Extrusion and Subsequent Transformation of Textile-Reinforced Mortar Components—Requirements on the Textile, Mortar and Process Parameters with a Laboratory Mortar Extruder (LabMorTex)
Abstract
:1. Introduction
2. Materials
3. Experimental Methods and Shaping Process
3.1. Mortar Production
3.2. Mortar Extrusion Process
3.3. Determination of the Bending Stiffness of the Textiles
3.4. Shaping Process
4. Results
4.1. Bending Stiffness of the Textiles
4.2. Shaping Behavior of the Mortar
4.3. Bending Behaviour of Extruded Textile-Reinforced Mortar
5. Conclusions
- Regardless of the selected fibre content, neither the PVA nor the basalt microfibres used had a significant influence on the bending behaviour of the freshly extruded specimens produced with the LabMorTex.
- The modified cantilever test is a suitable method to characterise the bending behaviour of impregnated textiles otherwise it is not able to describe the behaviour of textiles inside TRM components in a accurate way.
- With the newly developed experimental setup for shaping in the longitudinal direction, a longitudinal bending radius of only 5 cm can be achieved.
- Fibre-reinforced specimens with bending radii of up to approx. 5 cm were produced without surface defects or cracks. For the glass textile and carbon textile-reinforced specimens, longitudinal bending radii of up to approx. 10 cm were determined.
- During transverse forming, bending radii of approx. 6 cm were determined without defects for fibre-reinforced specimens, regardless of the fibre type and content. In the case of TRM specimens, it was not possible to produce flawless specimens while transversely forming.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Adesina, A. Recent advances in the concrete industry to reduce its carbon dioxide emissions. Environ. Chall. 2020, 1, 100004. [Google Scholar] [CrossRef]
- Lu, W.; Lee, W.M.; Xue, F.; Xu, J. Revisiting the effects of prefabrication on construction waste minimization: A quantitative study using bigger data. Resour. Conserv. Recycl. 2021, 170, 105579. [Google Scholar] [CrossRef]
- Beckmann, B.; Bielak, J.; Bosbach, S.; Scheerer, S.; Schmidt, C.; Hegger, J.; Curbach, M. Collaborative research on carbon reinforced concrete structures in the CRC/TRR 280 project. Civ. Eng. Des. 2021, 3, 99–109. [Google Scholar] [CrossRef]
- Janani, R.; Lalithambigai, N. A critical literature review on minimization of material wastes in construction projects. Mater. Today Proc. 2021, 37, 3061–3065. [Google Scholar] [CrossRef]
- Lewis, W.J. Tension cables in suspension bridges. A case of form-finding. In Tension Structures: Form and Behaviour, 2nd ed.; Lewis, W.J., Ed.; ICE Publishing: London, UK, 2017; pp. 101–133. ISBN 978-0-7277-6173-6. [Google Scholar]
- Lewis, W. Form-Finding Approach to Modelling Minimal Structural Forms, With Analogy to Nature. In Proceedings of the ISSA 2016: Innovative Structural Systems in Architecture, Wroclaw, Poland, 3–5 November 2016; pp. 39–42. [Google Scholar]
- Lewis, W.J. Mathematical model of a moment-less arch. Proc. R. Soc. A 2016, 472, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heyman, J. Hooke’s cubico–parabolical conoid. Notes Rec. R. Soc. Lond. 1998, 52, 39–50. [Google Scholar] [CrossRef]
- Buphoff. Gateway Arch, 2007: Permission of Use: CC BY-SA 3.0. Available online: https://de.wikipedia.org/wiki/Gateway_Arch_National_Park#/media/Datei:STL_Skyline_2007_crop_(Gateway_Arch).jpg (accessed on 16 April 2021).
