
Citation: Mobaraki, B.;

Komarizadehasl, S.; Castilla Pascual,

F.J.; Lozano-Galant, J.A.; Porras

Soriano, R. A Novel Data Acquisition

System for Obtaining Thermal

Parameters of Building Envelopes.

Buildings 2022, 12, 670. https://

doi.org/10.3390/buildings12050670

Academic Editors: Seongjin Lee,

John Gardner, Kee Han Kim and

Sukjoon Oh

Received: 22 April 2022

Accepted: 13 May 2022

Published: 18 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

buildings

Article

A Novel Data Acquisition System for Obtaining Thermal
Parameters of Building Envelopes
Behnam Mobaraki 1,*, Seyedmilad Komarizadehasl 2 , Francisco Javier Castilla Pascual 3 ,
José Antonio Lozano-Galant 1 and Rocio Porras Soriano 4

1 Department of Civil and Building Engineering, Universidad de Castilla-La Mancha (UCLM),
Av. Camilo Jose Cela s/n, 13071 Ciudad Real, Spain; joseantonio.lozano@uclm.es

2 Department of Civil Engineering and Environmental Engineering, Universitat Politècnica de Catalunya
BarcelonaTech (UPC), C/Jordi Girona 1-3, 08034 Barcelona, Spain; milad.komary@upc.edu

3 Department of Civil and Building Engineering, Universidad de Castilla La Mancha (UCLM),
MAEE-UCLM Research Group, Escuela Politécnica de Cuenca, Campus Universitario,
16071 Cuenca, Spain; fcojavier.castilla@uclm.es

4 Department of Applied Mechanics and Projects Engineering, Universidad de Castilla-La Mancha (UCLM),
Av. Camilo Jose Cela s/n, 13071 Ciudad Real, Spain; rocio.porras@uclm.es

* Correspondence: behnam.mobaraki@uclm.es

Abstract: Owing to the high energy consumption in the building sector, appraising the thermal
performance of building envelopes is an increasing concern. Recently, a few in situ methodologies
to diagnose the thermal parameters of buildings have been considered. However, because of their
limitations such as low accuracy, limited number of measurements, and the high cost of monitoring
devices, researchers are seeking a new alternative. In this study, a novel hyper-efficient Arduino
transmittance-meter was introduced to overcome these limitations and determine the thermal param-
eters of building envelopes. Unlike conventional methodologies, the proposed transmittance-meter
is based on synchronized measurements of different parameters necessary to estimate the transmit-
tance parameter. To verify the applicability of the transmittance-meter, an experimental study was
conducted wherein a temperature-controlled box model was thermally monitored, and the outputs
of the transmittance-meter employed were compared with those captured by a commercial device.
The results revealed a high level of reduction in cost and a low range of difference compared with the
latter, thereby validating the applicability of the proposed thermal monitoring system.

Keywords: HEAT; building thermal monitoring; temperature-based method; energy efficiency;
transmittance parameter; low-cost sensors

1. Introduction

Buildings waste high amounts of energy mainly because of their age and poor insula-
tion. Currently, energy consumption by buildings contributes up to 31% of the total energy
demand worldwide [1]. Since 1990, energy consumption in the building sector in Europe
has tended to increase by an average of 1% annually. This rate of consumption varies
based on age and geographical location. For instance, in Spain, the Andalusian Energy
Agency announced a 4.1% increase in energy in residential buildings from 2014 to 2016 [2],
while the energy consultancy of Barcelona declared a 15% energy savings rate from 2000 to
2010 [3]. The primary use of energy in buildings goes toward heating, cooling, cooking,
and appliances. Since 2011, approximately 81% of the energy generated for these needs
has been obtained from fossil fuels [4]. The energy scape in buildings mostly depends on
the following factors: (1) building envelopes (including roofs, sub-floors, doors, windows,
and walls); according to the United States Energy Information Administration, 25% of
heat loss comes from attics, 15% from basements/floors, 35% from walls, and 25% from
windows/doors [5], and (2) thermal bridges (including wall to wall, wall to door, wall to
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window, and wall to floor junctions) [6]. It has been stated that thermal bridges in regular
buildings attenuate the effectiveness of insulation by 40% [7]. Therefore, characterizing the
actual thermal parameters of building envelopes has become a main concern for building
engineers [8]. Examples of thermal monitoring of different elements of a building (includ-
ing walls, floors, ceilings, and window glass) are provided in [9]. As windows are a main
contributor to the energy scape in the building sector, diagnosing the thermal parameters
of them has become a key research subject [10]. Table 1 lists previous studies that have been
conducted to derive the transmittance parameter (U-value) of different types of windows
(connected with diverse frames) using numerical and experimental techniques.

Table 1. Previous studies for deriving the U-value of different types of windows using different
techniques.

