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Abstract: The monitoring of power consumption and the forecasting of load profiles for residential
appliances are essential aspects of the control of energy savings/exchanges at multiple hierarchical
levels: house, house cluster, neighborhood, and city. External environmental factors (weather
conditions) and inhabitants’ behavior influence power consumption, and their usage as part of
forecasting activity may lead to added value in the estimation of daily-load profiles. This paper
proposes a distributed sensing infrastructure for supporting the following tasks: the monitoring of
appliances’ power consumption, the monitoring of environmental parameters, the generation of
records for a database that can be used for both identifying load models and testing load-scheduling
algorithms, and the real-time acquisition of consumption data. The hardware/software codesign of an
integrated architecture that can combine the typical distributed sensing and control networks present
in modern buildings (targeting user comfort) with energy-monitoring and management systems is
presented. Methods for generating simplified piecewise linear (PWL) representations of the load
profiles based on these records are introduced and their benefits compared with classic averaged
representations are demonstrated for the case of peak-shaving strategies. The proposed approach is
validated through implementing and testing a smart-meter node with wireless communication and
other wired/wireless embedded modules, enabling the tight integration of the energy-monitoring
system into smart-home/building-automation systems. The ability of this node to process power
measurements with a programable granularity level (seconds/minutes/hours) at the edge level and
stream the processed measurement results at the selected granularity to the cloud is identified as a
valuable feature for a large range of applications (model identification, power saving, prediction).

Keywords: building-energy monitoring; smart-meter node; distributed sensing; cloud database; load
profile modeling

1. Introduction

Home automation systems have evolved from simple implementations to complex
configurations lying at the confluence of three concepts: building-management systems,
smart homes, and ambient-assisted living. The essential problems that arise when designing
a home-automation system are as follows: not all devices “speak” the same language; the
failure of a device must not compromise the operation of the system; mobility and aesthetic
requirements demand a choice between wired and wireless communications; security
issues (access to the elements of home-automation networks by unauthorized or malicious
persons) are not completely solved by the current standards; and the optimal interface

Buildings 2022, 12, 1034. https://doi.org/10.3390/buildings12071034 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings12071034
https://doi.org/10.3390/buildings12071034
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://orcid.org/0000-0001-9238-6729
https://orcid.org/0000-0002-5470-1406
https://doi.org/10.3390/buildings12071034
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings12071034?type=check_update&version=1


Buildings 2022, 12, 1034 2 of 35

between the home automation system and users (inhabitants of the house) can benefit from
the new technologies, but their price/efficiency ratio must be carefully evaluated.

In recent years, a new dimension has been added to the aspects listed above: the
management of energy transfer, implied by both neighborhood-level (Cluster) and city-
level (Smart City) integration [1]. This dimension involves the intra-cluster (between
houses within the same neighborhoods) and inter-cluster (with the operators of municipal
utility networks) management and transfer of energy. The situation is becoming even more
complex, since many countries have introduced mechanisms for the dynamic adjustment
of energy costs, based on the demand response (DR) paradigm.

In each of the main application fields associated with smart home systems (energy-
consumption optimization, user comfort, assisting elderly users), the authors of Ref. [2]
identify some common architectural levels: a hardware platform for data acquisition
(environmental or wearable sensors), a set of applications to gather measurement data, and
a repository to store these data. These are the constituents upon which the constructing
and training of models are done and the control algorithms are implemented.

Harmonizing energy saving with residential comfort is a challenging issue in all
seasons and is intricately connected to the peaks encountered in the power-consumption
profiles of modern houses. A basic example is given in Ref. [3]: large appliances, such as
stoves, clothes dryers, and dishwashers expel heat, requiring more space-cooling to meet
the zone setpoint in the summer; the simultaneous use of appliances and space cooling can
cause spikes in a house’s peak electricity consumption.

As indicated in Ref. [4], houses represent a substantial fraction of the summer peak
electrical load (primarily due to rising air-conditioning (AC) loads), and, therefore, mea-
sures to reduce peak demand at the household level may be valuable in stabilizing the grid
and lowering peak costs.

An interesting aspect of implementing energy optimization is related to the swapping
of consumption from one energy domain to the other: simulations by the author of Ref. [3]
suggested that reductions in annual electrical energy use are accompanied by increased
annual natural gas use. On the other hand, the opposite transition, from gas to electricity,
is obviously indicated by the growing usage of electrically actuated heat pumps in the
residential sector. Research into the heating market presented in Ref. [5] indicates that a
growing share of this market is represented by heat pumps (about 3% in 2018) and that, in
2019, at international level, from the perspective of application, 83% of the market share
was accounted for by the residential sector.

Many articles in the literature present the development of energy-management systems
for smart homes as a global priority for achieving a sustainable and reliable energy-supply
system in smart micro-grids.

In order to understand how the extended sensing capabilities can support optimal
energy management for residential buildings, the foundations of the underlying processes
must be explored:

• When and how must energy be stored in residential buildings?
• When and how must energy be transferred from one building to another building?
• When and how must energy be transferred from one building to the grid?

The literature exploring these topics has so far proposed different approaches to
answering these questions based on a series of optimization criteria. When exploring the
above-mentioned strategies, the following basic considerations arise:

• The dynamic scheduling strategies for residential loads must consider multiple ob-
jectives, each of which reflecting the optimal behavior of an actor present in the
context: energy-cost reduction and comfort maximization from the perspective of
inhabitants, reductions in load demand during the peak period from the perspective of
energy providers, and peak-shaving behavior from the perspective of distribution-grid
management.
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• The vast majority of the optimization algorithms rely on methods for forecasting the
residential power load. Such methods rely on a modeling structure that must be
identified and validated with large measurement datasets.

• When an objective load curve for one day ahead is defined, the scheduling algorithm
uses the load-forecasting model (considering multiple parameters such as electricity
price, load demand, and weather forecast). The scheduling algorithm must run
in real time to update the forecasted schedule, considering variations such as user
intervention.

It is easily seen from these considerations that the availability of precise and detailed
consumption data is essential at each main stage, including the identification of the load models,
the simulation of the scheduling algorithm, the real-time running of the algorithm and,
finally, the computation of the figures of merit defined for assessing the success of the
proposed strategy.

