Risk Coupling Evaluation of Social Stability of Major Engineering Based on N-K Model
Abstract
:1. Introduction
2. Identification of Risk Factors for Social Stability of Major Projects
2.1. Uncertainty Factors within the Main Players of the Game
2.2. External Environmental Factors
2.3. Building a Bow-Tie Model Based on Internal and External Factors Analysis
3. Evaluation of Social Stability Risk Coupling for Major Projects
3.1. Construction of Risk Evaluation Index System for Social Stability for Major Projects
3.2. Coupling Evaluation of Social Stability Risks of Major Projects Based on N-K Model
- (1)
- Single factor coupling risk: A single risk factor affecting the social stability of major projects will contain multiple risk factors, and each risk factor will interact with each other. Single factor coupling risk includes government (abbreviated G, Code a) factor risk, public (abbreviated P, Code b) factor risk, economic (abbreviated E, Code c) factor risk, social (abbreviated S, Code d) factor risk and natural environmental (abbreviated NE, Code e) factor risk, are recorded as T10 (a), T11 (b), T12 (c), T13 (d), T14 (e), respectively, and the total value of coupling risk is recorded as T1. The single factor coupling risk is shown in Table 2.
- (2)
- Two-factor coupling risk: Includes 10 types of two-factor coupling risk, and the total value of coupling risk is recorded as T2. The two-factor coupling risk is shown in Table 3.
- (3)
- Multi-factor coupling risk: Refers to the interaction of three or more risk factors affecting the social stability of major projects, and the total value of coupling risk is recorded as T3. The multi-factor coupling risk is shown in Table 4.
4. Example
4.1. Example Statistics of Social Stability Risk Events in Major Projects
4.2. Risk Coupling Value Calculation
- (1)
- Single factor coupling probability
- (2)
- Tow-factor coupling probability
- (3)
- Multi-factor coupling probability
- (4)
- T value calculation
4.3. Conclusion and Discussion of Example Risk Coupling Evaluation
- (1)
- The more kinds of coupling risk factors, the greater the risk of social stability of major projects is. From the calculation results, it can be inferred that the five-factor coupling risk value (T4 = 0.579) is greater than the four-factor coupling risk value (T310–T314), the four-factor coupling risk value (T310–T314) is generally greater than the three-factor coupling risk value (T30–T39), and the three-factor coupling risk value (T30–T39) is generally greater than the two-factor coupling risk value (T20–T29), which is consistent with the actual situation of social stability risks of major projects.
- (2)
- Among the four-factor coupling risks, the coupling value of the government-public-economic-social factor (T313 = 0.408) is the largest, and that of the government-public-economic-natural environmental factor is the smallest (T312 = 0.196). At the same time, the coupling value of the government-public-social-natural environmental factor (T311 = 0.320) is larger than that of the government-economic-social-natural environmental factor (T310 = 0.252), and it is between the coupling value of the government-public-economic-social factor and the government-public-economic-natural environmental factor. Among the three-factor coupling risks, the coupling value of government-public-social factors (T31 = 0.248) is the largest, while that of government-economic-natural environmental factors (T34 = 0.099) is the smallest, which shows that social factors and social public factors play a greater role in major project risks, and the range of social factors is relatively wide, which can affect other factors to a certain extent. Among the social factors, safety accidents not only pose a threat to people’s lives and property, but also cause huge economic losses directly or indirectly to society, thus affecting social stability; the public will take the hidden dangers of accidents, policy subsidies, environmental pollution as a fuse to cause social stability risks.
- (3)
- Among the two-factor coupling risks, the coupling value of government-economic (T21 = 0.033) < public-natural environmental (T26 = 0.034) < social-natural environmental (T29 = 0.046) < public-economic (T24 = 0.076) < government-public (T20 = 0.084) <economic-social (T27 = 0.099) < government-social (T22 = 0.101) < public-social (T25 = 0.179), therefore the value of public-social coupling risk is the largest median risk of two factor coupling, and there is a great coupling between social factors and social public factors. Among the social factors, the destruction of traditional customs caused by major projects has a far-reaching impact on the public, that is, the integration of land expropriation immigrants and residents in resettlement areas. For example, the “Three Gorges Project” involves the migration of nearly two million people. These people may face the risk of losing land, declining living standards, unemployment, marginalization, and broken community relations due to a lack of a sense of security and sense of belonging after resettlement. In addition, immigrants who leave their homes not only need to learn different languages and cultures, but also accept local customs, all of which are social factors that may endanger the stability of the local society.