Application Method/Sensor Number of Sensors Reference

Windows and built- up panels GHB 1 2 [11]

Window GHB and FEM 2 16 [12]

Wooden windows ANN 3 - [13]

Single window glazing GHB 5 [14]

Window (steel frame) CHB 4 3 [15]

Window frames ANSYS
CFD/GAMBIT - [16]

1 GHB: Guarded hot box. 2 FEM: Finite element method. 3 ANN: Artificial neural network. 4 CHB: Calorimetric
hot box.

An accurate evaluation of building thermal performance is achieved by calculating
the U-value. A low U-value represents a better insulated structure. This parameter is
used to appraise annual energy loss in the building sector. The U-value of multilayered
building walls was traditionally determined using a destructive method of measuring the
thickness of each layer and then assigning conductivity values to each layer. To accomplish
this, it was necessary to core the wall and add the resistance values (R-value) of the
individual layers. However, inferring the thermal parameters of a structure using this
method results in uncertainties regarding measurements of thickness, and the identification
of material properties that might not be accurately connected to the actual performance of
the building elements. Nevertheless, this approach was widely implemented in accordance
with ISO 6946 guidelines. However, recent research has standardized U-value estimation
by presenting various techniques such as heat flux meter (HFM) method [17], temperature
control box heat flux meter (TCB-HFM) [18], simple hot box heat flux meter (SHB-HFM) [19],
infrared thermography (IRT) method [20], and temperature-based method (TBM) [21]. An
overview of the said experimental approaches introducing the procedures for estimating
the U-value was provided in [22,23]. Figure 1 illustrates schematics of the aforementioned
methods and the required codes used in the literature for the thermal parameter diagnosis
of building envelopes [24]. In this figure, S1,2,3 is the thickness of material layer in the
component. K1,2,3 is the thermal conductivity of material, Rsi is the thermal resistance
of internal surface, Rse is the thermal resistance of external surface, Ti is the interior
temperature, Te is the exterior temperature, Tsi is the interior surface temperature, qi is heat
flow passing through the unit of area, hi is the total internal heat transfer coefficient, and he
is the total external heat transfer coefficient.
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ity, and air velocity sensors, Esfandiari et al. determined the optimum set point of indoor 
temperature for a green building index office to improve sustainable energy policies for a 
tropical climate [27]. In terms of TBM, a combination of unintegrated commercial sensor 
devices has widely been used to estimate the energy performance of buildings. Kim et al. 
used T-type thermocouples and an H. Inc._4-ch data logger to measure the U-value, esti-
mate the energy efficiency, and apply the retrofit to a house case study [28]. In fact, TESTO 
equipment is one of the most popular TBM monitoring systems in the market [29]. Various 
models of this monitoring system such as TESTO 635-2 and TESTO 635-4 [30], TESTO 435-
1 [31] and TESTO 435-2 [32], have been used in the literature to characterize thermal prop-
erties of buildings. The instrumentation costs for a single measurement point using the 
TESTO systems could vary from EUR 570 to 1032, consequently, the thermal analysis of 
structures is limited to an inadequate number of measurement points. 

Our literature review demonstrated an application of low-cost sensors as an alterna-
tive to traditional monitoring devices in building monitoring [33,34]. A systematic litera-
ture review on the application of low-cost sensors to monitor two aspects of structural and 
indoor parameters of buildings can be found in an article written by Mobaraki et al. [35]. 
Studies have also demonstrated the significance of the Internet of Things (IoT) to reduce 
cost, improve efficiency, and obtain data-oriented maintenance services. Aiming to im-
prove the application of low-cost monitoring devices, the integration of low-cost sensors 
and IoT has been proposed in the literature [36]. Examples of these studies are in terms of 
monitoring indoor air quality [37], structural parameters of buildings [38], micro-climate 
of cultural heritage monuments [39], and also controlling the heating, ventilation, and air 
conditioning (HVAC) [40]. In addition, scholars have been seeking innovative Industry 
4.0 solutions to monitor buildings by using smart devices and low-cost sensors, efficiently 
and economically [41]. Various applications of Industry 4.0 have been presented in the 
literature to carry out low-cost structural health monitoring [42], reduce both the energy 
and maintenance costs of buildings [43], and provide real-time monitoring and controlling 
of home appliances [44]. The growing interest in low-cost solutions for monitoring oper-
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Figure 1. Schematic of the current techniques for thermal parameter diagnosis of the building
envelops [24].

There are a variety of devices used to infer the thermal parameters of building models
following the said methods [25]. One of the main problems in the application of the current
systems is the high cost of measuring devices and sensor instrumentation. For instance,
traditionally, in HFM method, the heat flux sensors are only installed on one side of the
building envelopes. In fact, installing a heat flux meter on both sides of the building
component can attenuate the monitoring error, massively [19]. However, due to the high
cost of the required devices and the budget limitation, this application is not feasible in all
building energy-monitoring projects [26]. Taking the advantage of temperature, humidity,
and air velocity sensors, Esfandiari et al. determined the optimum set point of indoor
temperature for a green building index office to improve sustainable energy policies for a
tropical climate [27]. In terms of TBM, a combination of unintegrated commercial sensor
devices has widely been used to estimate the energy performance of buildings. Kim
et al. used T-type thermocouples and an H. Inc._4-ch data logger to measure the U-value,
estimate the energy efficiency, and apply the retrofit to a house case study [28]. In fact,
TESTO equipment is one of the most popular TBM monitoring systems in the market [29].
Various models of this monitoring system such as TESTO 635-2 and TESTO 635-4 [30],
TESTO 435-1 [31] and TESTO 435-2 [32], have been used in the literature to characterize
thermal properties of buildings. The instrumentation costs for a single measurement point
using the TESTO systems could vary from EUR 570 to 1032, consequently, the thermal
analysis of structures is limited to an inadequate number of measurement points.