This paper proposes an integrative approach for adding functionalities such as energy
monitoring and scheduling strategies for smart-home network infrastructure. The monitor-
ing and control processes should be examined in different essential stages, from the
following perspectives:

• The review of saving strategies and algorithms in the complex environment of the
residential sector;

• Data sources for constructing and training models;
• Data sources for running control algorithms;
• The implementation of wireless-sensor networks as data sources;
• The development of a smart meter node with wireless communication and easy

integration into smart home network;
• Exploiting the sampling and processing facilities of actual smart meters through a

more accurate, yet convenient, representation of load curves and demonstrating the
advantage of the proposed representation in load-scheduling algorithms;

• A prototype system for validating integrated residential sensing infrastructure (reduc-
ing the costs of harmonizing the infrastructures associated with energy saving and
residential comfort).

Following this approach, the next two sections will address the following topics:

• The study of residential loads and their aggregated impact at the relevant levels of
granularity (single buildings, clusters, sectors, and cities);

• The review of the modeling and planning strategies for identifying the relevant variables
to be monitored (i.e., those affecting model identification, planning-algorithm simulation,
and the evaluation of energy-management-system performance) and the appropriate
sampling rates for these relevant variables;

• The review of the architectures that are appropriate for energy monitoring, considering
the four fundamental aspects: data acquisition, data collection, data recording and
data visualization, and their implications for both hardware and software levels.

2. Modeling and Optimization Methods for Energy Systems in Residential Buildings
2.1. Smart Homes and the Urban Energy System

To provide sustainability and security, the urban energy system is undergoing an
accelerated transition from a centralized to a highly distributed architecture. One of
the reasons for this is a significant increase in the integration of distributed renewable-
energy sources (RES). This increase is mainly due to the successful adoption of adaptive
solutions for buildings, such as building-integrated photovoltaic (BIPV) [6] or hybrid
photovoltaic/thermal (BIPV/T) [7], solar thermal facades (STF) [8], and the components
for heat pumps [9] and related energy storage [10] or thermal storage systems [11].

In the context of the European Union (EU), building renovation provides a good oppor-
tunity to meet the objectives of the EU’s policy on near-zero-energy buildings (NZEB) [12]
and integrated RES for buildings [13].
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Current EU policy promotes the reduction in the energy needs of building by 80%,
achievable by 2050 through specific building renovation [14].

The related technical challenges lead to the development of innovative approaches,
addressing buildings and energy systems at different levels: single buildings, clusters,
sectors, and cities.

Energy planning at the cluster level facilitates the provision of local energy supply
through decentralized energy production and the enhancement of sector energy systems, by
combining factors such as energy-efficient building retrofitting and the integration of local
renewable energy [15]. Similar to the concept of micro-communities in society, neighboring
buildings tend to form clusters through an open cyber-physical system to take advantage
of the economic opportunities offered by distributed RES systems [16].

In this context, the problem of optimal energy management for residential buildings
acquires new dimensions, leading to some new challenges that must be addressed:

• The integration of the sensing infrastructure associated with smart homes with the
necessary power-monitoring architecture;

• The development of new algorithms for harmonizing energy saving with
residential comfort;

• The design of the communication infrastructure for energy hubs and the algorithms
able to support optimization at upper hierarchical levels (clusters, sectors, and cities);

• The upgrade of smart-home control equipment (hardware and software) in order
to support the energy exchange between neighboring homes and balance the local
production of renewable energy with energy demand.

2.2. Modeling and Control of Energy Saving/Exchange at Home Level and Cluster Level

The cluster level of buildings is an intermediate level between single buildings and the
sector or city level. When modeling a building cluster, a diameter between 0.1 and about 1
km is recommended [1].

The main benefits of introducing energy-management systems at the cluster level and
of energy hubs include reduced energy usage, carbon emissions, and costs. Furthermore,
important secondary benefits include air quality in buildings, thermal comfort, and a
reduced risk of exposure to future energy price crises. This approach promotes economic
efficiency and operational feasibility to optimize the procurement of distributed renewable
energy in the context of energy demand and supply equivalence.

The research presented in Ref. [17] led to the development of algorithms through which
energy exchange takes place between neighboring homes to balance the local production of
renewable energy (electricity-photovoltaic panels and thermal energy-solar thermal panels)
with energy demand. At the group level (neighborhood, cluster, micro-grid) two key issues
related to energy distribution and exchange have to be considered: 1. Which homes need
to transfer energy? 2. What are the times when these exchanges must take place?

Currently, a significant research effort is dedicated to residential-power-load forecast-
ing (RPLF) methods [18]. These have an important role in solving a major challenge posed
by the management of micro-grids and energy hubs: optimal energy management for
residential buildings.

According to Ref. [19], two classes of methods are available for estimating residen-
tial energy consumption. Bottom-up modeling techniques estimate the load demand of
individual buildings using statistical (i.e., regression, conditional demand analysis, neural
networks) or engineering models (i.e., population distribution, archetypes, samples). The
estimated models are then combined to obtain the energy usage for a larger region. On the
other hand, top-down modeling techniques consider the energy consumption of a larger
region based on econometric and technological data and assign an energy consumption to
the studied building.

The bottom-up modeling technique, focused on the formulation of a consumption
model for each household appliance, is facilitated by a smart infrastructure deployed
in the building, which is able to monitor and communicate the information related to
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the consumption of each appliance to the data center, contributing to the accuracy and
efficiency of building-load forecasting [20].

To extract the load-behavior model from historical data, the usage of an algorithm able
to detect historical days with consumption characteristics similar to those of the forecasted
day increases the prediction accuracy (Figure 1) [20]. The similarity algorithm compares
both external environmental factors, such as weather conditions (air temperature and
relative humidity, wind speed), weekday type (weekday/workday), events (e.g., holiday),
and internal household factors, such as family structure and residents’ behavior.
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The short-term forecasting of energy consumption for homes is an essential tool in
optimizing energy management and has been addressed in the literature by methods such
as [21]: auto-regressive models, regression based models, exponential smoothing, artificial
neural networks, fuzzy logic, and expert systems. If buildings are equipped with smart
home systems, it is possible to automatically collect the operating intervals of the main
electricity consumers and of the main thermal energy consumers for intervals of several
weeks with a very good temporal resolution. This allows the statistical exploration of a
data set consisting of consumption values and the values of other sensors in the home
(temperatures, air humidity, presence detectors, etc.), as well as the training of neural
networks that can accurately estimate the consumption 24 h ahead.

