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Abstract: Inaccurate mass estimates have been recognized as an important source of uncertainty in
structural identification, especially for large-scale structures with old ages. Over the past decades,
some identification algorithms for structural states and unknown parameters, including unknown
mass, have been proposed by researchers. However, most of these identification algorithms are
based on the simplified mechanical model of chain-like structures. For a chain-like structure, the
mass matrix and its inverse matrix are diagonal matrices, which simplify the difficulty of identifying
the structure with unknown mass. However, a structure with a non-diagonal mass matrix is not of
such a simple characteristic. In this paper, an online joint state-parameter identification algorithm
based on an Unscented Kalman filter (UKF) is proposed for a structure with a non-diagonal mass
matrix under unknown mass using only partial acceleration measurements. The effectiveness of the
proposed algorithm is verified by numerical examples of a beam excited by wide-band white noise
excitation and a two-story one-span plane frame structure excited by filtered white noise excitation
generated according to the Kanai–Tajimi power spectrum. The identification results show that the
proposed algorithm can effectively identify the structural state, unknown stiffness, damping and
mass parameters of the structures.

Keywords: unknown mass; joint state-parameter identification; non-diagonal mass matrix; partial
acceleration measurement

1. Introduction

Nowadays, more and more large-scale civil building structures, especially high-rise
buildings and long-span bridges, are being built all over the world. Once these structures
are constructed and used, functional degradation of the structures will become a concerning
issue as the working-age of these structures increases. In order to ensure the safety and
reliability of these structures, it is particularly important to obtain the information on the
state and parameters of these structures accurately and timely. Structural health monitoring
(SHM) has received increasing attention in recent decades with the increasing demand for
effectively managing the health condition of these important infrastructures. Structural
identification (SI) methods play key roles in structural damage detection, model updating
and performance evaluation, which are the most important parts of structural health
monitoring. Therefore, the proposal of efficient and reliable structural system identification
algorithms is very important for the evaluation of the working performance of the structure
and the assessment of post-event conditions after natural disasters.

Over the past decades, a great deal of research has been conducted for structural
identification in either the frequency domain [1–5] or the time domain [6–10]. It should
be noted that almost all of the studies reviewed above assume that structural mass is
known when structural systems are identified. In practice, it is often difficult or even
impossible to obtain a priori information about the mass of an engineering structure in
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service. The inaccurate structural mass estimation causes large errors in the identification
of the structure, which endanger the reliability and even the safety of the structure.

In order to deal with this problem, many researchers developed some system identi-
fication algorithms under unknown mass. These system identification algorithms can be
roughly divided into two categories, namely, the frequency-domain method and the time-
domain method. In the frequency-domain system identification algorithm, Yuan et al. [11]
proposed an iterative algorithm for identifying structural mass and stiffness matrix ele-
ments of chain-like structures based on the first two orders of structural mode measurement
by combining modal expansion with the least-squares algorithm. Chakraverty et al. [12]
refined the above method by using Holzer criteria to improve its computational efficiency
and accuracy. Then, Mukhopadhyay et al. [13,14] also proposed a stiffness and mass matrix
identification method based on modal expansion. However, in order to perform modal
mass normalization processing, the structural mass, which the sensor is installed, must be
known prior. In addition, a flexibility-based damage identification algorithm that does not
require knowledge of structural mass is provided by Zhang et al. [15]. Farshadi et al. [16]
developed a (Transfer ratio function) FRF-based finite element (FE) model updating algo-
rithm. In this algorithm, the sensitivity equation between frequency response function and
parameter change is constructed, and the change in stiffness and mass are identified by
solving the equation. The above algorithms are all deterministic algorithms that cannot
quantitatively describe the uncertainty of identified results. The Bayesian statistical proba-
bilistic approach provides a method that can not only provide us with an optimal estimate
of the state and parameters of a structural system but also quantitatively describe the uncer-
tainty of this estimate. Mustafa et al. [17] proposed an efficient and robust Bayesian model
updating to update mass and stiffness by introducing a new objective function to remove
the coupling effect of stiffness and mass matrix to solve the unidentifiable problem of the
traditional Bayesian method when stiffness and mass matrix identified simultaneously.
Furthermore, Kim et al. [18] proposed a novel Bayesian model updating algorithm. In the
algorithm, the additional mass or additional stiffness is added to the structure to decouple
the coupling effects of mass and stiffness matrices of the identification algorithm so that
the model mass and stiffness parameters can be updated by comparing the measured data
of the reference model and the modified model.