Our literature review demonstrated an application of low-cost sensors as an alternative
to traditional monitoring devices in building monitoring [33,34]. A systematic literature
review on the application of low-cost sensors to monitor two aspects of structural and
indoor parameters of buildings can be found in an article written by Mobaraki et al. [35].
Studies have also demonstrated the significance of the Internet of Things (IoT) to reduce
cost, improve efficiency, and obtain data-oriented maintenance services. Aiming to improve
the application of low-cost monitoring devices, the integration of low-cost sensors and
IoT has been proposed in the literature [36]. Examples of these studies are in terms of
monitoring indoor air quality [37], structural parameters of buildings [38], micro-climate
of cultural heritage monuments [39], and also controlling the heating, ventilation, and air
conditioning (HVAC) [40]. In addition, scholars have been seeking innovative Industry
4.0 solutions to monitor buildings by using smart devices and low-cost sensors, efficiently
and economically [41]. Various applications of Industry 4.0 have been presented in the
literature to carry out low-cost structural health monitoring [42], reduce both the energy and
maintenance costs of buildings [43], and provide real-time monitoring and controlling of
home appliances [44]. The growing interest in low-cost solutions for monitoring operations
in different fields is illustrated in Figure 2, in which the number of publications in the Scopus
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database have been ordered by years (from 2011 to 2021). In this figure, the publications
have been clustered into the following engineering fields: civil and building, industrial,
mechanical, architecture, medical and electronic.
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Figure 2. Number of works addressing low-cost sensors referenced in the Scopus database from 2011
to 2021 in different fields.

The analysis of Figure 2 showed that applications in civil and building engineering
are scarce in comparison with other fields in the literature (such as electrical or mechanical
engineering). For example, the number of publications in the civil and building engineering
field in 2021 represented only 2.1% of the total studies published that year.

Aiming to deal with the high cost of traditional/commercial devices, various low-cost
solutions have been proposed in the literature to determine the structural parameters of
buildings [33], and also to derive the thermal parameters of building envelopes. Taking
the advantage of low-cost sensors, Martin-Garin et al. developed a building environmen-
tal monitoring system. The authors conducted a comparative analysis of the obtained
results, and developed a series of guidelines so as to select the most appropriate sensor
for monitoring projects [45]. Ali et al. developed a low-cost open-source hardware and
software platform to monitor the performance of buildings, called Elemental, that was
designed to provide data on indoor environmental quality, energy usage, and other factors
to users [46]. A group of authors developed a low-cost monitoring system and stationed it
at the Mosque-Cathedral of Cordoba in Spain in order to assess the behavior of interior
temperature and relative humidity in relation to exterior weather condition, public hours,
and interior design [47]. A principal line of investigation in the field of energy efficiency
focused on the enclosures of building facades. Echarri et al. studied the destructive thermal
monitoring of a residential house using an inexpensive monitoring system [48]. To this aim,
they opened the enclosure and positioned low-cost sensors of temperature, air velocity, and
relative humidity in different layers of the enclosures, as well as the indoor and outdoor
surfaces. The authors presented comparative results of temperature gradients versus a
non-destructive monitoring system, providing the U-value. Marques et al. developed a
cheap wireless measurement system to estimate the U-value of building envelopes [49].
Functionality of the proposed system followed the TESTO system in terms of number
of measurement points associated with the indoor and outdoor temperatures, as well as
the indoor surface one. This implied that their experiment was targeted at the three mea-
surements of the wall surface temperature but only a single measurement of interior and
exterior temperature. Serroni et al. presented a multi-sensor device, operating based on a
thermal camera to provide the thermal maps of the indoor surface temperature [50]. In this
study, the authors used a desk node and data of a weather station to determine the indoor
and outdoor air temperature, respectively. In fact, the main limitation of this approach
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was related to the low accuracy, up to 20%, due to the strong dependency of the thermal
camera on environmental conditions. On the other hand, a combination of the commercial
unintegrated sensor devices, such as T-type thermocouples and H. Inc._4-ch data logger,
have been studied by Kim et al. to estimate the energy performance of buildings using
TBM [28].

In the reviewed articles, different methodologies using unintegrated sensor devices
(Kim et al. [28]) and low-cost sensors to characterize the thermal parameters of building
envelopes have been studied. However, in the proposed low-cost solutions (Marquez
et al. [49]), conducting thermal monitoring of buildings is limited to a small area, which
could not be representative enough of the study’s elements. This can be introduced by
the uncertainties associated with the heterogeneity in the composition of walls. Moreover,
thermal monitoring of buildings contains a high level of uncertainties associated with the
utilized sensor devices (Serroni et al. [50]). All of the aforementioned factors influenced
the precision of the data required for the estimation of the U-value. In fact, enhancing
the number of measurement points using low-cost sensors not only enabled monitoring a
sufficient area of building envelopes, but it also provided studying the statistical benefits of
increasing the number of sensor/measurement points.

Aiming to address the aforementioned issues and fill these gaps in the literature,
the main novelty of this study was to present a hyper-efficient Arduino transmittance-
meter (HEAT) with a standardized Bluetooth communication protocol for saving and
transmitting data. Unlike conventional TBM U-value metering devices, a HEAT was
based on multiple measurements of the three main parameters required to estimate the
U-value: the indoor and outdoor temperature of a building and the temperature of the
inner surface of the wall. A HEAT is capable of recording as much data as engineers
require to estimate a U-value. It is also scalable, meaning that it can be used for thermal
monitoring of all sizes of real-scale structures, and also for a temperature-controlled box
model. A HEAT is also low-cost because its development is based entirely on low-cost
devices. To develop an accurate transmittance meter, a HEAT was used with three low-cost
temperature sensors (MLX90604 [51], MAX30205 [52], and DS18B20 [53]) (manufacturer,
address of manufacturer) to monitor the surface temperature of building envelopes. To
check the applicability of a HEAT, an experimental study carried out for thermal monitoring
of a temperature-controlled box model, and the outputs of the three HEATs (MLX90604,
MAX30205, and DS18B20) were compared with those captured by a known commercial
U-value meter, TESTO 435-1.