- (4)
- From the multi-factor and two-factor coupling risk, we can see that the coupling values of politics-society (T22 = 0.101) and economy-society (T27 = 0.099) are relatively large and similar. Therefore, among the government factors, the legitimacy, rationality, and information transparency of government policy, the change of raw material prices, and the coupling between capital chain management and social risk factors are relatively strong.
4.4. Coupling Risk Countermeasure
- (1)
- In order to solve the risk of social-public coupling, one of the meeting points is the media. On the one hand, the public should gradually cultivate the awareness of finding the media for something. When the risks of major projects infringe upon the vital interests of the public, the public should exercise their power within the scope of the law to seek help from the media or pretend to be the media themselves. Through the official channel the network platform can be used to output information to attract attention, improve the ability of thinking and their own comprehensive quality, and strengthen the ability to screen information. On the other hand, the media should strengthen the networking and digitization of information feedback and define the social responsibility objectives of major projects. Through press conferences, Weibo interviews, large forums, and other information media, the integration of public subsidies, environmental feedback, and other data to analyze the causes of the risk of social stability, to answer questions to the public to form a good interaction.
- (2)
- When making decisions on major projects, the government should, on the premise of abiding by national laws and regulations, technical norms, and industry standards, focus on the disclosure of relevant information in the field of approval and implementation of major projects in an all-round way, and show the information to the society and the public in an open and transparent manner. However, the social public group behavior risk is mostly caused by unreasonable decision-making, therefore it is necessary to construct the concept of overall governance and pursue benign interaction for decision-making revision under the guidance of a people-oriented concept.
- (3)
- An early risk warning mechanism for social stability will be formed. The social stability risk of major projects increases with the increase of risk coupling factors, thus it is necessary to predict and warn of the risk factors before the occurrence of social stability risk events. On the one hand, more serious multi-factor coupling risk events can be avoided through the early warning mechanism; on the other hand, the abnormal indicators in the early warning mechanism can be traced back to the hidden risk factors to obtain more efficient and accurate social stability risk management programs and countermeasures.
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xiang, P.; Wu, X. Construction of social stability risk network for major engineering projects based on SNA. Constr. Econ. 2018, 6, 41–47. (In Chinese) [Google Scholar]
- Munier, N. Risk Management for Engineering Projects; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Zhang, R.; Feng, H.; Shi, C. Analysis on impacting factors from joint-operation of Key Works for Expansion of Nenjiang River Water Diversion Project. Water Resour. Hydropower Eng. 2016, 1, 120–123, 126. [Google Scholar]
- Reddy, A.S. Risk management in construction industry—A case study. Int. J. Innov. Res. Comput. Commun. Eng. 2015, 4, 10058–10067. [Google Scholar]
- Luo, X.; Hu, L.; Liu, D. Social stability risk assessment of major engineering project under conditions of black-box operation and information disclosure: Dynamic game analysis based on Hierarchical Bayesian Network. Technol. Econ. 2018, 10, 117–130. (In Chinese) [Google Scholar]