On the other hand, various time-domain techniques were developed. Mei et al. [19]
proposed an algorithm synthesis of the Auto-Regressive Moving Average model and
structural dynamics equations to identify the changes in structural element mass and stiff-
ness. However, in this algorithm, only one damage index is defined, so it cannot identify
the changes in mass and stiffness simultaneously. The algorithm above is improved by
Do et al. [20] by introducing two damage indicators for identifying the changes in the stiff-
ness and mass in identifying the structure simultaneously. A restoring force identification
method is provided by Marsi et al. [21] to identify chain-like dynamic structural systems
under unknown mass. Based on his work, a time-domain identification algorithm of modal
parameters to handle the case of chain-like dynamic systems with unknown ambient excita-
tion under unknown mass was proposed by Nayeri et al. [22]. However, this algorithm can
only identify the stiffness and mass coupling coefficients of the structure. Zhan et al. [23]
generalized the approach by introducing the clustering algorithm to decouple the stiffness
and mass coupling coefficients. Meanwhile, Nayeri et al. [24] provided an algorithm com-
bining natural excitation technology and eigenvalue realization technology to identify the
modal parameters of structures with unknown mass. Xu et al. [25] investigated a time-
domain algorithm for simultaneous identification of mass and nonlinear restoring force
based on the least square algorithm and verified the algorithm with a chain-like nonlinear
structure of six degrees of freedom with a Magnetorheological (MR) damper mounted in the
middle. Huang et al. [26] employed the Kalman filter (KF) technique together with energy
equilibrium equations to develop a method that can identify the damping, stiffness and
mass of the structure simultaneously online. However, these time-domain algorithms men-
tioned above all need to be employed under the condition of full measurement of structural
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acceleration, which may have limited the application of the algorithms. In order to address
the aforementioned issues, an adaptive Extended Kalman Filter (EKF) was proposed by
Reina et al. [27] to perform joint time-varying mass and state estimation for vehicles, which
is simplified to a single degree of freedom model under partial acceleration measurements.
Boada et al. [28] proposed a real-time locomotive Vehicle and Road Irregularities estimation
algorithm based on dual KF simultaneously. In the dual KF, the first KF is used to estimate
the Vehicle state, and the latter is used for mass estimation. Lei et al. [29] extended the
method of Zhan et al. [25] by introducing EKF to replace the least squares to identify the
mass stiffness coupling parameters to identify structural stiffness and mass changes in
the case of partial acceleration response measurement. Zhang et al. [30,31] proposed a
loop substructure identification method for chain-like structures, which can identify the
mass and stiffness parameters of selected substructures under partial acceleration measure-
ments. Then, Xu et al. [32] also investigated a method for the identification of nonlinearity
restoring force of chain-like structural and mass simultaneously using partial acceleration
measurements. However, the application of EKF with weighted global iteration (EKF-WGI)
makes it impossible to implement the algorithm online.

It is noted that most of the methods reviewed in the aforementioned literature are only
suitable for chain-like structures, in which both the mass matrix and the inverse matrix
are diagonal matrices. This characteristic of a mass matrix for the chain-like structure
greatly reduces the difficulty of structure identification under unknown mass. However,
many civil structures cannot simply be simulated by a chain-like structure model, such as
super high-rise frame shear wall structures, long-span bridges and industrial plants. To
the best of the authors’ knowledge, there are very limited studies on joint state-parameter
identification algorithms of non-chain-like structures under unknown mass. The joint state-
parameters identification, even for linear structure, is essentially a nonlinear problem due to
the coupling effects between unknown structural parameters and unknown state variables.
Compared with other schemes based on the nonlinear Kalman framework (e.g., EKF, parti-
cle filter (PF)), which can identify nonlinear systems, UKF becomes a better choice because
it does not need to calculate the Jacobian matrix and has high computational efficiency. To
this end, this paper provided an online joint state-parameter identification algorithm of a
non-chain-like structure based on UKF under unknown mass using only partial acceleration
responses. The content of the paper is organized as follows: Section 2 briefly introduces the
calculation process of UKF; Section 3 includes two numerical simulation cases in the context
of the beam-type model and plane-frame model used to assess the performance of the joint
state-parameter identification algorithm of a non-chain-like structure under unknown mass.
Finally, the conclusion and further research are given in the conclusions section.