This study is organized as follows. Section 2 presents the available codes and empirical
formulas required for the thermal diagnosis of buildings using the TBM. Section 3 provides
a comprehensive explanation of established HEATs, including the characteristics of the
utilized hardware and quantities of the installed low-cost sensors. In Section 4, a description
of the experiment as well as sensitivity analysis of the infrared sensors are given. Then, in
Section 5, the measurement results are analyzed and discussed as part of the comparison
with the outputs of the TESTO 435-1. Finally, the conclusions of this study are presented in
Section 6.

2. Measurement Methodology

Multiple standards define a set of instructions for estimating the thermal parameters
of building elements. These standards include multiple provisions, such as test duration,
frequency of observations, seasonality of experiments, treatment of outliers, and methods
of verifying observations [54]. Some of the most common standards are presented here.
ISO 6946:2017, which is for theoretical calculation of building U-values, considers the
thicknesses of materials used to build a wall and provides the air heat transfer coefficient
to be used in the TBM [55]. ISO 9869:2014, which uses the HFM method to calculate the
thermal transmittance of building components under steady-state conditions, based on the
assumption that average values of heat flow rate and temperatures over a reasonably long
period of time (minimum 72 h) gives an estimate of the steady-state condition [56]. ISO



Buildings 2022, 12, 670 6 of 20

6781-3:2015 assesses building performance in terms of heat, air, and moisture using infrared
methods [57]. ISO 10456:2007 presents methods for calculating the thermal parameters of
buildings by introducing the thermal conductivity of different materials [58].

Determining the transmittance parameter of the building envelopes is costly and
time-consuming in terms of various aspects including test duration, number of parameter
measurements required, weather conditions (cloudy vs. sunny), and magnitude of tempera-
ture difference. A TBM would be suitable for overcoming these limitations, considering the
parameters required to obtain the transmittance parameter via the methodologies available
in the literature (as described in Section 1). The TBM is a non-destructive average technique
that determines the U-value of building envelopes by measuring and substituting the
interior temperature (Ti), exterior temperature (Te), and the interior surface temperature
of an object (Tsi), as shown in Equation (1). This technique is based on Newton’s law of
cooling, which states that the rate of heat transfer is proportional to the difference in tem-
perature between a body and its surroundings. Equation (1) was derived from Equation (2),
which is used for the HFM method (as per ISO 9869:2014 requirements). Thus, the only
difference between these two methods is that in the TBM, it is not necessary to consider
the effect of heat flux through the object, while it is necessary in the HFM method. In
Equations (1) and (2), n is the number of measurements, U is the transmittance parameter
(W/m2·K), Ti is the interior temperature at instant j (◦C), Te is the exterior temperature
(◦C), Tsi is the interior surface temperature (◦C), q is heat flow passing through the unit
of area (W/m2), and hci is the total internal heat transfer coefficient, which is equal to
7.69 W/m2·K, and can be derived from ISO 6949: 2017.

U =
∑n

j=1

(
Ti(j) − Tsi(j)

)
∑n

j=1

(
Ti(j) − Te(j)

) hci (1)

U =
∑n

j=1 qj

∑n
j=1

(
Ti(j) − Te(j)

) (2)

3. Establishing a Hyper-Efficient Arduino Transmittance-Meter (HEAT)

This section presents a comprehensive explanation of the hardware utilized for the de-
velopment of three HEATs, the measurement and calculation methodologies for estimation
of U-value, and the techniques proposed for increasing HEAT accuracy.

3.1. Hardware

There are various types of low-cost temperature sensors available in the market to
measure the ambient temperature and surface temperature of an object through contact and
contactless infrared methods. Table 2 lists the most common sensors available, including
basic information such as model, application, detection range, accuracy, cost, and associated
references in the literature. The differences between these alternatives are mainly in terms
of the price and characteristics presented in the associated catalog. These characteristics
are as follows: (1) detection range: the detection range indicates the lowest and highest
temperature that can be measured by the sensor; (2) accuracy: this parameter introduces
how close the measured temperature is to the real one; (3) resolution: this characteristic
refers to the capability of the sensor to show the smallest changes of temperature; (4) re-
sponse time: this is for addressing the time needed by the sensor to measure a change
of temperature; (5) communication protocol (e.g., with microcontrollers): depending on
the monitoring project, this factor plays an important role in the selection of the low-cost
sensors. The most common alternative is the inter-integrated circuit communication (I2C)
protocol which requires only two wires for the synchronized communication of 64 low-cost
sensors to an Arduino microcontroller. It also must be mentioned that I2C is less susceptible
to noise than single wire/bus serial peripheral interface (SPI) communication protocols.
More information about the main characteristics of the sensors can be found in [59,60].
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Table 2. List of the common contact, contactless, and infrared temperature low-cost sensors in
the market.

Model Operation Application Detection Range (◦C) Accuracy (◦C) Cost (EUR) Ref.