- Ma, L.; Cong, X. Social stability risk assessment of NIMBY major projects by OWA, matter-element, and cloud model. Intell. Fuzzy Syst. 2019, 36, 2545–2556. [Google Scholar] [CrossRef]
- Khameneh, A.H.; Taheri, A.; Ershadi, M. Offering a framework for evaluating the performance of project risk management system. Procedia Soc. Behav. Sci. 2016, 226, 82–90. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Liu, Y. Research on the application of FMEA risk evaluation for metro projects combining FAHP and frequency analysis. Eng. Manag. 2015, 1, 53–58. (In Chinese) [Google Scholar]
- Yang, S.-L. Practical research on risk evaluation methods for power engineering construction projects. Xinjiang Power Technol. 2014, 3, 111–114. [Google Scholar]
- Zhang, W.; Duan, Y.-y. Social stability risk relationship model of major engineering projects based on Fuzzy-ISM. Civ. Eng. Manag. 2019, 5, 102–108. (In Chinese) [Google Scholar]
- Cui, C. A research on how to control the risks of construction engineering project in construction enterprises in China. In Proceedings of the International Conference on Sensor Network & Computer Engineering, Xi’an, China, 8–10 July 2016. (In Chinese). [Google Scholar]
- Tan, S. The paradox of social stability risk management of large-scale engineering projects in China: Current situation, causes and countermeasures. China Soc. Public Saf. Res. Rep. 2015, 2, 31–41. [Google Scholar]
- Huang, Y.J. Social risk management: Framework, risk assessment and tool application. Manag. World 2013, 9, 176–177. [Google Scholar]
- Chu, F.; Chu, C. Single item dynamic lot-sizing models with bounded inventory and outsourcing. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2008, 38, 70–77. [Google Scholar]
- Lee, F.; Olav, S. Technology as a complex adaptive system: Evidence from patent data. Res. Policy 2001, 30, 1019–1039. [Google Scholar]
- Duan, Y. Research on Social Stability Risk Evaluation of Major Engineering Projects. Master’s Thesis, Xi’an University of Architecture and Technology, Xi’an, China, 2019; p. 6. (In Chinese). [Google Scholar]
- Zhong, M. Research on Social Stability Risk Assessment and Index System of Major Engineering Projects. Master’s Thesis, China University of Mining and Technology, Beijing, China, 2016. (In Chinese). [Google Scholar]
- Deng, L.; Hua, J. Public participation game in decision-making social stability risk assessment of major water conservancy projects. Water Conserv. Econ. 2017, 35, 12–18. (In Chinese) [Google Scholar]
- Hao, Y. Analysis of Social Security Risk Mechanism and Quantitative Model of Major Environmental Sensitive Projects. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2018. (In Chinese). [Google Scholar]
- Wang, H.; Zhang, Y.; Li, S. Safety risk analysis of high-speed rail operation based on Bow-tie model. Liaoning Univ. Eng. Technol. Nat. Sci. Ed. 2017, 36, 767–772. (In Chinese) [Google Scholar]
- Guo, M. Research on Social Stability Risk Assessment of Major Engineering Projects. Master’s Thesis, Henan University of Technology, Henan, China, 2015. (In Chinese). [Google Scholar]
- Miao, J.; Huang, D.; He, Z. Social risk assessment and management for major construction projects in china based on fuzzy integrated analysis. Complexity 2019, 2019, 2452895. [Google Scholar]
Criterion Layer | Scheme Layer | Indicator Description |
---|---|---|
Government risk | Decision legitimacy | The government abides by laws and regulations, technical standards, and contract norms in decision-making |
Affiliation institutional perfection | Establish and implement relevant systems at all stages to ensure the smooth implementation of the project and the interests of the relevant masses | |
Public risk | Social participation | The participation of the public in putting forward reasonable suggestions in major engineering fields |
Social satisfaction | Satisfaction of the public to enjoy environmental subsidies and other preferential policies | |
Risk of group behavior | Group events such as group strikes, demonstrations, disturbances, petitions by the masses, etc. | |