2. Brief Review of the Unscented Kalman Filter

A generalized n-DOF structural system dynamics equation can be expressed as

M
..
z + F

(
z,

.
z,θ
)
= ηf (1)

In which M is the mass matrix; z,
.
z and

..
z are n-dimension vectors of displacement,

velocity and acceleration, respectively; F
(
z,

.
z,θ
)

is a generalized restoring force equation
vector; θ is a q-dimension structural parametric vector containing the parameters that
need to parameterize the restoring force function F

(
z,

.
z,θ
)
; θm is an l-dimension vector

that to be identified in this study, which includes the structural mass. f is a p-dimension
external excitation vector and η is the influence matrix corresponding to f. Since the
structural system in this paper is a time-invariant system, the time derivatives of unknown
parameters in the structure

.
θm(i) = 0(i = 1, 2, 3, . . . l). An augmented state vector is defined

as X =
{

XT
z ,θm

T
}T

=
{

zT,
.
zT,θm

T
}T

, which includes structural displacement, velocity
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and unknown structural parameters, including the structural mass, stiffness and damping
coefficients. The state-space form of Equation (1) can be expressed as follows:

.
X =

{ .
Xz.
θm

}
=


.
z
..
z
.
θm

 =


.
z
M−1[ηf− F

(
z,

.
z,θ
)]

0

= g(X, f) (2)

where g( .) denotes system equations for the structural system.
The continuous system Equation (2) on the kth time step can be discrete to be the

following form:

Xk+1 = Xk +
∫ (k+1)∆t

k∆t
g(Xt|k, fk)dt (3)

The observation equations for the structural system can be formulated as

yk+1= h(X k+1, fk+1) + vk+1 (4)

where yk+1 is an m-dimension measurement vector at time t = (k + 1)∆t with ∆t being the
sampling time step, and vk+1 is the measurement noise vector modeled as Gaussian white
noise with zero mean and a covariance matrix E(v k+1vT

k+1) = Rk+1.
The unscented Kalman filter is implemented in the following three steps:

(1) Sigma point generation step

Firstly, a set of 2N + 1 sigma points whose mean and covariance are Xk|k and PXX
k|k ,

respectively, are reproduced as

χi,k|k =


Xk|k
Xk|k + (

√
(N + λ)PXX

k|k )i
Xk|k − (

√
(N + λ)PXX

k|k )i

, i = 0
, i = 1, . . . N
, i = N + 1 . . . 2N

(5)

where N is defined as the dimension of the state vector X, Xk|k = E{Xk},
PXX

k|k = E
{(

Xk − Xk|k

)(
Xk − Xk|k

)}
, (
√
(N + λ)PXX

k|k )i
denotes the ith column of the matrix

square root, λ = α2(N + κ)− N is a scaling parameter, α is a scaling parameter used to
incorporate higher-order information. It is often set to an extremely small positive value
(e.g., 2 × 10−3); κ is a secondary scaling parameter.

(2) The time updating step

The sigma points are propagated by structural system dynamic Equations as follows:

χi,k+1|k = χi,k|k +
∫ (k+1)∆t

k∆t
g
(
χt|k, fk

)
dt (6)

and the a priori estimate of the state vector Xk+1|k and corresponding error covariance
matrix PXX

k+1|k are calculated as

Xk+1|k =
2N

∑
i=0

w(m)
i χi,k+1|k (7)

PXX
k+1|k

=
2N

∑
i=0

w(c)
i (χi,k+1|k − Xk+1|k)

(
χi,k+1|k − Xk+1|k

)T
+ Qk+1 (8)

where w(m)
i and w(c)

i are the weights for the predicted mean and covariance, respectively,
and given by

w(m)
0 =

λ

N + λ
; w(c)

0 =
λ

N + λ
+ (1− α2 + β); (9a)
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w(m)
i = w(c)

i =
λ

2(N + λ)
(i = 1, 2 . . . 2N) (9b)

where β is a parameter used to contain prior information of the distribution of state
variables, and for Gaussian distribution, β = 2 is optimal.