It is expected that the optimal and dynamic schedule of residential loads considering
multiple objectives (i.e., energy costs, comfort optimization, reductions in load demand
during peak periods) will be enabled through the deployment of smart meters, smart sen-
sors, and home energy-management systems (HEMSs). HEMS models, which are designed
to manage available resources considering an appropriate balance between accuracy and
computational complexity, and their interaction are expected to improve the results not
only at the level of single homes, but also at the level of communities. The operation of a
HEMS platform comprises the following phases: input data collection, optimal scheduling,
and control of connected devices [22].

2.3. Estimating the Load Profiles in Residential Buildings

The main sources of energy consumption in homes comprise appliances (televisions,
washing machines, clothes dryers, refrigerators, electric ovens, dishwashers, etc.), heating
systems, air conditioning, lighting systems, and electric vehicles. In Refs. [23,24], three
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types of residential load are identified and classified according to their ability to reduce the
peak load demand:

1. Must-run/baseline loads, consisting of devices whose operation does not allow delays
(e.g., lighting, television, networking devices, cooking devices);

2. Shiftable/burst loads, consisting of devices that operate for a fixed duration and can
be started/stopped within a specific deadline (e.g., dishwashers, washing machines,
clothes dryers, electric vehicles);

3. Steady/regular loads, consisting of devices running steadily for a long period accord-
ing to their internal controller (e.g., refrigerators, water heaters, heating systems, air
conditioning).

Figure 2 presents typical residential consumers, while in Figure 3, a typical connection
of single-phase loads on power lines is presented.
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Due to the multitude of residential appliances, the authors of Ref. [22] identify the
following aspects to be considered when selecting an appropriate modeling strategy:

• Operating principle (i.e., cyclic/non cyclic, with variable power/ON OFF control),
which determines the variable type (i.e., binary/integer/continuous), load profile, and
operating constraints;
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• Flexibility (i.e., time, temperature, dependence on residents’ behavior), which influ-
ences the formulation of constraints and objective functions.

The authors of Refs. [23,25] use finite state machines for the modeling of regular and
burst loads controlled through ON/OFF commands. The authors of Ref. [26] focus on
centralized scheduling for large-scale flexible loads (i.e., loads possessing the ability to
perform power-consumption adjustment during a certain time interval, while the total
energy consumed is fixed). The loads are clustered considering their parameters (rated
power, start/end time of the schedulable period, necessary work intervals) into several
categories, an equivalent model is established for each category, and an aggregated model
obtained by summing all the equivalent models is used for system scheduling. Models
for both continuous loads (controlled through the continuous adjustment of power) and
ON/OFF loads (controlled through ON/OFF commands) are provided.

2.4. Planning Strategies

Load-scheduling algorithms aim to shift the operation of programmable consumers to
off-peak hours so that the peak load demand is reduced, taking into account users’ comfort.
Various architectures and algorithms for flattening the peak-load demand are encountered
in the literature.

The authors of Ref. [27] propose a scheduler that implies two stages: first, a load-
forecasting model is applied for defining an objective load curve for one day ahead based
on input parameters such as electricity price, load demand, and weather forecast, fol-
lowed by an online scheduling algorithm running in real time that updates the forecasted
schedule by taking into account variations, such as user intervention. The multi-objective
problem targeted by the day-ahead-load-scheduling technique is defined in terms of the
minimization of the distance between the objective load pattern and the scheduled load
profile, the reduction in electricity cost, the maximization of user comfort through the
minimization of the waiting time, and the minimization of the peak-to-average ratio (PAR).
Two nature-inspired optimization techniques are proposed: multi-objective binary bird
swarm optimization (MBBSO) and multi-objective binary hybrid bird swarm optimization
and cuckoo search (MBHBCO). The simulation results are compared with multi-objective
binary particle swarm optimization (MBPSO) and multi-objective cuckoo search (MOCSO)
algorithms. The real-time rescheduling problem is formulated as a single objective prob-
lem, i.e., the maximization of user comfort, and is initiated by user-generated run-time
interruptions of the appliances. The simulation scenario involves 15 appliances in a smart
home grouped as schedulable (interruptible and non-interruptible) and non-schedulable
loads, for which the corresponding power ratings and daily usage are known. Experiments
were performed using three pricing tariffs: time of use (ToU), real-time pricing (RTP), and
day-and-critical-peak pricing (CPP).

The authors of Ref. [28] use a harmonic model defined as a function of three
components—base load (i.e., economic activities and human-behavior patterns), an hourly
load, and a Fourier series (for capturing load periodicity)—for the forecasting of daily-
load curves on a monthly peak day, assuming a constant relation between the load and
the weather variables. The model parameters are estimated using historical data in or-
der to minimize the forecasting errors. The daily-load curves of various customers of
the Provincial Electricity Authority of Thailand (residential, commercial and industrial)
were forecasted separately, considering four tariff schedules: general residential and small,
medium, and large general service.

The authors of Ref. [29] experimented with the symbiotic organisms search (SOS) and
cuckoo search (CS) algorithms for the day-ahead forecasting of load scheduling based
on consumer preferences (i.e., the time intervals commonly used for shiftable appliances)
obtained after a public survey on 51 residential users and concluded that the SOS al-
gorithm provides better results in terms of convergence and requires fewer parameters
(i.e., no specific parameters are required other than maximum evaluation number and
population size).
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Approaches integrating machine-learning techniques have been proposed in
Refs. [30,31]. In Ref. [30] a load-scheduling scheme integrating a support vector machine
(SVM) model for short-term demand forecasting is introduced and applied experimentally
on load-schedulable electrical devices (LSEDs). LSEDs are devices with repeated ON/OFF
cycles, whose ON intervals may be divided into smaller intervals distributed over a cycle,
as long as their objectives are fulfilled. Interleaving the ON intervals of every LSED may
lead to overall peak flattening. Limited preemption has been used in order not to shorten
the lifetime of the device (i.e., once a device is turned ON, preemption may occur only after
a certain time interval has passed). The authors of Ref. [31] propose a method based on a
long-short-term memory (LSTM) neural network model for forecasting the load demand
curve of a smart micro grid using historic data consisting of daily temperature, humidity,
day of the week, and hourly load power. The predicted curve and the real-time status pa-
rameters are used within a control strategy for managing the operation of a thermal-storage
electric boiler in order to store excess energy, provide heat energy, and regulate the peak
load and frequency modulation of the power grid.