NTC
Contact

Environmental
and structural

(−55 to 200) 1 1 [61]
DS18B20 (−55 to 125) 0.5 4.9 [62]

MAX30205 fitness (0 to 70) 0.1 12.9 [63]

TMP006
Infrared

Environmental
and structural (−40 to 125) 1 6 [64]

MLX90614 Medical (−40 to 125) 0.5 29.6 [65]

DHT11

Contactless Environmental

(0 to 50) 2 1.56 [66]
DHT22 (−40 to 80) 0.5 5.40 [67]
SHT10 (−40 to 125) 0.5 4.57 [68]
SHT21 (−40 to 125) 0.3 4.61 [45]
SHT35 (−40 to 125) 0.2 5.76 [69]

BMP180 (−40 to 85) 2 3.72 [70]
BMP280 (−40 to 85) 1 3.59 [71]

LM35 (−55 to 125) 1 2.80 [72]

Among the low-cost sensors listed in Table 2, two contact-based low-cost sensors
(MAX30205 and DS18B20) and one infrared model (MLX90614) were selected to develop the
three HEATs. The selected sensors have various specifications regarding their application
(environmental/structural monitoring, medical, and fitness issues), functionality (contact-
based, infrared, and contactless sensors), accuracy (0.2 ◦C to 0.5 ◦C), cost (EUR 4.95 to
EUR 29.6), and detection range (−55 ◦C to 125 ◦C). It is worth noting the use of infrared
sensors in this study attenuates the difficulties of the project in terms of the sensors’
attachment to the study’s elements. In addition, it provides to investigating the possibility
of reducing the uncertainties associated with the use of contact sensors for detecting the
surface temperature of the object. Among the two infrared sensors (TNP006 [73] and
MLX90614) presented in Table 2, MLX90614 was chosen due to its higher accuracy. It also
must be mentioned that, among the chosen three sensors, MLX90614, comes fully factory
calibrated. SHT35 was calibrated by the authors using statistical reference obtained by
averaging the measurements of 30 SHT35 sensors [74]. However, the DS18B20 sensor, as
well as MAX30205, were uncalibrated. In fact, this disparate specification of the chosen
sensors provided the opportunity to compare and study the statistical benefits of increasing
the number of calibrated and uncalibrated sensors, under the same conditions.

Each HEAT operates independently, as it captures the surface temperature of the
temperature-controlled box model separately using each of the sensors (MAX30205,
DS18B20, and MLX90604). All three HEATs were built into individual Arduino MEGA
microcontrollers. Eight copies of each of the aforementioned sensors measured the surface
temperature of the object for each individual HEAT (HEAT MAX30205, HEAT DS18B20,
and HEAT MLX90614). The indoor temperature was measured by the eight duplicated
MLX90604 infrared sensors as this sensor can measure both surface and environmental
temperatures. In addition, eight duplicated SHT35 sensors were used to measure the
exterior temperature. To save the measurements, a wireless Bluetooth communication
protocol was employed (using HC-05 low-cost sensor) between the HEATs and the laptop.
This implies that each individual HEAT was connected to the laptop through a virtual
communication port and transferred its measurements, separately.

3.2. The Developed HEATs

Each HEAT contains (1) an Arduino microcontroller (MEGA 2560) [75], a small-sized
(10.16 cm × 5.34 cm) computer considered to be the brain of the three HEATs and which
receives and applies the instructions required for experiments [76]; (2) a TCA9548A multi-
plexer to enhance the amount of data that can be transmitted over the developed sensor
network (except for the HEAT DS18B20) [77]; (3) a breadboard to facilitate the connections
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between different parts of the HEATs; (4) a DS3231 clock sensor to define and save the exact
measurement times [78]; (5) a HC-05 low-cost Bluetooth sensor to transfer the readings
from the HEATs to the laptop, and (6) the explained low-cost temperature sensors.

The indoor modules of the HEAT MLX90604, HEAT DS18B20, HEAT MAX30205, and
outdoor module of them are shown in Figures 3a, 4a, 5a and 6a, respectively. The wiring
of the Fritzing software modules are depicted in Figure 3b (HEAT MLX90604), Figure 4b
(HEAT DS18B20), Figure 5b (HEAT MAX30205), and Figure 6b (outdoor module).
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3.3. Measurement Methodology and Developed Algorithm

A two-phase algorithm was developed in MATLAB (version, manufacture, city,
state abbreviation, country) to determine the U-value of the temperature-controlled box
model [79]. In the first phase, the U-value is estimated based on the average measurements
of each of the three parameters (Ti, Te, and Tsi) corresponding to an individual HEAT.
Then, the U-values calculated by each HEAT are compared with those derived from the
TESTO 435-1. In the second phase, two different approaches are introduced to increase
the accuracy of the associated HEAT in Phase 1. These approaches include estimating
the U-value (1) based on the median value of the parameter measurements and (2) after
omitting the outliers of the measurements. In each phase, the accuracies of the HEATs were
checked using the TESTO 4535-1 measurements.

A step-by-step explanation of the two phases and the three approaches cited are
as follows:

Phase 1:

- Receive the HEAT observations via the wireless Bluetooth protocol.
- Calculate the mean value of the measurements of the eight sensors associated with

interior temperature (Ti), exterior temperature (Te), and interior surface tempera-
ture (Tsi).