The predicted measurement yk+1|k and its error covariance matrix Pyy
k+1|k is computed as

yi,k+1|k = h(χi,k+1|k, fk+1); yk+1|k =
2N

∑
i=0

w(m)
i yi,k+1|k (10)

Pyy
k+1|k

=
2N

∑
i=0

w(c)
i (yi,k+1|k − yk+1|k)

(
yi,k+1|k − yk+1|k

)T
+ Rk+1 (11)

and the cross-covariance PXy
k+1|k matrix is calculated as

PXy
k+1|k =

2N

∑
i=0

w(c)
i (χi,k+1|k − Xk+1|k)

(
yi,k+1|k − yk+1|k

)T
(12)

(3) The measurement updating step

Finally, the augmented state vector Xk+1|k+1 and error covariance matrix PXX
k+1|k+1 are

updated with the measured output using the Kalman filtering Equations

Xk+1|k+1 = Xk+1|k + Km(yk+1 − yk+1|k) (13)

PXX
k+1|k+1 = PXX

k+1|k −KmPyy
k+1|kKT

m (14)

in which is the Kalman gain matrix Kk+1 given by

Kk+1 = PXy
k+1|k

(
Pyy

k+1|k

)−1
(15)

By implementing the identification algorithm based on the unscented Kalman filter,
the augmented state vector of the structural system, which contains unknown structural
parameters including structural mass, stiffness and damping coefficients, can be identified.

3. Numerical Validation

In this section, two numerical simulation cases are given aimed at verifying the
effectiveness of the UKF algorithm for joint state-parameter identification of a structure
with a non-diagonal mass matrix under unknown mass in the context of two types of
non-chain-like structural models: beam-type model and plan-frame model.

3.1. Identification of a Beam-Type Structure Subjected to White Noise Excitation

Considering only chain-like structures were used to identify stiffness, damping and
mass simultaneously in most previous studies, a beam-type structure is investigated in
this case. The structure under consideration is a simply supported Euler beam, shown in
Figure 1. The beam is modeled using a two-dimensional finite element (FE) model and is
equally discretized into six beam elements. For these Euler beam elements, only bending
deformations in the vertical plane are considered, and shear deformations are ignored
since the shear deformations are very small as compared to the bending deformations. The
beam model contains a total of 12 DOFS, which includes five vertical DOFS and seven
rotational DOFS.
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Figure 1. A simply supported beam subjected to white noise excitation. (a) A simply supported beam
with unknown parameters; (b) broadband white noise excitation.

The beam elements adopt a consistent mass matrix and consistent stiffness matrix. Let
Mi and Ki be the mass matrix and stiffness matrix of the i-th beam element in the element
local coordinate, respectively. The local beam elemental consistent mass and consistent
stiffness matrices are calculated using the cubic interpolation functions. The interpolation
functions of the i-th element in its local coordinate can be obtained as follows:

Hi =

{
1− 3

(
x
li

)2
+ 2
(

x
li

)3
, x− 2li

(
x
li

)2
+ li

(
x
li

)3
, 3
(

x
li

)2
− 2
(

x
li

)3
,−li

(
x
li

)2
+ li

(
x
li

)3
}

(16)

where li is the length of the i-th beam element. The local mass and stiffness matrices for the
i-th beam element are provided in Appendix A.

The equation of motion for the simply supported beam can be given by:

Mb
..
z + Cb

.
z + Kbz = ηf (17)

where
..
z;

.
z; z are the acceleration, velocity and displacement responses of the simply

supported beam, respectively. f is a one-dimension external excitation vector and η is the
influence matrix corresponding to f.

Mb and Kb are the global mass and stiffness matrices of the simply supported beam,
respectively, which can be obtained as the assembly of local element mass and local stiffness
matrices. For the simply supported beam, the Rayleigh damping is assumed, and the global
damping matrix Cb is expressed as:

Cb = a1Mb + a2Kb (18)

where a1 and a2 are the damping coefficients. The mass, stiffness and damping coef-
ficients are considered unknown in this example. The state vector Xz and parameter
vector θm of the structural system are combined to form the augmented state vector

X =
[
zT ,

.
zT , mT , kT , a1, a2

]T
.

In this case, the length of the beam is 3.6 m, and the whole beam adopts a rectangular
section with a uniform section size with a width of 50 mm and a height of 15 mm. The
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Young’s modulus and material density of the beam is chosen as 206 GPa and 7850 kg/m3,
respectively. The first two natural frequencies obtained from the beam model are 21.4 Hz
and 133.7 Hz; a modal damping ratio of 5% is assumed for the first two modes.