2.5. Identification of Users’ Behavior Patterns

The identification of repetitive patterns in residents’ activities in smart homes based
on sequences of data recorded using smart sensor systems may assist the load-demand
forecasting model.

The authors of Ref. [32] present the results obtained from collecting data that were
relevant to activity recognition using passive infrared sensors, force sensing resistors, reed
switches, mini-photocell light sensors, temperature and humidity sensors, and smart plugs.

The authors of Ref. [33] propose a residual recurrent neural network structure for
predicting resident activity in smart homes. The experiments, performed on a dataset from
a Massachusetts Institute of Technology (MIT) laboratory consisting in records provided
by various sensors (reed switches, pressure, light, temperature, gas sensors), installed in
an apartment with one resident for 14 days, indicated that residual LSTM/GRU models
provide better results than classical LSTM and GRU (Gated Recurrent Units) models.

A survey on multi-user activity recognition is presented in [34]. Ambiental sensors,
such as motion detectors, contact switches, inertial and break-beam sensors, and pressure
mats, are described as being frequently employed for human activity detection.

3. Sensing Architectures for Energy Monitoring

As pointed out in the previous sections, the modeling and algorithm-development
activities that are relevant to energy optimization are heavily reliant on large measurement
datasets for both identification and validation. The number and range of the sensors that are
required tend to transform the residential environment into a highly instrumented one. In
fact, all the relevant variables for the daily consumption curves (usage patterns, weather
parameters, individual appliance profiles) need to be acquired, collected, and archived.
The sources for all the datasets are the appropriate sensing systems.

The usage of sensor networks for load-demand monitoring facilitates the construction
of precise models (load profiles), the association of user behavior patterns with the identified
load profiles, and real-time scheduling and optimization.

In [4], it is specified that the studied homes were highly instrumentalized: the indi-
vidual appliance energy use, interior temperature and humidity at multiple locations, and
exterior climate data were all recorded at five-minute intervals.

The authors of Ref. [35] investigate the possibility of improving energy-consumption
forecasting by including various sensors (light intensity, CO2, air quality, temperature,
and humidity) in addition to electricity-consumption monitoring devices. Experiments
performed in an office building indicate that light intensity and CO2 present the highest
correlation with electricity consumption.

The authors of Ref. [36] indicate that there is a strong interdependency between energy
consumption and weather. Records collected into an unoccupied TxAIRE Research home
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(i.e., the day number, outdoor temperature, solar radiation, and energy consumption of the
home and of the heat pump) are used to identify the parameters of two NN models with
ni = 3 inputs, no = 1 output, and nh = 2ni + 1 neurons in the hidden layer, ET = f (t, T, SR),
EH = f (t, T, SR), where ET is the total electrical energy consumption of the home, EH is the
energy consumption of the heat pump, t is the day number, T is the dry-bulb temperature,
and SR is the solar radiation. The intention is to capture the changes in monthly energy
consumption due to weather.

The authors of Ref. [37] present a system for energy monitoring in residential homes
using sensor networks (Figure 4). For energy-consumption monitoring, a series of wireless
smart-power strip nodes interfaced by a sink node are used. A gateway module implement-
ing a data-stream management system (DSMS) for real-time data processing is connected
through the RS-232 interface to the sink node. A DB server (PostgreSQL) is used to store the
data, which can be visualized as trend charts through a web server (Apache running PHP).
Each monitoring node has the ability to measure and send the energy consumption of the
connected appliance within one second. The DSMS facilitates the aggregation and saving
of the data into DB tables with various time granularities (month, day, hour, minute).
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Figure 4. A four-layer arhitecture for energy monitoring (after Ref. [37]).

The authors of Ref. [38] focus on analyzing passive house (PH) requirements from the
perspective of human comfort. A schematic view of the proposed passive house system
manager is indicated in Figure 5. The Environmental comfort block is responsible for
estimating an indicator of the comfort level based on the thermal, visual, indoor air, acoustic,
and spatial comfort inferred from the monitored parameters (including air temperature and
relative humidity, air velocity, mean radiant temperature, illuminance/shading level, CO2
level, and sound level). The predicted mean vote (PMV) value is considered as an indicator
of the thermal sensation of a body. The PH manager block, based on the information
received from the Environmental comfort block and considering the occupant’s preferences
and energy usage, is responsible for sending commands to the Actuator control block in
order to perform various adjustments. In the experiments, a WSN consisting in SunSPOT
sensor nodes is used to measure the air temperature, compute the PMV value, and transmit
the data to a central PC via a SunSPOT base station.
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Figure 5. Schematic view of a passive house system manager (after Ref. [38]).

A review of the data types used in the literature for experiments on load-demand
scheduling is presented in Table 1.

Table 1. Data types for load-demand scheduling.

Reference Data Type Sampling Period

[35] Power consumption, light intensity, CO2 5 min
[37] Power consumption (W) 1 sec

[36]
Energy consumption (Wh) of the heat pump and
of the home, outdoor dry-bulb temperature (C),

solar radiation (Wh/m2)
1 day

[27,29] Power rate (kWh) of appliances Daily usage (hours)
[28] Energy consumption for each customer (kWh) 15 min
[30] Power consumption (W) of appliances 1 sec

[31] Temperature, humidity, day of week
Load power

Daily
1/2 h

Table 2 presents a series of recent developments described in the literature, analyzed
from the perspective of several key features: hardware architecture, software technologies,
smart-home capabilities, energy-monitoring capabilities, the maturity of hardware and
hardware/software scalability, and the availability of local display for immediate user
information/interaction.