Buildings 2022, 12, 670 10 of 20

- Substitute the mean values of the parameters into Equation (1), determine the U-value
of each HEAT, and then calculate the difference between the obtained results and
those derived from the TESTO 435-1.

Phase 2:

• Approach 1

- Specify the outliers (measurements that fall below and above the 5th and 95th
percentiles) and remove them from the observations.

- Substitute the mean values of the parameters into Equation (1), determine the
U-value, and then calculate the difference between the obtained results and those
derived from the TESTO 435-1.

• Approach 2

- Define the median values of the eight measurements associated with the observa-
tions of each of the three parameters (Ti, Te, and Tsi).

- Substitute the median values of the parameters into Equation (1), determine the
U-value, and then calculate the difference between the obtained results and those
derived from the TESTO 435-1.

Figure 7 shows a summary of the steps performed to assess the HEAT operation.
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4. Laboratory Testing

This section describes the experimental campaign designed to prove the applicability
of the established HEATs. To do so, detailed explanations of the temperature-controlled
box model, test condition, and sensitivity of the infrared MLX90604 sensors are provided.
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4.1. Description of the Test

The temperature-controlled box model was purchased by the Civil Engineering De-
partment of the University of Castilla-La Mancha (UCLM) in Ciudad Real, Spain, to
determine the applicability of the three HEATs. This temperature-controlled box model was
40 cm × 40 cm × 40 cm and had a substitutable side wall utilized to diagnose the thermal
parameter of different types of wall materials, typical glass, and two-layer windows. For
this diagnosis, the indoor and outdoor temperatures of the box model and the interior
surface temperature were captured at fixed indoor and outdoor temperatures to represent
steady-state conditions. A 9-layer 25 cm × 25 cm × 2 cm piece of plywood was considered
as the wall, because a plywood wall would ensure that the temperature difference between
the layers would be the result of each layer-specific thermal transmittance value. The two
sets of contact sensors (eight kits in each) and the three TESTO thermometers were then
attached to the wall model using thermally conductive adhesive tape. These sensors were
attached to different parts of the wall to allow the actual wall temperature to be determined,
and they were located at a distance of 17 cm, far from the heat source. Regarding the contact-
less infrared sensors, they were located at a distance of 12.5 cm, far from the heat source. As
heat is gained and lost in different parts of the house model, the roof and three other walls
were isolated with polystyrene board 5 cm and 2 cm thick, respectively. Four holes were
made in the corners of the model to insert sensor set cables to measure the indoor and inside
surface temperatures, after which, the holes were covered with high-quality cotton. A 40 W
incandescent lamp with a covering steel cap was used as a heat source. The temperature
sensor of the thermostat was placed on top of the cap of the heat source and was connected
to the thermostat. This implies that one could fix the indoor temperature by adjusting the
thermostat to the required level. Figure 8 shows the temperature-controlled box model,
revealing the different elements of the temperature-controlled box model, attached sensors,
and the TESTO 435-1.
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Figure 8. Installation of the contact DS18B20/MAX30205: sensors (1), infrared sensor MLX90614 (2),
indoor module of TESTO 435-1 (3) and different elements of the temperature-controlled box model:
plywood wall (4), polystyrene (5), corner hole (6).

The experiment was conducted in a controlled environment in one of the offices
of the UCLM. During the test, the temperature of the office (the exterior temperature
of the house model) was controlled and adjusted via air conditioning. The indoor and
outdoor temperatures of the model were fixed at 40 ◦C and 25 ◦C, respectively, providing a
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minimum difference of 10 ◦C to 15 ◦C. Obtaining such a difference was achieved by turning
on the heat source of the box model (a 40 W incandescent lamp) and also the air conditioner,
from a day prior to initiating the experiment. In essence, carrying out the real-time indoor
and outdoor temperature monitoring of the box model using the Bluetooth communication
protocol, before and during the experiment, provided the authors to take control of the
steady-state condition. The following conditions were considered during the test as per
ISO 6781 and ISO 9869:

- The achievement of a steady-state condition.
- The outdoor temperature did not exceed ±10 ◦C 24 h prior to the experiment.
- The indoor and outdoor temperatures were not altered by more than±2 ◦C and±5 ◦C,

respectively, with respect to their initial values during the experiment.
- Direct solar radiation was kept off the temperature-controlled box model during

the test.

The experiment was conducted continuously for 17 h, during which, the HEATs were
adjusted at a sampling frequency of 5 min. In total, more than 200 measurements of the
three parameters were obtained for each set. Figure 9 shows the configuration of the
experiments, including the introduction of different elements.
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Figure 9. The developed sensors and test condition: (1) outdoor probe of TESTO 435-1 (Te), (2) outdoor
module sensor SHT35 (Te), (3) sensor DS18B20, (4) sensor MLX90614, (5) sensors for controlling the
indoor/outdoor temperature, (6) thermostat, (7) sensor MAX30205, (8) power source, and (9) the
temperature-controlled box model.

4.2. Sensitivity of the Infrared Sensor

The infrared MLX90614 sensor detected the surface temperature of an object from
a distance of 3 to 6 cm. To obtain the highest measurement accuracy from this sensor, a
sensitivity analysis was performed to determine the optimal distance that it should be kept
from an object. A preliminary test was performed using four distances (3 cm, 4 cm, 5 cm,
and 6 cm) between the eight sensors and the plywood wall in the temperature-controlled
box model. The average measurements obtained from the eight MLX90614 sensors were
compared with those from the TESTO 435-1. As shown in Figure 10, the lowest difference
range was obtained at a distance of 3 cm from the object. As expected, an increase in the
distance attenuated the precision of the sensors as higher difference ranges occurred at
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distances of 4 cm, 5 cm, and 6 cm. Therefore, in the test, the MLX90614 sensors were placed
3 cm from the wall of the temperature-controlled box model.
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Figure 10. Sensitivity analysis of the HEAT MLX90614.

