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Abstract: Cement-based materials are widely used in transportation, construction, national defense,
and other fields, due to their excellent properties. High performance, low energy consumption,
and environmental protection are essential directions for the sustainable development of cement-
based materials. To alleviate the environmental pressure caused by carbon emissions in cement
production, this paper studies cement-based materials containing metakaolin by a comparison of
prediction models for the compressive strength. To more accurately evaluate the compressive strength
of metakaolin cement-based materials, this paper compares the prediction effects of four models,
namely, support vector machine (SVM), decision tree (DT), k-nearest neighbor (KNN), and random
forest (RF), with hyperparameters optimized by the Firefly Algorithm (FA) to study the compressive
strength of cement-based materials containing metakaolin. The results demonstrated that the RF
model showed the optimized prediction effect considering the lowest RSME value and the highest
R value among the hybrid models for predicting metakaolin cement-based materials’ compressive
strength. The importance test showed that the cement grade and the water-to-binder ratio greatly
influence the compressive strength of cement-based materials with metakaolin compared to the other
design parameters.

Keywords: metakaolin; green concrete; machine learning; compressive strength; hyperparameters

1. Introduction

Cement-based materials refer to the materials with new properties obtained by com-
bining cement with other materials [1–3]. Common cement base materials have concrete,
mortar, and grouting materials [4–12]. Cement-based materials are widely used in construc-
tion, transportation, national defense, and other fields because of their advantages: high
performance, convenient production, convenient construction, high compressive strength,
good corrosion resistance, good durability, and so on [13–17]. In cement production, when
CaCO3, as cement raw material, decomposes into CO2, the combustion of combustion
materials also releases a certain amount of CO2 [18]. Carbon emission has caused the green-
house effect and brought a certain burden to the environment [4]. It is of great significance
to improve the production of cement-based materials, effectively utilize resources, and
alleviate the environmental load for promoting the sustainable development of cement-
based materials [19]. Using mineral materials such as auxiliary gel materials to improve the
performance of cement-based materials has become an important development direction
in the manufacture of high-performance cement-based materials. The commonly used
mineral materials are fly ash, silica fume, ore powder, metakaolin, and so on [20].

Mineral admixture can reduce the use of cement and reduce the cost and the carbon
emission caused by cement production. In addition, mineral admixture can improve the
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performance and internal structure of cement-based materials and improve the strength
and durability of cement-based materials [21,22]. Metakaolin is a kind of active mineral
admixture formed by calcination of kaolin as raw material at high temperatures [23,24].
Metakaolin can be hydrated with cement to generate the corresponding cementing sub-
stance and improve cement-based materials’ strength and corrosion resistance [25,26].

In recent years, there are many types of research on improving cement-based materials’
performance by adding the appropriate amount of metakaolin into cement-based materials,
mainly focusing on the compressive strength and durability of cement-based materials [27].
Metakaolin was used in the cement composite because it can significantly improve the
properties of cement-based materials because of its pozzolanic activity, nucleation, and
macroaggregates filling effect. Batis et al. studied the influence of metakaolin on the
compressive strength and corrosion of cement mortar and found that the compressive
strength of cement mortar could be improved by replacing cement with partial metakaolin.
When the content of metakaolin is 10%, its contribution to the compressive strength of
cement mortar is the largest. As a substitute for sand or cement, Metakaolin plays a positive
role in improving the corrosion resistance of cement mortar [1,2]. Khater et al. studied
the resistance of cement mortar with different amounts of metakaolin to magnesium
chloride solution. The research results showed that the higher the metakaolin content
within a certain range, the stronger the resistance of cement mortar to magnesium chloride
solution [28]. Wang et al. evaluated various properties of metakaolin mixed concrete with
the comprehensive hydration force durability model [4]. Kirsanova et al. studied the
influence of metakaolin on the structural change of modified cement set to evaluate the
influence of metakaolin on the phase composition of cement set. The results showed that
the use of metakaolin promoted the composition of metastable calcium hydroaluminate
and thus promoted the structure composition of cement set [29]. Kadri et al. studied the
influence of metakaolin on hydration heat and compressive strength of mortar, and the
results showed that adding a certain amount of metakaolin could bring mortar to a higher
temperature. The contribution of metakaolin to mortar strength is mainly determined by
packing effect, hydration acceleration of ordinary Portland cement, and pozzolans reaction
of metakaolin [30]. Vu et al. studied the influence of metakaolin on the durability and
compressive strength of cement mortar and concrete, and the research results showed
that the replacement level of metakaolin for cement mortar or concrete was within 30%,
and it had a positive effect on the compressive strength and durability of cement mortar
and concrete [31]. Courard et al. found that metakaolin can inhibit chloride diffusion and
sulfate erosion to a certain extent when the dosage of metakaolin is 5–20% of the mass of
cement foundation by studying the durability of metakaolin on modified mortar [13].