Table 2. Smart-home systems, energy-monitoring devices, and energy-monitoring platforms.

Ref. Architecture Technologies Smart Home
Capabilities

Energy Monitoring
Capabilities

Maturity and
Scalability

Local
Display

[39] ‘Cloud-first’
implementation

Open-source,
publish/
subscribe,
MongoDB

End-to-end IoT
technologies

Energy footprints of
appliances (not
accurate due to

nonlinear nature of
time-energy footprint)

Raspberry-Pi-3-based
ON/OFF detection for
appliances; load test of

servers with
Apache JMeter

N/A 1

[40] Arduino + ESP8266
Wi-Fi Module Web server N/A

Current and voltage
sensors interfaced to
Arduino Leonardo

Arduino-based
prototype; Wi-Fi

connection demonstrated
between meter and web
application. Upper level

(gateway, cloud DB)
not present

Character
LCD

[41] Intel Edison
board-based station

MQTT, AWS IoT,
DynamoDB N/A

Allegro ACS712
current sensor

interfaced to Intel
Edison board

Prototype tested
individually N/A
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Table 2. Cont.

Ref. Architecture Technologies Smart Home
Capabilities

Energy Monitoring
Capabilities

Maturity and
Scalability

Local
Display

[37]

Wireless sensor
network,

data-acquisition
module (gateway),

data-storage
module,

visualization
module

PostgreSQL,
Apache, PHP,
data-stream

management
system

N/A
Wireless smart-power
strip nodes interfaced

by a sink node
Prototype N/A

[42]

Data-acquisition
module

(microcontroller for
HVAC unit

management),
middleware

module,
client-application

module

MQTT server,
storage server,

analytics engine
server,

Webserver

RFID reader,
temperature and
humidity sensors

Current sensor for
measuring AC unit
current, solid-state
relay for switching
devices ON/OFF

Hardware prototype,
scalability simulated

using Webserver
stress tool

N/A

[43]
Wireless sensor

network, gateway,
cloud servers

Virtual End
Node server for
handling Virtual
Top Node events,

Bluetooth 4.0
(BLE)

BLE nodes for
monitoring of
temperature,
humidity, air

pressure, CO2, and
air pressure
differences

Controllable smart
devices, monitoring of
data from distributed

resources (solar PV,
wind mill, ESS, and

electric vehicle
charging posts)

Pilot project
implemented at VTT’s

research apartment
N/A

[44]

HEMS-IoT
architecture

integrating 7 layers
(presentation, IoT
services, security,

management,
communication,
data, and device

layer)

ZigBee,
IoT (REST)

services,
big-data

technologies,
and machine

learning

Smart-home
monitoring

(motion and room
location, lighting,

temperature, water
flow, gas, sound

sensors) for
ensuring comfort

and safety

Smart-home
monitoring (energy
control sensors) for

reducing energy
consumption

Case study conducted on
10 homes (with two
types of design and
characteristics) in a

residential complex for
identifying

energy-consumption
patterns

N/A

Current
work

Layered
architecture
integrating

wired/wireless
sensor nodes,

gateway-managed
networks, cloud

processing

BLE, MongoDB,
Cloud DB server,
iOS, XCode, Qt

Sensor nodes for
environmental

variables
(temperature,

humidity, CO2,
light intensity),

controller
nodes/smart

actuator nodes for
regulation of room

environment

Measurement of:
active power and

energy, reactive power
and energy, apparent

power and energy
from RMS data,
apparent power

vectorial calculation,
zero-crossing, line

period, phase-delay
between voltage and

current, sag and
swell events.

Prototype devices with
high technology

readiness level (beta
prototypes) are validated

and installed in
residential and office

buildings.
Energy-monitoring

nodes fully integrated
into the

smart-home/BMS
networks. Scalability of
the network based on

wireless hubs and wired
gateways (up to

60 controller and sensor
nodes managed by a

gateway). Technologies
with proven scalability

used at cloud level.

LCD graphic
display: local
editing of the

control/
monitoring
parameters;

current
measured

values; plot
of the last
12/24 h

1 N/A–feature not available.

Most of the papers cited in the table describe devices for energy monitoring that
are not integrated with the smart-home/smart-building automation infrastructure. A
cloud-based setup for data storage, visualization, and analysis appears to be the most
appropriate method for handling measurement data and offers an important contribution to
the scalability of the platforms. Analyzing the maturity and the level of integration between
smart homes and energy-monitoring networks, the authors of Refs. [43,44] identified
approaches close to the integration paradigm promoted in the current paper. However,
the precision of the energy monitoring and the integration with smart homes/buildings
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presented in the current work are not reached in the other implementations reported in
Table 2.

4. Integration of Energy Monitoring with Smart Building Network Infrastructure
4.1. The Proposed Sensing and Control Architecture

The architecture of the system designed for supporting scheduling-based energy sav-
ing in residential clusters through monitoring the power consumption of typical consumers,
the provision of auxiliary sensor data for supporting the scheduling algorithms, the extrac-
tion of load profiles for several appliances, the storage of monitored data and of load-profile
approximations into a cloud database server, the support for the exchange of data with
the inference engine, strategy planner block, and cluster-management unit, is presented in
Figure 6.
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Figure 6. System architecture.

With reference to Figure 3, a monitoring infrastructure must be deployed in the
building, such that the monitoring of the power is performed for each active socket. The
measured power levels must be communicated and logged at the level of each home,
not only for supporting the bottom-up identification strategy, but also for providing the
necessary feedback to the scheduling algorithm. A monitoring infrastructure that organizes
the required power meters into networks of smart wireless nodes, managed by wireless
hubs, is indicated in Figure 7.
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Figure 7. Wireless-sensor network for monitoring residential loads (SM—smart meter, WH—wireless
hub, GTW—gateway).

The hubs are connected on a RS-485 bus, interfaced by a gateway module. Bluetooth
low-energy (BLE) protocol is used in the wireless network, the hub allowing up to eight
concurrent peripheral connections. The role of the wireless hub is to act as a virtual sensor
node in the network, ensuring the communication of the values measured by the wireless
sensor nodes into the wired bus on request. Various wired sensors may be connected
on the RS-485 bus. The sensor’s measurements are collected by the gateway modules
and sent periodically through TCP/IP sockets to the application running on the cloud
database server.