- Maher, A.; Burry, M. The Parametric Bridge: Connecting Digital Design Techniques in Architecture and Engineering. In Proceedings of the 2003 Annual Conference of the Association for Computer Aided Design in Architecture, Indianapolis, IN, USA, 23–26 October 2003; pp. 39–47. [Google Scholar]
- Morales Cruz, C. Crack-Distributing Carbon Textile Reinforced Concrete Protection Layers. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2020. [Google Scholar] [CrossRef]
- Rempel, S. Reliability of the Structural Design for Concrete Elements with Textile Reinforcement and Bending Load. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2018. [Google Scholar] [CrossRef]
- Bielak, J. Shear in Slabs with Non-Metallic Reinforcement. Ph.D. Thesis, RWTH Aachen University, Aachen, Germany, 2021. [Google Scholar] [CrossRef]
- Halvaei, M.; Jamshidi, M.; Latifi, M.; Ejtemaei, M. Experimental investigation and modelling of flexural properties of carbon textile reinforced concrete. Constr. Build. Mater. 2020, 262, 120877. [Google Scholar] [CrossRef]
- May, S.; Steinbock, O.; Michler, H.; Curbach, M. Precast Slab Structures Made of Carbon Reinforced Concrete. Structures 2019, 18, 20–27. [Google Scholar] [CrossRef]
- Schladitz, F.; Lorenz, E.; Jesse, F.; Curbach, M. Verstärkung einer denkmalgeschützten Tonnenschale mit Textilbeton. BUST 2009, 104, 432–437. [Google Scholar] [CrossRef]
- Brameshuber, W. Manufacturing methods for textile-reinforced concrete. In Textile Fibre Composites in Civil Engineering; Elsevier: Amsterdam, The Netherlands, 2016; pp. 45–59. ISBN 9781782424468. [Google Scholar]
- Zhou, X.; Li, Z. Manufacturing cement-based materials and building products via extrusion: From laboratory to factory. Proc. Inst. Civ. Eng.-Civ. Eng. 2015, 168, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Alfani, R.; Guerrini, G.L. Rheological test methods for the characterization of extrudable cement-based materials—A review. Mater. Struct. 2005, 38, 239–247. [Google Scholar] [CrossRef]
- Perrot, A.; Rangeard, D.; Nerella, V.N.; Mechtcherine, V. Extrusion of cement-based materials—An overview. RILEM Tech. Lett. 2018, 3, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Kalthoff, M.; Raupach, M.; Matschei, T. Investigation into the Integration of Impregnated Glass and Carbon Textiles in a Laboratory Mortar Extruder (LabMorTex). Materials 2021, 14, 7406. [Google Scholar] [CrossRef] [PubMed]
- Janissen, L.; Raupach, M.; Hartung-Mott, R. Extrusion faserverstärkter Textilbetone. Bautechnik 2019, 96, 723–730. [Google Scholar] [CrossRef]
- Mott, R.; Brameshuber, W. Erste Erkenntnisse zum Extrudieren von Textilbeton. TUDALIT: Leichter Bau.-Zuk. Formen 2012, 7, 23. [Google Scholar]
- Woerd, J.D. Eine Methodik zur Realisierung Dünnwandiger Faltwerke aus Zementbasierten Verbundwerkstoffen durch Faltung: Lehrstuhl und Institut für Massivbau. Ph.D. Thesis, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany, 2018. [Google Scholar]
- Du, W.; Liu, Q.; Zhou, Z.; Uddin, N. Experimental investigation of innovative composite folded thin cylindrical concrete shell structures. Thin-Walled Struct. 2019, 137, 224–230. [Google Scholar] [CrossRef]
- Chudoba, R.; van der Woerd, J.; Schmerl, M.; Hegger, J. ORICRETE: Modeling support for design and manufacturing of folded concrete structures. Adv. Eng. Softw. 2014, 72, 119–127. [Google Scholar] [CrossRef]