Machine learning is an interdisciplinary subject involving many fields, such as proba-
bility theory, statistics, and algorithm complexity theory [32–38]. Machine learning mainly
studies how to simulate and implement human learning behavior, acquire new skills, and
constantly improve their skills [39,40]. The essence of machine learning is to process and an-
alyze data in large quantities through the computer’s powerful data processing and analysis
ability [41–45]. In recent years, machine learning has been applied in many fields, such as fi-
nance, medicine, education, and architecture, due to its superior performance [35–37,46,47].
Many scholars at home and abroad have studied the application of machine learning in
cement-based materials and made some progress [48–57]. Shamsabadi et al. studied the
influence of waste marble powder (WMP) on the compressive strength of concrete by
using the extreme gradient enhancement model (XGB) and artificial neural network model
(ANN), and the results showed that the influence of WMP on the compressive strength
of concrete was limited to 10–20% due to the inertia of WMP. Asteris et al. established
an optimization model using a machine learning method to evaluate the impact of six
input parameters on the compressive strength of metakaolin concrete: the specimen age,
the metakaolin-to-glue ratio, the water–glue ratio, the superplastic fortifier ratio, and the
thick–thin aggregate ratio [58]. Ahmad et al., based on Artificial Neural Network (ANN),
Boosting, and AdaBoost machine learning, studied the prediction of compressive strength
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of high calcium fly ash base (GPC) based on Python coding. In addition, the comparison of
the prediction performance of the two technologies showed that the ensemble ML method,
AdaBoost, and Boosting method are better than the single machine learning technology
in predicting the compressive strength of GPC [59]. Barnat-Hunek et al. proposed a new
method based on image texture analysis and machine learning technology to evaluate
Lightweight Cement composites with hydrophobic coatings modified by the durability
of nanocellulose (LLC) materials [60]. Asteris et al. proposed to evaluate the applicability
of cement mortar compressive strength based on traditional machine learning models,
such as support vector machine, random forest, decision tree, and AdaBoost. The above
machine learning methods have achieved good results in the performance evaluation of
cement-based materials, proving that machine learning has a certain development prospect
in the performance evaluation of cement-based materials.

Although some researchers used machine learning methods to evaluate the compres-
sive strength of cement-based materials before, it should be pointed out that due to the
characteristics and application of different machine learning models, their prediction effects
for different application scenarios will be different to some extent [61,62]. However, in
previous studies, few researchers have analyzed the influence of different machine learning
methods on the compressive strength of cement-based materials with metakaolin. To more
accurately study the influence of the cement grade, the water-to-binder ratio, the binder-
to-sand ratio, the metakaolin-to-binder ratio, and the superplasticizer on the compressive
strength of cement-based materials with metakaolin, this study will use FA to optimize the
hyperparameters of SVM, DT, KNN, and RF. The prediction effect of these four models on
the compressive strength of cement-based materials with metakaolin was compared, and
the model with the best prediction effect was selected.

2. Methodology
2.1. Dataset Collection

A reliable and huge database is significant for predicting the compressive strength
of cement-based materials containing metakaolin with machine learning models. In this
study, data on the effect of the cement grade, the water-to-binder ratio, the binder-to-sand
ratio, the metakaolin-to-binder ratio, and the superplasticizer on the compressive strength
of cement-based materials with metakaolin were collected from published articles, and
a reliable database containing 361 data sets was established. The influence of these five
parameters on the compressive strength of cement-based materials with metakaolin has
been confirmed in previous studies. Therefore, they were selected as the input variables in
the present study; considering the fact that compressive strength has been regarded as one
of the most important parameters to evaluate the performance of cement-based materials, it
has been selected as the output variable. The database is randomly divided into the training
set and testing set. The training set contains about 80% of the data in the database, whereas
the testing set contains about 20% of the data. The frequency distribution histogram of the
six variables is shown in Figure 1.