This architecture was already validated as a distributed monitoring and control solu-
tion for building management systems (Figure 8 [45]), paving the road for an integrated
smart home architecture (Figure 9) that encompasses all the implied areas (energy manage-
ment, HVAC control, access control, entertainment, non-intrusive user detection, etc.).
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The growing demand on data-storage platforms favors the use of cloud computing
and virtualization technologies [46]. An interesting approach to aggregating, visualizing,
and analyzing live data streams in the cloud for cooling and ventilation measurements
was introduced in Ref. [47]. The elements are structured in a similar manner: a first
level contains sensor nodes, a second level contains IoT gateways, and a third level is the
IoT cloud.

When selecting a temporal database for large data sets, the scaling of the database is
an important issue [48]. The literature reports both relational databases and non-relational
databases for the storage of the time series produced by the environmental sensors and
smart meters deployed in residential buildings.

The authors of Ref. [2] indicate that the high availability and on-demand scalability of
an open-source relational database management system (RDMS) might be the preferred
solution for dealing with a heterogeneous collection of sensor systems based on different
types of sensor network and facilitates the implementation of processing and reasoning
software modules independent of the origins of the data.

From an internal architecture perspective, non-relational databases are the preferred
choice, due to their horizontal scaling and schema flexibility characteristics, which facilitates
the first 3 Vs of big data [49]: volume, velocity, and variety. MongoDB, a NoSQL, document-
oriented database, is indicated in Ref. [46] as being appropriate for handling timestamped
data. Timestamped data may be stored in RDBMS by adding a new row in a table for
each data point. In MongoDB, this procedure is equivalent to saving a new document for
each event (document-per-event approach). Alternative approaches that take advantage
of the document-embedding capability of MongoDB, such as document-per-minute or
document-per-hour, are indicated in Ref. [49] as being more optimized in the context of
storage/retrieval. Updates at the field level imply a simple update operation instead of
writing a new document in a new location.

To model the measurements in a way that facilitates the saving of records for each
sensor with a granularity of one second, documents are created per day and per measurand.
The document storing measurements for a specific day contains subdocuments per minute,
organized in an array of subdocuments per second. The document structures defined for a
sensor or data source and for measurements are presented below.
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DataSources {
_id: ObjectId,
schemaVersion: int,
dataSourceIdx: int,
gtwSerialNumber: str,
type: str,
name: str,
userAlias: str,
address: int,
gain: double,
offset: double,
maxValue: double,
minValue: double,
measuringUnit: str,
resolution: str,
precision: str

}
Measurements {

_id: ObjectId,
schemaVersion: int,
timestamp: date,
dataSourceIdx: int,
gtwSerialNumber: str,
records: [
{ minute: int,
dataentries: [
{ second: int, value: double }

]
}
]
}

4.2. Development of the Smart-Meter Node with Wireless Communication

Considering previously developed sensing modules (Figure 10) ([45,50–53]), and the
versatile modular architecture that was demonstrated in a broad range of applications
(greenhouse climate control, smart-home on-demand ventilation, air-quality monitoring,
etc.), the first approach considered was to reuse the hardware functionality of the host
module, based on a 32-bit microcontroller, as much as possible, and to interface it to the
energy metering board. The block diagram of the host module and of the interfacing board
are presented in Figures 11 and 12. A picture of the interfacing board is presented in
Figure 13.

While, from the hardware point of view, this approach accelerated the development of
the prototype smart meter, from the software point of view, the reusability of the existing
module (tailored for the protocol, procedures, and usage scenarios of the Physis platform),
guarantees an easy integration with existing residential comfort infrastructures. This creates
the framework for achieving the alignment of the smart metering solution with the existing
BMS and smart-home systems, toward the integrated smart-home architecture indicated in
Figure 9.

The STMicroelectronics STPM32 energy metering evaluation board [54] was used to
monitor the active/reactive power of the appliances. The characteristics of the board include:
0.2%-accuracy single-phase meter, Vnom(RMS) = 140–300 V, Inom/Imax(RMS) = 5/100 A,
flin = 50/60 Hz ± 10%, USB and RS232/UART isolated connectors, SPI interface, two
programmable LEDs, 3.3-volt power supply.
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The on-board frequency output signals of the STPM32 were used to estimate the
power consumption; their frequency was proportional to the power (characterized by the
proportionality constant, the number of pulses per kW). Since the board does not save
the configurable parameter values in the nonvolatile memory, a rechargeable battery was
included in the setup, to continuously maintain the power supply of the board.

The host board is responsible for reading the frequency, for computing the average
power consumption in each second, and for communicating the values to the wireless hub
connected in the home sensor network.

The implementation on the microcontroller follows the algorithm presented in the
following pseudocode:

EXT_INT_IRQHandler:
stop timer1
if (i ≥ 0) then
∆t[i]← get_counter(timer1)

endif
i← i + 1
reset timer1 value
start timer1

main_thread:
start auto reload timer2 (1 s overflow)
i←−1
loop

if (timer2 overflow)
clear timer2 overflow flag
compute average value of ∆t counters stored during the last second
estimate average power consumption
i←−1

endif
endloop

The external interrupt is driven by the output of the optocoupler connected to the
LED1 signal of the STPM32 board and is configured to trigger an event on the rising edge.
One timer (timer 1) counts the number of cycles between two successive events. A general-
purpose timer (denoted here as timer 2) is used to signal a one-second-elapsed event.

The timing diagram of Figure 14 shows the events handled by the microcontroller.
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Figure 14. Events handled by the microcontroller for power-consumption estimation.

A picture showing the developed smart-meter module is presented in Figure 15. The
measurement board is mounted in the box with the plug on the back and the socket on
the front face. The minimum, maximum, and current average are displayed next to the
graphical representation of the load profile when the trace mode is activated (the sampling
time is one second).
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Figure 15. Smart-meter module.