Structural parameters are selected as follows: The cross-sectional area and moment of in-
ertia of each beam element are Ai = 7.5× 10−4 m2 and Izi = 1.406× 10−8 m4 (i = 1, 2 . . . 6),
respectively. The linear stiffness of each beam element is defined as ki =

EIzi
li

= 4.828 KN.m;
the linear mass density of each element is defined as mi = ρi Ai = 5.85 kg/m (i = 1, 2 . . . 6).
The Rayleigh damping coefficients were calculated to be a1 = 1.356 and a2 = 1.179× 10−3

according to the first two nature frequencies. The initial guess values for the unknown
parameters are selected as: mi,0 = 4.68 kg/m, ki,0 = 3.862 KN.m (i = 1, 2 . . . 6), a1,0 = 1.084,
a2,0 = 0.944× 10−3. The external excitation acting on a simply supported beam is assumed
to be broadband white noise, which acts on the 4th DOF. From the finite element model
built in matlab, the acceleration, velocity and displacement responses of the structure are
obtained by solving differential Equation (17) using the 4th-order Ronge–Kutta integration
method. Only five accelerometers are deployed at the 2nd, 4th, 6th, 8th and 10th DOFs,
respectively, to measure the vertical accelerations. When considering the existence of mea-
surement noise, a Gaussian white sequence with a 1% root-mean-square noise-to-signal
ratio is added to the calculated response. The sampling frequency is 1000 Hz, and the
sampling time is 3 s.

Figure 2 shows the comparisons of the identified and exact time histories of vertical
displacement of nodal 2 (z2), vertical velocity of nodal 2 (

.
z2), rotational displacement of

nodal 2 (z3) and rotational velocity of nodal 2 (
.
z3) obtained from the simulation case. It is

shown that both structural displacement and velocity responses can be well tracked.

Figure 2. Comparisons of the exact and identified displacements and velocities. (a) Comparison of
the exact and identified; (b) comparison of the exact and identified; (c) comparison of the exact and
identified; (d) comparison of the exact and identified.

The convergence of six unknown parameters (m1, m6, k1, k6, a1, a2) from the numerical
case above was demonstrated in Figure 3. It can be noticed that these identified parameter
values can converge to their exact values quite fast.
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Figure 3. Parameter estimation results for the simply supported beam. (a) Convergence of identified
linear density; (b) convergence of identified linear density; (c) convergence of identified linear stiffness
k1; (d) convergence of identified linear stiffness k6; (e) convergence of identified damping coefficient
a1; (f) convergence of identified damping coefficient a2.

The parameter identification values, true values and identified relative error of all
elements are listed in Table 1. It is shown that all the elements’ parameter identification
results meet the accuracy requirements; the relative error of the identified mass, stiffness
and damping coefficients relative to their true value is less than 5%.

Table 1. The parameters identification results of the simply supported beam.

Parameter Identified Actual Relative Error (%)

k1(KN.m) 4.675 4.828 −2.60
k2(KN.m) 4.908 4.828 2.25
k3(KN.m) 5.015 4.828 3.87
k4(KN.m) 4.626 4.828 −4.18
k5(KN.m) 4.628 4.828 −4.17
k6(KN.m) 4.962 4.828 2.77
m1(kg/m) 6.140 5.850 4.95
m2(kg/m) 5.727 5.850 −2.10
m3(kg/m) 5.765 5.850 −1.45
m4(kg/m) 5.993 5.850 2.44
m5(kg/m) 5.724 5.850 −2.15
m5(kg/m) 6.075 5.850 3.67

a1 1.380 1.356 1.77
a2(1× 10−3) 1.206 1.179 2.29
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3.2. Identification of a Plane Frame Structure Subjected to Stationary Filtered White
Noise Excitation

In order to further verify the effectiveness of the proposed algorithm for the joint
state-parameter identification of the structure with a non-diagonal mass matrix under
unknown mass, a plane frame shown in Figure 4 is investigated in this case. A one-story
two-span plane span was applied here for numerical simulation. All beams and columns
adopt a consistent mass matrix and consistent stiffness matrix; the mass and stiffness matrix
detailed representation are shown in Appendix B. Rayleigh damping is assumed in this
numerical simulation case. The bases are assumed to be fixed. Therefore, the plane frame
contains a total of 12 DOFS, and each node point has three degrees of freedom (horizontal,
vertical and rotational).

Figure 4. A plane frame subjected to stationary filtered white noise excitation. (a) A plane frame
subjected to external excitation; (b) filtered white noise excitation generated according to the Kanai–
Tajimi power spectrum.