By comparing the predicted value and the actual value of the training set and the
testing set of different machine learning models, the prediction effect of different machine
learning models on the compressive strength of metakaolin cement-based materials was
analyzed. The five machine learning models are introduced below.

Correlation analysis is an analysis method to verify the linear relationship between
two variables through a correlation coefficient, which can analyze the correlation between
two variables and the strength of the correlation. Before using the machine learning model
to predict the compressive strength of cement-based materials containing metakaolin, it is
necessary to analyze the correlation between the input variables. The correlation coefficient
between the two variables is high positive or high negative, that is, there is a high positive or
negative correlation between the two variables, which will affect the prediction effect of the
machine learning model. The correlation analysis of the cement grade, the water-to-binder
ratio, the binder-to-sand ratio, the metakaolin-to-binder ratio, and the superplasticizer is
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shown in Figure 2. As shown in Figure 2, the correlation between the same variables is
1, and that between different variables is 0.2–0.6. Although the correlation coefficients
between the water-to-binder ratio and the superplasticizer, the water-to-binder ratio, the
binder-to-sand ratio, the cement grade, and the binder-to-sand ratio are high, about 0.5,
the correlation coefficients between them are all lower than 0.6, that is, these five input
variables are independent of each other. Therefore, using these five variables as input
variables to predict the compressive strength of cement-based materials with metakaolin
will achieve good results.
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2.2. Applied Machine Learning Models

Five machine learning models, FA, SVM, DT, KNN, and RF, are used in this study,
among which FA is used for hyperparameters tuning of the other four machine learning
models. Four machine learning models including SVM, DT, KNN, and RF were used to
predict the compressive strength of cement-based materials containing metakaolin with
the cement grade, the water-to-binder ratio, and the binder-to-sand ratio, the metakaolin
-to-binder ratio, and the superplasticizer as input variables.

FA is a random algorithm for global optimization problems based on firefly luminous
behavior [63,64]. In the FA, it is assumed that all fireflies are hermaphroditic and are
attracted to each other regardless of sex. FA is based on two key concepts: the intensity
of the light emitted by the firefly and the degree of attraction between the two fireflies.
The algorithm solves the optimization problem by simulating the living habits of fireflies
attracted by light. The flow chart of FA can be found in Figure 3.

SVM is a method to classify data according to supervised learning. The decision
boundary of the classification method is the maximum margin hyperplane of learning
samples. SVM is suitable for small and medium-sized data samples, high latitude, and
nonlinear classification problems [65]. High latitude means that SVM can efficiently deal
with the classification of high-latitude feature space, which is of far-reaching significance
in practical application. At the same time, although there are many training samples,
SVM can only rely on limited samples for decision-making, so the computer only needs
to store the limited samples used in decision-making, which saves the computer memory
to a great extent [66]. DT is a predictive model in machine learning, representing the
mapping between object attributes and object values. DT achieves the ability to predict
target variables by input predictive variables by analyzing the relationship between input
variables and target variables. A decision tree is similar to a flowchart in that each internal
node is a test attribute and each branch is a test result. KNN is a data mining classification
algorithm. Each sample in KNN can be represented by its nearest K neighboring values.
This algorithm can classify every record in geometry. The idea of classification is that K
samples are closest to each other in space, so the sample and the K samples belong to
the same category. This method is a classification method to determine the classification
of the samples to be classified by the category of one or several adjacent samples. RF is
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a common classification algorithm in machine learning. RF’s basic idea is to establish a
forest composed of many decision trees randomly, and there is no correlation between
these decision trees. RF is mainly used to solve the classification problem. It uses multiple
classification trees to classify data. In the process of classification, the algorithm obtains the
importance of each variable classification by scoring the importance of each variable.
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3. Results and Discussion
3.1. Hyperparameter Tuning

In this study, FA was used for hyperparameter tuning of SVM, DT, KNN, and RF
models. The results of hyperparameter tuning are shown in Figure 4. As can be seen from
Figure 4, with the increase in iteration times, RMSE values of these four models all decline
sharply at first and then tend to be stable. The RMSE values of the SVM, DT, and RF models
have similar rates of change, whereas the RMSE values of the KNN model are significantly
different from those of the other three models, and its RMSE values are generally higher
than those of the other three models, that is, FA has a poor tuning effect on this model. It
can be seen from Figure 4 that after the hyperparameter tuning of SVM, DT, KNN, and
RF by FA, the minimum RMSE values of SVM, DT, and RF models are all low, that is, the
FA model has a better hyperparameters tuning effect on these three models. In this study,
the prediction effects of four models, including SVM, DT, KNN, and RF on compressive
strength of cement-based materials containing metakaolin after FA hyperparameter tuning
were compared, and the model with the best prediction effect was selected.