4.3. Experiments and Results

The following figures (Figures 16–19) present records of the consumption (medium
power at an interval of 1 s). For the experiments, the energy consumers presented in Table 3
were considered.
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Figure 17. Load profile of the washing machine for a wool cycle (54 min).
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Figure 19. Load profile of the electric oven.

Table 3. Appliances used for experiments.

Device Model Consumption

Washing machine ARCTIC APL71222BDW3 173 kWh/year
Refrigerator Bosch KGE39AI40/13 156 kWh/year
Electric oven Electrolux EOF5C70X 0.81 kWh/cycle, max. 2790 W

Electric heater Electrolux ER 2009 Max. 2000 W
Lamp with light bulb Osram 200 W

4.3.1. Linear Approximation of Load Profiles

Local approximation through linear models is widely used in simulation environments,
such as SPICE. Piecewise linear representations have distinct advantages for numerical
methods used in simulation and optimization. Problems such as the mixed-integer linear
program (MILP) are simplified by the use of linear models. The authors of Ref. [55] consider
an optimization-based approach to the intentional islanding of power networks and show
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that the inclusion of a piecewise linear model (PWL) for the AC power flow facilitates the
determination of AC-feasible islands.

Bearing in mind its ease of representation and suitability for fast optimization algo-
rithms, the PWL representation was considered for the load profiles of the residential
appliances. To obtain a piecewise linear approximation of the load profiles corresponding
to specific appliances, the following steps were performed:

• Apply a Gaussian filter, for smoothing the data;
• Apply a first-order derivative of a Gaussian filter on the smoothed data, in order to

emphasize the steep changes in the signal;
• Extract the extrema points;
• Using the extrema as breakpoints, find a linear approximation for each interval.

The procedure applied on the power measurements performed on the refrigerator,
oven, and washing machine resulted in the approximations presented in Figures 20–23.
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The simple algebra involved in defining the summation operation is:

P = ∑n
i=1 Pi(t− ti)

where Pi(t − ti) is the PWL representation of the appliance i load profile (shifted with the
time ti). It allows the generation of artificial daily profiles based on real appliance load
profiles. This fact demonstrates the versatility of the PWL representation in generating a
sufficiently broad spectrum of daily profiles to simulate the optimization algorithms. The
rescheduling of the loads is, in fact, in this representation, just equivalent with the time
shifting of the appliance profiles. As an example, an artificial daily-load profile, generated
by considering that the oven starts at 12:30 and at 18:30 and the washing machine starts at
16:00, is presented in Figure 24.
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4.3.2. Advantages of PWL Representations for Load Scheduling

From a function-approximation perspective, a PWL representation offers a better
representation for the load profiles than a classic staircase approximation (for an hourly-
averaged approximation, see Ref. [56]). The more accurate representation and the higher
sampling rate should be examined from the perspective of evaluating their potential for
improved energy saving in typical real-time scheduling scenarios.

A common approach to load scheduling is load shifting ([27,56,57]). A least slack
time (LST)-based approach is introduced in Ref. [57] for the real-time scheduling of smart
home appliances. The scheduling scheme aims to minimize energy costs while handling
user requests within the earliest possible time frame. These types of strategies, based on
preemptions, are appropriate for appliances that can be stopped for a certain amount of
time and restarted afterward. The shifting algorithms introduced in Ref. [56] are used
for flattening the daily-load profile by iteratively shifting the operation of programmable
appliances from peak hours to off-peak hours. These optimization algorithms use a time
granularity of 1 h.

Table 4 enumerates several recent approaches reported in the literature. They are
based on several optimization strategies, and their efficiency is generally demonstrated on
hourly-averaged power-measurement series.

Table 4. Load scheduling algorithms for appliances.

Ref. Algorithm Types of Devices Time Granularity

[57] Least Slack Time (LST) Devices with different duty cycles N/A 1

[58] Full/limited preemption Earliest Deadline
First (EDF) Interruptible devices N/A

[56] Gradual- and lump-shifting algorithms Programmable
interruptible/non-interruptible devices 1 h

[59] Cuckoo Search (CS), Mixed-Integer Linear
Programming (MILP) Shiftable and non-shiftable devices 1 h

[60] Particle Swarm Optimization (PSO),
Grasshopper Optimization Algorithm (GOA) Controllable devices 1 h

[61] Genetic Algorithm (GA) Controllable devices 1 h
[62] Whale Optimization Algorithm Controllable devices 1 h

[63] Hybrid Gray Wolf Differential Evolution
(HGWDE)

Shiftable, non-shiftable, and
controllable devices 15, 30, and 60 min

[64]

Enhanced Binary Gray Wolf Optimization
(EBGWO), Binary Particle

Swarm Optimization (BPSO) and Binary
Gray Wolf Optimization (BGWO)

Controllable/uncontrollable
shiftable/non-shiftable devices N/A

[65]

PSO, vortex search (VS), differential
evolution (DE), Hybrid-Adaptive DE
(HyDE), HyDE with decay function

(HyDE-DF)

Shiftable and real-time devices 15 min

[66]

WFS2ACSO (hybrid technique incorporating
Wingsuit Flying Search Algorithm (WFSA)

and Artificial Cell Swarm Optimization
(ACSO))

Controllable devices N/A

[67]

Moth-Flame Optimization
(MFO) algorithm, Genetic Algorithm (GA),

TG-MFO (Time-Constrained
Genetic-Moth-Flame Optimization)

Fixed and elastic devices 30 min

1 N/A–information not available.
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The test problem is formulated as follows: for a given shift step, shstep, starting from
the representation of the load profile of each appliance i, LPi (t) = 0 and t /∈ (si, Si), where
(si, Si) is the start/stop pair for LPi (t), find the values shi corresponding to the shifted
start/stop points (si, Si)shifted = (si, Si) + shi · shstep that minimize the peak-to-average power

ratio (PAPR), |xpeak|2
xRMS

2 , of the aggregated profile.
A first experiment considers a simple configuration: a cluster with three homes. At the

level of each home, the shiftable loads are a washing machine and a dryer, whose profiles
are indicated in Figure 25. The activity intervals accepted by the users for each home (AIi)
are illustrated in Figure 26.
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The shifting step used in the simulation was 15 min. The following restriction related
to the order of running was imposed: the dryer should start after the washing machine
finishes its program. The shifting configuration produced was (1 6 1 7 2 6) (Figure 27).