- Pidun, K.; Hannawald, J.; Koch, A. Entwicklung eines Verfahrens zur Herstellung eines Fassadenelementes aus umgeformtem Textilbeton. Forschungsprojet “ConcreteFold”. Betonw. Int. BWI 2016, 19, 38–45. [Google Scholar]
- Liew, A.; López, D.L.; van Mele, T.; Block, P. Design, fabrication and testing of a prototype, thin-vaulted, unreinforced concrete floor. Eng. Struct. 2017, 137, 323–335. [Google Scholar] [CrossRef] [Green Version]
- DIN EN 196-1:2016-11; Methods of Testing Cement—Part 1: Determination of Strength. German Version; Beuth Verlag GmbH: Berlin, Germany, 2016. [CrossRef]
- DIN 53362:2003-10; Testing of Plastics Films and Textile Fabrics (Excluding Nonwovens), Coated or Not Coated Fabrics—Determination of Stiffness in Bending—Method according to Cantilever. Beuth Verlag GmbH: Berlin, Germany, 2003. [CrossRef]
- Woerd, J.D.; Bonfig, C.; Hegger, J.; Chudoba, R. Construction of a vault using folded segments made out of textile reinforced concrete by fold-in-fresh. In Proceedings of the IASS Annual Symposia, IASS 2017 Hamburg Symposium: Concrete Light: Innovative Concrete Constructions, Hamburg, Germany, 25–28 September 2017. [Google Scholar]
Components | Unit | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
CEM I 42,5 R | kg/m3 | 700 | ||||
Silica powder | 70 | |||||
Fly ash | 210 | |||||
Water | 278 | |||||
Sand 0.1–0.5 mm | 678 | 676 | 670 | 676 | 670 | |
Quartz powder 0–0.250 mm | 283 | 279 | 278 | 279 | 278 | |
Methyl cellulose | 7.0 | |||||
PVA microfibres | Vol.-% | - | - | - | 0.25 | 0.50 |
Basalt microfibres | - | 0.25 | 0.50 | - | - | |
Compressive strength 28d | MPa | 62 | 64 | 63 | 62 | 65 |
Textile Reinforcement | Fibre Material | Tensile Strength (1) | Modulus of Elasticity (1,2) | Fineness (1) | Mesh Size (1) | Cross Section per m (1) | Basis Weight |
---|---|---|---|---|---|---|---|
- | MPa | GPa | Tex | mm | mm2 | g/m2 | |
SITgrid044 VL | Carbon | 1840 | 150 | 1010 | 12 | 35.3 | 186 |
AR 240 | Glass | 1064 | 49 | 770 | 5 | 48.3 | 263 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalthoff, M.; Raupach, M.; Matschei, T. Extrusion and Subsequent Transformation of Textile-Reinforced Mortar Components—Requirements on the Textile, Mortar and Process Parameters with a Laboratory Mortar Extruder (LabMorTex). Buildings 2022, 12, 726. https://doi.org/10.3390/buildings12060726
Kalthoff M, Raupach M, Matschei T. Extrusion and Subsequent Transformation of Textile-Reinforced Mortar Components—Requirements on the Textile, Mortar and Process Parameters with a Laboratory Mortar Extruder (LabMorTex). Buildings. 2022; 12(6):726. https://doi.org/10.3390/buildings12060726
Chicago/Turabian StyleKalthoff, Matthias, Michael Raupach, and Thomas Matschei. 2022. "Extrusion and Subsequent Transformation of Textile-Reinforced Mortar Components—Requirements on the Textile, Mortar and Process Parameters with a Laboratory Mortar Extruder (LabMorTex)" Buildings 12, no. 6: 726. https://doi.org/10.3390/buildings12060726
APA StyleKalthoff, M., Raupach, M., & Matschei, T. (2022). Extrusion and Subsequent Transformation of Textile-Reinforced Mortar Components—Requirements on the Textile, Mortar and Process Parameters with a Laboratory Mortar Extruder (LabMorTex). Buildings, 12(6), 726. https://doi.org/10.3390/buildings12060726