, as shown in Table A16.

Table A16. Input data for the first ten samples.

Indicator
Sample

1 2 3 4 5 6 7 8 9 10

1 0.485 0.727 0.697 0.727 0.636 0.545 0.697 0.545 0.545 0.667
2 0.455 0.424 0.455 0.424 0.303 0.152 0.212 0.273 0.212 0.515
3 0.273 0.606 0.424 0.606 0.273 0.333 0.333 0.424 0.394 0.545
4 0.788 0.485 0.758 0.424 0.182 0.515 0.364 0.606 0.606 0.667
5 0.545 0.515 0.576 0.636 0.515 0.485 0.455 0.545 0.455 0.576
6 0.515 0.333 0.667 0.545 0.576 0.364 0.606 0.455 0.364 0.545
7 0.636 0.758 0.697 0.788 0.576 0.424 0.576 0.333 0.424 0.758
8 0.394 0.424 0.636 0.455 0.121 0.152 0.182 0.303 0.303 0.636
9 0.242 0.455 0.636 0.515 0.303 0.424 0.394 0.576 0.485 0.636

10 0.606 0.485 0.667 0.364 0.091 0.394 0.242 0.515 0.394 0.667
11 0.273 0.606 0.545 0.636 0.485 0.576 0.758 0.545 0.606 0.606
12 0.485 0.576 0.576 0.576 0.606 0.606 0.333 0.333 0.212 0.606
13 0.091 0.333 0.727 0.636 0.545 0.303 0.364 0.485 0.515 0.515
14 0.182 0.455 0.364 0.455 0.152 0.515 0.515 0.515 0.636 0.424
15 0.121 0.485 0.636 0.545 0.303 0.485 0.515 0.606 0.697 0.667
16 0.424 0.515 0.485 0.485 0.152 0.242 0.455 0.515 0.455 0.545
17 0.697 0.303 0.424 0.485 0.455 0.303 0.636 0.333 0.273 0.636
18 0.303 0.636 0.788 0.606 0.667 0.242 0.303 0.455 0.424 0.758
19 0.273 0.515 0.576 0.545 0.485 0.333 0.394 0.485 0.455 0.545
20 0.212 0.455 0.576 0.697 0.182 0.515 0.273 0.485 0.545 0.576
21 0.515 0.485 0.636 0.515 0.303 0.424 0.485 0.455 0.364 0.455
22 0.545 0.455 0.485 0.485 0.121 0.455 0.636 0.545 0.394 0.636
23 0.152 0.485 0.394 0.455 0.364 0.182 0.697 0.545 0.545 0.545
24 0.242 0.455 0.727 0.727 0.697 0.333 0.485 0.333 0.424 0.545
25 0.485 0.364 0.455 0.364 0.455 0.121 0.515 0.333 0.242 0.576
26 0.636 0.485 0.636 0.515 0.152 0.152 0.303 0.576 0.515 0.515
27 0.212 0.424 0.636 0.545 0.273 0.394 0.333 0.758 0.758 0.818
28 0.485 0.667 0.697 0.788 0.242 0.576 0.515 0.273 0.455 0.667
29 0.273 0.424 0.667 0.515 0.455 0.485 0.515 0.303 0.364 0.606
30 0.394 0.364 0.636 0.515 0.636 0.394 0.394 0.545 0.545 0.515
31 0.455 0.515 0.515 0.576 0.697 0.515 0.424 0.364 0.455 0.727
32 0.576 0.545 0.545 0.485 0.455 0.364 0.091 0.455 0.455 0.545
33 0.636 0.515 0.636 0.515 0.152 0.364 0.515 0.545 0.455 0.455
34 0.788 0.394 0.515 0.788 0.303 0.212 0.455 0.576 0.576 0.636
35 0.545 0.545 0.576 0.545 0.212 0.273 0.485 0.333 0.364 0.576
36 0.606 0.455 0.364 0.455 0.364 0.182 0.455 0.303 0.364 0.606
37 0.515 0.485 0.758 0.576 0.667 0.485 0.636 0.333 0.515 0.667
38 0.636 0.333 0.515 0.606 0.333 0.485 0.333 0.667 0.667 0.515
39 0.576 0.576 0.636 0.576 0.606 0.533 0.485 0.394 0.545 0.576
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