Economic risk | Price changes | The price fluctuation caused by raw materials or supply and demand has an impact on the original profit structure |
Mode of operational management | Failure to coordinate the various management elements, resulting in more labor and material consumption | |
Social risk | Accident safety risks | Building collapse, occurrence of fire, explosion accidents, etc. |
Traditional customs influence | Migrant masses need to accept the customs of the placement area, culture relearning, etc. | |
Natural environmental risk | Air pollution | When the long-term emission of toxic and harmful gases reaches a certain degree of pollution, it will cause irreversible damage to the atmosphere |
Water pollution | Pollution of water quality caused by the discharge of toxic substances and waste water during construction and production | |
Resource occupation | Occupation of surrounding resources by major projects |
Type | Government Factor Risk | Public Risk | Economic Risk | Social Risk | Natural Environmental Risk |
---|---|---|---|---|---|
Expression | T10 (a) | T11 (b) | T12 (c) | T13 (d) | T14 (e) |
Type | G-P Coupling Risk | G-E Coupling Risk | G-S Coupling Risk | G-NE Coupling Risk | P-E Coupling Risk |
---|---|---|---|---|---|
Expression | T20 (a,b) | T21 (a,c) | T22 (a,d) | T23 (a,e) | T24 (b,c) |
Type | P-S coupling risk | P-NE coupling risk | E-S coupling risk | E-NE coupling risk | S-NE coupling risk |
Expression | T25 (b,d) | T26 (b,e) | T27 (c,d) | T28 (c,e) | T29 (d,e) |
Type | G-P-E Coupling Risk | G-P-S Coupling Risk | G-P-NE Coupling Risk | G-E-S Coupling Risk | G-E-NE Coupling Risk | G-S-NE Coupling Risk |
---|---|---|---|---|---|---|
Expression | T30 (a,b,c) | T31 (a,b,d) | T32 (a,b,e) | T33 (a,c,d) | T34 (a,c,e) | T35 (a,d,e) |
Type | P-E-S coupling risk | P-E-NE coupling risk | P-S-NE coupling risk | E-S-NE coupling risk | G-E-S-NE coupling risk | G-P-S-NE coupling risk |
Expression | T36 (b,c,d) | T37 (b,c,e) | T38 (b,d,e) | T39 (c,d,e) | T310 (a,c,d,e) | T311 (a,b,d,e) |
Type | G-P-E-NE coupling risk | G-P-E-S coupling risk | P-E-S-NE coupling risk | G-P-E-S-NE coupling risk | - | - |
Expression | T312 (a,b,c,e) | T313 (a,b,c,d) | T314 (b,c,d,e) | T4 (a,b,c,d,e) | - | - |
Project Name | Government Risk Factors | Public Risk Factors | Economic Risk Factors | Social Risk Factors | Natural Environmental Risk Factors |
---|---|---|---|---|---|
Three Gorges Project (China) | No | Social satisfaction problem | No | Traditional customs problem | Resource occupation problem |
Hong Kong-Zhuhai-Macao Bridge (China) | No | Social participation problem | The problem of the mode of management | No | No |
Bird’s Nest (China) | No | Social satisfaction problem | The problem of the mode of management | No | No |
New Federal Building of San Francisco (United States) | Legitimacy of decision | Other | The problem of the mode of management | No | No |
Kemper thermal power plants (United States) | No | No | The problem of the mode of management | No | Air Pollution |
Sampoong Department Store(South Korea) | Legitimacy of decision | Social satisfaction problem | Other | Risk of safety accident | No |
Single Factor Coupling | Two-Factor Coupling | Multi-Factor Coupling | ||||||
---|---|---|---|---|---|---|---|---|
Coupling Factor | Frequency/Time | Frequency | Coupling Factor | Frequency/Time | Frequency | Coupling Factor | Frequency/Time | Frequency |
10,000 | 3 | 0.028 | 11,000 | 7 | 0.065 | 11,010 | 4 | 0.037 |
01,000 | 9 | 0.083 | 10,100 | 2 | 0.019 | 10,110 | 1 | 0.009 |
00,100 | 5 | 0.046 | 10,010 | 4 | 0.037 | 10,011 | 2 | 0.019 |
00,010 | 22 | 0.204 | 01,100 | 1 | 0.009 | 01,011 | 6 | 0.056 |
00,001 | 6 | 0.055 | 01,010 | 30 | 0.278 | - | - | - |
- | - | - | 01,001 | 5 | 0.046 | - | - | - |
- | - | - | 00,011 | 1 | 0.009 | - | - | - |
Coupling Mode | Probability | Coupling Mode | Probability |
---|---|---|---|
P0…. | 0.786 | P..1.. | 0.148 |