The 10-fold cross-validation is a common test method to test the accuracy of the
algorithm. This method needs to divide the data set into ten parts, selecting one of them
as the testing data in turn and the remaining nine as the training data for training. The
results of hyperparameter tuning for the above four models by 10-fold cross-validation
are shown in Figure 5. Figure 5 shows that the minimum RSME of SVM, DT, and RF are
all about 8, which are obtained at the fourth, ninth, and ninth iterations, respectively. The
minimum RMSE value of KNN is 12, which is obtained at the sixth iteration. Therefore,
after FA hyperparameter tuning, RSME values of SVM, DT, and RF models are lower, that
is, the prediction effect of compressive strength of cement-based materials with metakaolin
is better.
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3.2. Model Evaluation

In this study, the accuracy of the prediction of compressive strength of cement-based
materials with metakaolin was evaluated by comparing the predicted values with the actual
values of the training set and the testing set of SVM, DT, KNN, and RF. The comparison
results between the predicted value and the actual value of the four models are shown in
Figure 6, where the horizontal line represents the error between the predicted value and
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the actual value of the dataset. As shown from Figure 6, the predicted values and the actual
values of SVM, DT, and RF are consistent, with only a few points with large errors, while
there is a large error between the predicted values and the actual values of KNN.
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Figure 7 compares the predicted and actual values of the training set and the testing
set of SVM, DT, KNN, and RF. It can be seen from Figure 7 that most of the predicted
values of the training set and the testing set of SVM, DT, and RF models are concentrated
in 20–60 MPa, most of the actual values are concentrated in 0–60 MPa, and a few of the
predicted values and the actual values of the training set and the testing set are concentrated
in 60–120 MPa. Most of the predicted values and the actual values of the training set and
the testing set of the KNN model are concentrated in 0–60 MPa and a few are concentrated
in 60–120 MPa. The RMSE values corresponding to the SVM, DT, KNN, and RF training
sets are 12.4494, 12.942, 13.6014, and 10.4863, respectively, and the R values are 0.7856,
0.7933, 0.7924, and 0.8709, respectively. The RMSE values corresponding to the testing
sets of these four models are 14.3837, 17.6971, 19.2549, and 14.2904, respectively, and the R
values are 0.7928, 0.5246, 0.5492, and 0.696, respectively. Among the four models, RF has
the lowest RMSE value and the highest R value on both the training set and the testing set,
whereas KNN has the highest RMSE value and the lowest R value on both the training set
and the testing set. That is, after the hyperparameters of SVM, DT, KNN, and RF models
are adjusted by the FA model, RF has the best prediction effect on the compressive strength
of cement-based materials with metakaolin, whereas KNN has the worst prediction effect.
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Figure 8 compares RMSE values and R values of SVM, DT, KNN, and RF with hyper-
parameter tuning by FA. It can be clearly seen from Figure 8 that after hyperparameter
tuning by FA, RMSE values of these four models decrease one by one in the order of KNN,
DT, SVM, and RF, while R values increase one by one. In other words, RF has the lowest
RSME value and the highest R value among the four models, which confirms again that
RF has the best prediction effect on the compressive strength of cement-based materials
with metakaolin among the four models after FA hyperparameter tuning. Such prediction
results can provide certain technical support in the production process of green concrete
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with Metakaolin in the future. However, it should be noted that the proposed model should
be clarified before practical application, and the raw materials used should be consistent
with the ones used to build the prediction model.
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3.3. Variable Importance Evaluation