5. Results and Discussion

By applying Phase 1 of the algorithm proposed in Section 3.3, the Ti, Te, and
Tsi were measured for the three HEATs and the mean value of each parameter was
calculated. Figure 11 shows the comparison of the average surface measurements
(Tsi = (Tsi1 + Tsi2 + Tsi3 + . . . + Tsi8)/8) derived from the MLX90604, MAX30205, and
DS18B20 HEATs with those derived from the TESTO 435-1 (Tsi = (Tsi1 + Tsi2 + Tsi3)/3).
The test was considered successful when steady-state conditions were achieved and vari-
ations in temperature did not exceed more than 1.3 ◦C for any of the three HEATs and
TESTO 435-1. Overall, the surface temperature measurements generated by the MLX90604
HEAT were the most similar to those of the TESTO 435-1.
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Figure 11. Evolution of the surface temperatures recorded by the three HEATs and the one captured
by TESTO 435-1.

To better understand the discrepancies in the measurements, the standard deviations
(SDs) of the wall surface temperatures recorded by the HEATs are shown in Figure 12,
wherein the horizontal axis shows the number of measurements during the monitoring
period and the vertical axis shows the SD range. Among the HEATs, the MAX3020 had
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the lowest SD range of 0.52 ≤ SDMAX30205 ≤ 0.69. However, the SDs of the three HEATs
increased during steady-state conditions. According to the experiences of the authors, the
low-cost sensors performed better in dynamic situations than static ones.
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Figure 12. Standard deviations of the surface temperature measurements captured by sensors of the
HEAT MAX3020, HEAT DS18B20, and HEAT MLX90614.

To show the significance of increasing the number of sensors in monitoring projects,
Figure 13 illustrates the distances between the measurements of a single DS18B20 sensor
with the associated average value of the eight sensors and with that obtained from the
TESTO 435-1. For simplicity, only the measurements from DS18B20 HEAT are presented.
As expected, the accuracy of monitoring improved with the increase in the number of
sensors. This improvement in monitoring quality was demonstrated by a 54% difference
reduction when the number of measurements increased from one to eight.
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Figure 13. Comparison between indoor temperature measurements of TESTO 435-1 and that of a
single sensor of DS18B20, and the associated average of the 8 sensors of DS18B20.

Figure 14 shows the accuracy of the three HEATs based on their Tsi and U-value
measurements (left-hand vertical axis), and the cost efficiency of each individual HEAT
(right-hand vertical axis). Overall, the range of difference for the HEAT Tsi measurements
was not considerable; however, a high difference range was observed for the U-values
obtained. For example, the MAX30205 HEAT returned a 5.1% difference for Tsi but an
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average difference of −22.8% for the associated U-value. This is consistent with the
interactions between errors from different sensors (for Ti, Te, and Tsi measurements) and
the combination of various factors used to estimate the U-value. In fact, the differences
were within an acceptable range for the measurements from the MLX90604 HEAT, as a TBM
transmittance-meter [21]. In terms of the Tsi and U-value measurements, the differences
obtained from this HEAT were 2.5% and−8.60%, respectively. Further analysis of Figure 14
shows that the ranges of difference obtained for the MLX90614 and MAX30205 HEATs
were negative. This is because the values calculated for the transmittance parameters were
higher than those of the TESTO 435-1. The MLX90614 HEAT not only had an acceptable
difference range but also had a favorable cost, demonstrating a 63.2% cost reduction, as
compared with the TESTO 435-1. Meanwhile, the ranges of the cost reduction for the
MAX30205 and DS18B20 HEATs were 76.2% and 82.4%, respectively. Table 3 summarizes
the commercial full instrumentation costs for all three HEATs.
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Figure 14. Cost reduction of the developed sensor compared with TESTO, as well as the differences
of the individual kits and three HEATs.

Table 3. Cost comparison between the three developed sensors with the commercial TESTO
thermometers.

HEAT MLX90614 HEAT MAX30205 HEAT DS18B20 TESTO 435-1

Components Price (EUR) Number Price (EUR) Number Price (EUR) Number
Sensors 29.6 8 12.9 8 4.95 8

Breadboard 3.5 1 3.5 1 3.5 1
Arduino 35.5 1 35.5 1 35.5 1

Multiplexer 1.2 2 1.2 2 - -
Clock sensor 1.3 1 1.3 1 1.3 1

Bluetooth sensor 4.5 1 4.5 1 4.5 1
Resistor - - - - 0.2 8

SHT35 set (Te) 92 1 92 1 92 1

Total Cost (EUR) 380 246 181 1032

The cost comparison summarized in Table 3 is based on the price of the different pieces
of hardware used to install each HEAT, including common elements such as the breadboard,
Arduino, clock, and Bluetooth sensors, and outdoor module of the SHT35 set (to calculate
Te). In addition, an individual MLX90614 and MAX30205 HEATs contain a multiplexer
for I2C communication between the kits. However, DS18B20 HEAT contains a resistor
required to install the kit. In this table, the assembling and programming cost of the HEATs
are not accounted for in this comparison. Overall, the total costs calculated for the indoor
and outdoor HEAT modules are EUR 181 for the DS18B20, EUR 246 for MAX30205, and
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EUR 380 for MLX90614. The results show that the MLX90604 HEAT achieved the highest
accuracy and was the most expensive. However, it saved up to 63.2% of the monitoring cost
of the TESTO 435-1 (Figure 14). Furthermore, owing to the high cost of standard devices
in the market, providing spatial measurements for the required parameters were almost
infeasible for the other methodologies, and not everyone can afford them for their projects.
This highlights the efficiency of the MLX90614 HEAT, which can provide engineers with an
inexpensive way to conduct high-density thermal monitoring of building envelopes.