In this numerical example, the height of the column is 3.66 m and the length of the
beam is 9.12 m. The Young’s modulus and material density are taken as 206 GPa and
7850 kg/m3, respectively. The first two natural frequencies obtained from the plane frame
model are 7.55 Hz and 27.3 Hz. A modal damping ratio of 5% is assumed for the first
two modes.

Structural parameters are selected as follows: The cross-section area and moment of
inertia of each element are Ai = 2.68× 10−2 m2 and Izi = 4.870× 10−4 m4 (i = 1, 2 . . . 6).
The linear stiffness of each column element is ki = EIzi

li
= 27, 410 KN.m (i = 1, 2, 3, 4),

linear stiffness of each beam element is ki =
EIzi

li
= 11, 000 KN.m (i = 5, 6). All the beams

and columns adopt uniform linear density mi = ρi Ai = 210.38 kg/m (i = 1, 2 . . . 6). The
Rayleigh damping coefficients were calculated to be a1 = 3.738 and a2 = 4.538× 10−4

according to the first two nature frequencies. The initial guess values for the identified
parameters are selected as: ki,0 = 21, 928 KN.m (i = 1, 2 . . . 4), ki,0 = 8800 KN.m (i = 5, 6),
mi,0 = 166.3 Kg/m (i = 1, 2 . . . 6), a1,0 = 2.990, a2,0 = 3.630.

In order to verify the robustness of the algorithm to external excitation, this case adopts
the filtered stationary white noise excitation generated according to the Kanai–Tajimi power
spectrum as the external excitation [33].

S ..
xg
(ω) =

ω4
g + 4ζ2

gω2
gω2

(ω2 −ω2
g)

2 + 4ζ2
gω2

gω2
S0 (19)

where S0 is the input white noise spectral density, ωg and ξg are the characteristic frequency
and characteristic damping ratio of the site, respectively. In this case, these parameters
were taken as ωg = 15.6(rad/s), ξg = 0.6. In this study, the stationary filtered white noise
time history generated according to the Kanai–Tajimi power spectrum was chosen as the
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external excitation acting at 4thDOF. From the finite element model built in matlab, the
acceleration, velocity and displacement responses of the structure are obtained by solving
differential Equation (17) using the 4th-order Ronge–Kutta integration method.

Suppose eight accelerometers are mounted on the plane frame to measure the hor-
izontal accelerations at 1,2,3 and 4 nodal points, i.e., (

..
x1,

..
x4,

..
x7,

..
x10), two vertical accel-

erations at 1,4 nodal points, i.e., (
..
x2,

..
x11), and two rotational accelerations at 1,4 nodal

points, i.e., (
..
x3,

..
x12). It is usually a good approximation to assume the rotational motion is

related to horizontal motion through the static deflection relation; hence, we compute the
rotational acceleration

..
x3 and

..
x12 from the horizontal acceleration

..
x1 at node 1. Consquently,

our measured response vector is y = [
..
x1,

..
x2,

..
x3,

..
x4,

..
x7,

..
x10,

..
x11,

..
x12]

T .
When considering the existence of measurement noise, a Gaussian white sequence

with a 1% root-mean-square noise-to-signal ratio was added to the calculated response.
The sampling frequency is 1024 Hz, and the sampling time is 4 s.

Figure 5a,b show the comparisons of the identified and exact time histories of Hor-
izontal displacement (z1) of nodal 1 and rotational displacement (z6) of nodal 4. The
identified time histories and the exact time histories

.
z1,

.
z6, are depicted in Figure 5c,d,

respectively. It is shown that both structural displacement and velocity responses can be
identified effectively.

Figure 5. Comparisons of the exact and identified displacements and velocities. (a) Comparison of
the exact and identified z1; (b) comparison of the exact and identified z6; (c) comparison of the exact
and identified

.
z1; (d) comparison of the exact and identified

.
z6.

The convergence of six parameters (m4, m5, k4, k5, a1, a2) is demonstrated in Figure 6. It
shows that the identified linear density of element 4 (m4) and element 5(m5), the identified
linear stiffness of element 4(k4) and element 5(k5), and the dumping coefficients a1, a2 can
be identified effectively. Table 2 provides all the elements’ parameter identification values,
true values and identified relative error of all elements. It is shown that all the elements’
parameter identification results meet the accuracy requirements and the relative error of
the identified mass, stiffness and damping coefficients relative to their true value is less
than 5%.
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Figure 6. Parameter estimation results for the plane frame. (a) Convergence of identified linear
density m4; (b) convergence of identified linear density m5; (c) convergence of identified linear
stiffness k4; (d) convergence of identified linear stiffness k5; (e) convergence of identified dumping
coefficient a1; (f) convergence of identified dumping coefficient a2.