Based on the analysis of the importance of the five input variables (the cement grade,
the water-to-binder ratio, the binder-to-sand ratio, the metakaolin-to-binder ratio, and
the superplasticizer) affecting the compressive strength of cement-based materials with
metakaolin studied in this paper, we can understand the importance of these five variables
to the compressive strength of cement-based materials with metakaolin and then provide
some guidance for engineers to configure high-strength cement-based materials with
metakaolin. Machine learning models can be used to predict the compressive strength of
cement-based materials with metakaolin according to five input parameters: the cement
grade, the water-to-binder ratio, the binder-to-sand ratio, the metakaolin-to-binder ratio,
and the superplasticizer. Similarly, machine learning models can also be used to evaluate
the importance of these five variables to the compressive strength of cement-based materials
with metakaolin. According to the above analysis, RF is the best prediction model of SVM,
DT, KNN, and RF after hyperparametric optimization with FA. Therefore, this paper will
use the RF model to analyze the importance of the five input variables. It can be seen from
Figure 9 that the importance of the cement grade, the water-to-binder ratio, the binder-to-
sand ratio, the metakaolin-to-binder ratio, and the superplasticizer are all positive, that
is, these five variables are directly proportional to the compressive strength of cement-
based materials with metakaolin. Therefore, the compressive strength of cement-based
materials with metakaolin can be improved by increasing any one of these five parameters.
Among the five variables of the cement grade, the water-to-binder ratio, the binder-to-sand
ratio, the metakaolin-to-binder ratio, and the superplasticizer, the importance scores of the
cement grade and the water-to-binder ratio are the highest, which are 1.4400 and 1.4155,
respectively, that is, these two parameters are the two most important variables affecting the
compressive strength of cement-based materials with metakaolin. The importance score of
the superplasticizer on the compressive strength of cement-based materials with metakaolin
is 0.5981. Among the five input variables, it is the variable with the lowest importance
score on the compressive strength of cement-based materials with metakaolin. Therefore,
when configuring high-strength cement-based materials with metakaolin, engineers should



Buildings 2022, 12, 772 12 of 15

focus on the impact of the cement grade and the water-to-binder ratio on the compressive
strength of cement-based materials with metakaolin and do not need to focus too much on
the dosage of the superplasticizer.
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4. Conclusions

According to the published literature, this study established a database. The database
takes the cement grade, the water-to-border ratio, the binder-to-sand ratio, the metakaolin-
to-border ratio, and the superplasticizer as input variables, and the compressive strength of
cement-based material with metakaolin as output variable. The data set in the database
is randomly divided into the training set and the testing set. The training set contains
about 80% of the data in the database, and the testing set contains about 20% of the data in
the database. Based on using FA to tune the hyperparameters of SVM, DT, KNN, and RF,
the author analyzed the model with the highest prediction accuracy of the compressive
strength of cement-based materials with metakaolin by comparing the predicted values
and the actual values of the training set and the testing set of these four models. The
corresponding conclusions are as follows:

1. The FA model can achieve good results in the hyperparameter tuning of SVM, DT, and
RF, whereas the FA model is relatively poor in the hyperparameter tuning of KNN.
In other words, SVM, DT, and RF models can accurately predict the compressive
strength of cement-based materials with metakaolin, of which the RF model has the
best prediction effect, whereas the KNN model has the worst prediction effect.

2. The compressive strength of cement-based materials with metakaolin is directly
proportional to the five variables of the cement grade, the water-to-binder ratio, the
binder-to-sand ratio, the metakaolin-to-binder ratio, and the superplasticizer, that is,
the compressive strength of cement-based materials with metakaolin increases with
the increase of any one of these five variables. It decreases with the decrease of any
one of these five variables.

3. The five variables of the importance of the compressive strength of cement-based
material with metakaolin decrease one by one according to the order of the cement
grade, the water-to-binder ratio, the binder-to-sand ratio, the metakaolin-to-binder
ratio, and the superplasticizer. The cement grade and the water-to-binder ratio have
a significant influence on the compressive strength of cement-based materials with
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metakaolin. In contrast, the superplasticizer has less influence on the importance of
the compressive strength of cement-based materials with metakaolin.

It should be noted that the predictive solutions may not be directly applied to the
construction industry at present. This is because the 361 databases come from different
studies, and there are significant differences regarding the raw materials in morphology
characteristics, chemical composition, and other factors and the environmental parameters
(such as the temperature). One goal of future research should be to establish a gene
database of raw materials and take the genetic characteristics of raw materials (for example,
morphology characteristics and chemical composition) as input variables to conduct in-
depth data mining in the case of big data to establish reliable and effective prediction
methods for actual production.
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