Figure 15 compares the measurements from the TESTO 435-1 and MLX90614 HEAT
in terms of the U-value, including all the parameters required for calculation. The results
show that, during the 17 h of monitoring, there were limited variations in the Ti, Te, and Tsi
measurements as recorded by the MLX90614 HEAT. These variations included a Ti value
ranging from 39.6 ◦C to 41.0 ◦C (a difference of 0.4 ◦C), a Te value that fluctuated between
22.7 ◦C and 24.9 ◦C (a difference of 2.2 ◦C), and a Tsi value for the wall that varied between
33.8 ◦C and 35.2 ◦C (a difference of 1.4 ◦C). These measurements resulted in an average
U-value of 2.62 W/m2·K for the wooden panel in the temperature-controlled box model.
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Figure 15. Comparison between the results of the HEAT MLX90614 and TESTO 435-1 in terms of Ti,
Te, Tsi, and the U-value.

Figure 15 also shows the slight difference between the measurements of the MLX90614
HEAT and TESTO 435-1. The difference between the average exterior temperature mea-
sured with the MLX90614 HEAT (23.7 ◦C) and the TESTO 435-1 (23.5 ◦C) is, in particular,
only 0.2 ◦C; this is a negligible difference (only 0.85% higher than the measurement of
TESTO 435-1). In addition, the average indoor temperature measurements taken by the
MLX90614 HEAT (39.6 � Ti(

◦C) � 41.0) are only 0.9% higher than those of the TESTO
435-1 (39.3� Ti(

◦C)� 40.0).
In Phase 2 of the algorithm, two approaches were implemented to increase the accuracy

of the MLX90614 HEAT. As mentioned in Section 3.3, the first approach was based on
detecting outliers. In general, sensor errors can be categorized as soft (e.g., bias and
environmental noises) and hard (physical damage to the sensors during a test). Thus, it is
vital to determine the potential effect of soft and hard errors, and consider them in the final
assessment of sensors. Outliers are measurements that lie an abnormal distance from the
greatest number of measurements; observations that fall above and below the 95th and 5th
percentiles, in particular, are considered outliers. In this study, detecting the outliers and
removing them from the measurement data caused the error of the MLX90604 HEAT be
decreased from 8.6% to 7.7% (a decrease of 11.6%).
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Meanwhile, following the second approach, the U-value was calculated by specifying
the median value of the eight sensors associated with the three parameter measurements.
In this scenario, the error of the MLX90604 HEAT was reduced from 8.6% to 7.2% (a
decrease of 19.4%). These results indicate that using the median hypothesis can improve
the estimation of the U-value more than using the mean value or eliminating the outliers.
This event can be explained as follows: (1) while the mean value and SD are statistically
sensitive to outliers, the median is an impractical statistical measurement as it is at risk from
outliers lower than the mean value and (2) the demand for outlier detection is increased
when the same kind of measurements are received from several sources of information.
In this experiment, an individual parameter was measured using only eight sensors at a
single time, which is not too many sensors.

6. Conclusions

In this article, a methodology to improve thermal monitoring of buildings was pro-
posed by using a new transmittance-meter. The novelty of this low-cost monitoring system,
HEAT, is to provide the user with the statistical benefits of increasing the number of mea-
surement points which attenuates the uncertainties of U-value estimation. On the basis of
TBM, a HEAT operates based on eight measurements of the principal parameters needed to
estimate the U-value. To prove the significance of the proposed methodology, a HEAT was
tested on three types of sensors, with diverse operations and accuracies. Aiming to validate
the performance of a HEAT, simultaneous thermal monitoring of a temperature-controlled
box model was carried out using the three HEATs and a common commercial transmittance-
meter in the market, TESTO 435-1. Comparison of the results proved application of the
proposed methodology, as evidenced by a high reduction of differences in terms of the
surface temperature detection when the number of measurement points was increased
from one to eight. Moreover, according to the proven cost-efficiency of a HEAT, when a
number of measurement points were required for the in situ estimation of the U-value, a
HEAT was utilized to carry out high-density thermal monitoring of building envelopes
with a standard wireless communication protocol to transmit and save data. The authors
recognize that the descriptions described in this article are a first step in the development
of a HEAT, with the goal of utilizing it in building thermal monitoring applications. Indeed,
the acquired results from the first version of a HEAT proved its efficiency and gave us
encouragement to upgrade it for further applications. Future studies should address the
use of the Internet as a principal communication protocol to deliver an IoT version of
a HEAT, which enables real-time post-processing of the data and outlier detection. In
addition, real application of a HEAT must be conducted for real-time updating of building
information modeling which provides monitoring of thermal performance, before and after
retrofitting of buildings.
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