Table 2. The parameters identification results of the plane frame.

Parameter Identified Actual Relative Error (%)

k1(KN.m) 27,800 27,410 1.42
k2(KN.m) 27,906 27,410 1.81
k3(KN.m) 28,434 27,410 3.73
k4(KN.m) 27,484 27,410 0.27
k5(KN.m) 10,635 11,000 −3.32
k6(KN.m) 10,740 11,000 −2.36
m1(kg/m) 216.612 210.380 2.96
m2(kg/m) 204.300 210.380 −2.89
m3(kg/m) 211.701 210.380 0.63
m4(kg/m) 203.171 210.380 −3.42
m5(kg/m) 212.021 210.380 0.80
m6(kg/m) 206.901 210.380 −1.65

a1 3.851 3.738 3.02
a2(1× 10−4) 4.456 4.538 −1.80
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4. Conclusions

In this paper, a joint state-parameter identification algorithm based on UKF was
provided for a structure with unknown mass using partial acceleration measurements. Nu-
merical verification was performed using a simply supported beam subjected to broadband
white noise excitation and a one-span two-story plane frame subjected to filtered white
noise excitation generated according to the Kanai–Tajimi power spectrum. The conclusions
are as follows:

1. Numerical results indicate that the proposed approach can effectively identify the
state and unknown parameters, including mass, stiffness, and damping coefficients of
non-chain-like structures;

2. Unlike some existing methods, the proposed identification algorithm does not require
iterative estimation at each time step, which makes the approach suitable for real-
time identification;

3. The proposed algorithm for the identification of joint state-parameter is effective in a
noisy environment. In this study, with reasonable noise included, the identification re-
sults for structural stiffness, damping and mass are robust to the measurement noises.

In summary, the proposed algorithm is suitable for the real-time identification of states
and parameters of a structure with a non-diagonal mass matrix under unknown mass
using partial acceleration measurement. Therefore, this paper provides a promising way
for the joint state-parameter identification of non-chain-like structures with unknown mass
information. However, this paper only demonstrates the algorithm for the identification of
linear structures with a non-diagonal mass matrix and assumes that the external excitation
is measurable. Extensions of such identification studies are conducted by the authors.
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Appendix A. The Local Mass and Stiffness Matrices

The local mass and stiffness matrices of the i-th element of the 2D simply supported
beam can be expressed as:

Mi =
mili
420


156 22li 54 −13li
22li 4l2

i 13li 13li
54 13li 156 −22li
−13li −3l2

i −22li 4l2
i

 (A1)

Ki = ki


12/l2

i 6/li −12/l2
i 6/li

6/li 4 −6/li 2
−12/l2

i −6/li 12/l2
i −6/li

6/li 2 −6/li 4

 (A2)

where mass is uniform along the length of the member, and its mass distribution along the
length is defined by the linear density mi. The stiffness parameter of the i-th member is
defined by the line stiffness ki =

EIzi
li

, in which E, Izi, li represent Young’s Modulus, inertia
moment, and element length, respectively.
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Appendix B. The Local Mass and Stiffness Matrices

The local mass and stiffness matrices of the i-th element of the 2D plane frame can be
expressed as:

Mi =
mili
420



140 0 0 70 0 0
0 156 22li 0 54 −13li
0 22li 4l2

i 0 13li −3l2
i

70 0 0 140 0 0
0 54 13li 0 156 −22li
0 −13li −3l2

i 0 −22li 4l2
i

 (A3)

Ki = ki



Ai/Izi 0 0 −Ai/Izi 0 0
0 12/l2

i 6/li 0 −12/l2
i 6/li

0 6/li 4 0 −6/li 2
−Ai/Izi 0 0 Ai/Izi 0 0

0 −12/l2
i −6/li 0 12/l2

i −6/li
0 6/li 2 0 −6/li 4

 (A4)

where mass is uniform along the length of the member, and its mass distribution along the
length is defined by the linear density mi. The stiffness parameter of the i-th member is
defined by the line stiffness ki =

EIzi
li

, in which E, Izi, li represent Young’s Modulus, inertia
moment and element length, respectively. The cross-sectional area is represented by Ai.
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