P1…. | 0.214 | P…0. | 0.351 |
P.0… | 0.426 | P…1. | 0.649 |
P.1… | 0.574 | P….0 | 0.815 |
P..0.. | 0.852 | P….1 | 0.185 |
Coupling Mode | Probability | Coupling Mode | Probability | Coupling Mode | Probability | Coupling Mode | Probability |
---|---|---|---|---|---|---|---|
P00… | 0.314 | P1..0. | 0.112 | P.0.0. | 0.148 | P..10. | 0.074 |
P01… | 0.472 | P1..1. | 0.102 | P.0.1. | 0.278 | P..11. | 0.009 |
P10… | 0.103 | P0…0 | 0.287 | P.1.0. | 0.203 | P..0.0 | 0.741 |
P11… | 0.102 | P0…1 | 0.166 | P.1.1. | 0.371 | P..0.1 | 0.185 |
P0.0.. | 0.731 | P1…0 | 0.195 | P.0..0 | 0.343 | P..1.0 | 0.083 |
P0.1.. | 0.055 | P1…1 | 0.019 | P.0..1 | 0.083 | P..1.1 | 0 |
P1.0.. | 0.186 | P.00.. | 0.352 | P.1..0 | 0.472 | P…00 | 0.25 |
P1.1.. | 0.028 | P.01.. | 0.074 | P.1..2 | 0.102 | P…01 | 0.101 |
P0..0. | 0.184 | P.10.. | 0.565 | P..00. | 0.277 | P…10 | 0.565 |
P0..1. | 0.547 | P.11.. | 0.009 | P..01. | 0.64 | P…11 | 0.084 |
Coupling Mode | Probability | Coupling Mode | Probability | Coupling Mode | Probability | Coupling Mode | Probability |
---|---|---|---|---|---|---|---|
P000.. | 0.268 | P1.01. | 0.056 | P.100. | 0.148 | P.1.01 | 0.046 |
P100.. | 0.084 | P1.11. | 0.009 | P.001. | 0.269 | P.0.11 | 0.019 |
P001.. | 0.046 | P0..00 | 0.138 | P.110. | 0.009 | P.1.11 | 0.056 |
P110.. | 0.102 | P1..00 | 0.112 | P.101. | 0.371 | P..000 | 0.176 |
P101.. | 0.028 | P0..01 | 0.101 | P.011. | 0.009 | P..100 | 0.074 |
P011.. | 0.009 | P1..10 | 0.074 | P.0.00 | 0.093 | P..001 | 0.101 |
P0.00. | 0.184 | P0..11 | 0.009 | P.1.00 | 0.157 | P..110 | 0.009 |
P1.00. | 0.093 | P1..11 | 0.019 | P.0.01 | 0.055 | P..011 | 0.084 |
P0.01. | 0.547 | P.000. | 0.083 | P.1.10 | 0.315 | P1.10. | 0.019 |
Coupling Mode | Probability | Coupling Mode | Probability | Coupling Mode | Probability | Coupling Mode | Probability |
---|---|---|---|---|---|---|---|
P0000. | 0.055 | P0.000 | 0.083 | P10.00 | 0.047 | P01.11 | 0.056 |
P1000. | 0.028 | P1.000 | 0.093 | P01.00 | 0.092 | P000.0 | 0.204 |
P0100. | 0.129 | P0.100 | 0.055 | P00.10 | 0.204 | P100.0 | 0.065 |
P0010. | 0.046 | P0.010 | 0.482 | P00.01 | 0.055 | P010.0 | 0.361 |
P0001. | 0.213 | P0.001 | 0.101 | P11.00 | 0.065 | P001.0 | 0.046 |
P1100. | 0.065 | P1.100 | 0.019 | P10.10 | 0.046 | P000.1 | 0.064 |
P1010. | 0.019 | P1.010 | 0.074 | P01.10 | 0.278 | P110.0 | 0.102 |
P1001. | 0.056 | P0.011 | 0.065 | P01.01 | 0.046 | P101.0 | 0.028 |
P0110. | 0.009 | P1.110 | 0.009 | P00.11 | 0.009 | P100.1 | 0.019 |
P0101. | 0.278 | P1.011 | 0.019 | P11.10 | 0.037 | P011.0 | 0.009 |
Coupling Mode | T Values | Coupling Mode | T Values | Coupling Mode | T Values |
---|---|---|---|---|---|
T20 | 0.084 | T29 | 0.046 | T39 | 0.140 |
T21 | 0.033 | T31 | 0.248 | T310 | 0.252 |
T22 | 0.101 | T32 | 0.141 | T311 | 0.320 |
T23 | −0.001 | T33 | 0.188 | T312 | 0.196 |
T24 | 0.076 | T34 | 0.099 | T313 | 0.408 |
T25 | 0.179 | T35 | 0.173 | T314 | 0.304 |
T26 | 0.034 | T36 | 0.202 | T4 | 0.579 |
T27 | 0.099 | T37 | 0.138 | ||
T28 | −0.003 | T38 | 0.197 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, H.; Zheng, Z.; Huang, H.; Zhou, X.; Tang, Y.; Hu, P. Risk Coupling Evaluation of Social Stability of Major Engineering Based on N-K Model. Buildings 2022, 12, 702. https://doi.org/10.3390/buildings12060702
Yan H, Zheng Z, Huang H, Zhou X, Tang Y, Hu P. Risk Coupling Evaluation of Social Stability of Major Engineering Based on N-K Model. Buildings. 2022; 12(6):702. https://doi.org/10.3390/buildings12060702
Chicago/Turabian StyleYan, Hongyan, Zhouwei Zheng, Hanjie Huang, Xinyi Zhou, Yizhi Tang, and Ping Hu. 2022. "Risk Coupling Evaluation of Social Stability of Major Engineering Based on N-K Model" Buildings 12, no. 6: 702. https://doi.org/10.3390/buildings12060702
APA StyleYan, H., Zheng, Z., Huang, H., Zhou, X., Tang, Y., & Hu, P. (2022). Risk Coupling Evaluation of Social Stability of Major Engineering Based on N-K Model. Buildings, 12(6), 702. https://doi.org/10.3390/buildings12060702