This type of day-ahead planning strategy can be easily disturbed by a random perturba-
tion (the user manually switches on another appliance). To simulate the load-rescheduling
algorithm behavior in the presence of perturbations, a must-run load (an oven, in our
example) was introduced at the level of home 3. Its profile is presented in Figure 28.

The initial optimal profile was no longer valid: the appliances that were already
activated would remain unshifted, but those that were not yet activated at the time when
the perturbing load is switched on must be rescheduled. The simulation led to a shifting
configuration (1 6 1 8 3 8 0) (Figure 29). It can be observed that the not-yet active loads
(with reference to the switching-on of the oven) were pushed to the right along the time
axis (when compared with Figure 27) to accommodate the insertion of the oven profile, and
the peak consumption was reduced accordingly.
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The presence of the smart-meter nodes (Figure 9) enables this reactive behavior: the
detection of the switch-on event occurs at the level of the wireless sensor, and it is further
propagated on the route wireless-hub-gateway-inference engine and strategy planner. This
last block is responsible for the running of the rescheduling, such that the response time of
the system is strictly related to the computational complexity of the rescheduling algorithm
and the computational power of the hardware on which it runs. The granularity of the
configuration space is essential. A two-stage approach strategy can help to obtain better
response times: a first-stage exploration with a larger shifting step can be followed by a
refining stage with a smaller shifting step.
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A second experiment was performed to assess the advantage of using PWL representa-
tions for load scheduling instead of staircase approximations, this time in a complex home
cluster/neighborhood setup (165—washing machines, 120—dryers, 180—dish washers).
The cuckoo search (CS) algorithm [68] was applied on a combined profile of three types of
shiftable appliance, totaling 465 appliances (Figure 30). The activity interval considered
was from 8 AM to 3 PM.
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Two simulations were performed: one using PWL representations, and one using
hourly approximations (Figure 31).
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Figure 31. Load-profile representations considered for simulation.

For the first simulation, a shift step of 10 min was used, while for the second, the shift
step was set to one hour. Running the CS algorithm with a population size of 25 candidate
solutions for 2500 generations for the two representations considered (PWL/staircase)
resulted in two shifting configurations (two sets of shi values i = 1.465).

A shifting configuration specifies for each load profile the number of times it should
be shifted by shstep such that the aggregated profile is the “best” according to the measure
of flatness considered. Figure 32 presents the PWL representations of the aggregated
load profiles for the two shifting configurations obtained (the one obtained using PWL
representations for the load profiles and the one obtained using staircase approximations
for the load profiles). The superior peak-shaving performance demonstrated by the PWL
representations is obvious.
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4.3.3. Software Applications for Recording and Visualization

In the initial process of installing and configuring the monitoring networks, as well
as later in the maintenance, the testing and debugging activities are strongly supported
by visualization tools. The software applications that were developed for running on
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the embedded sensing modules were implemented in a way that supported dual data-
collection behavior: gateway-based data collection and the direct connection of a mobile
application to the sensing modules via the BLE interface. On one hand, the mobile app not
only collects current readings, but also downloads the logged values for visualization. A
screenshot from the developed iPhone/iPad app is shown in Figure 33.
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On the other hand, the automated process of data collection and archiving is supported
by the software modules inherited from the smart-home distributed system: wireless hubs
are integrated with gateways that periodically send the logged data toward the cloud
databases using the scalable software architecture described in the next section.

Visualization screens generated from the records of the environmental variables ac-
quired using the integrated monitoring system are presented in Figures 34–38.
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5. Discussion
5.1. Privacy

An important aspect related to smart metering is residents’ privacy. The provision
of accurate, granular data related to energy consumption to utility providers may be a
threat to residents’ privacy, facilitating the identification of specific appliances’ power
signatures and inferences about residents’ private lives. Based on the smart-meter data,
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malicious attackers may find information related to residents, such as their presence at
home, disabilities/illnesses, eating habits, sleep cycles, time spent in front of TV, age,
gender, or ethnicity [69].

The usage of load-shifting techniques and of alternative representations of the load pro-
files instead of the whole data set are among the privacy-preserving techniques considered.
The proposed PWL representation can successfully support such approaches.

5.2. Scalability

To address the matter of scalability, both building-level and city-level integration must
be considered.

In the current setup of the home network, the hub is equipped with a BLE interface
for communicating with the wireless network and an RS-485 interface for integration on
the wired side into the home network. The home network is interfaced by a gateway
module that provides a wired ethernet interface. For a larger office building or an industrial
building, an increase in the number of monitored loads may need a larger bandwidth than
is achievable through the BLE and RS-485 interfaces of the wireless hub (when higher rates,
of a few measurements/second, are considered).

To improve the communication architecture to support the real-time transfer of the
measured data from each smart meter directly to the upper hierarchical levels (cloud
database server, inference engine, and strategy planner), the usage of wired and wireless
Ethernet is considered. There are two alternative solutions: either the RS-485 port of the
hub is replaced with an Ethernet port (wired or wireless), or the BLE interface of the sensing
modules is directly replaced by a wireless Ethernet module. The transition from BLE to
Wi-Fi is facilitated by the modular design of the host module (see Figure 11), the only part
affected being the radio board. The usage of a low-power Wi-Fi module, such as the Silicon
Labs WGM160P Wi-Fi Module [70] (a module suitable for cloud-connected IoT applications,
integrating a chip antenna, 802.11 b/g/n radio, certifications, Wi-Fi and IP stacks, HTTP
server, and a microcontroller that can host user applications or be used with an external
host controller in network-co-processor (NCP) mode), allows easy transition from BLE to
Wi-Fi and direct integration with the current motherboard through the SPI interfaces.

For the city-level integration, the software architecture is mainly concerned with issues
generated when a large number of buildings are connected. The proposed approach is
indicated in Figure 39.

Buildings 2022, 12, x FOR PEER REVIEW 30 of 36 
 

 
Figure 39. Scalable software architecture. 

The gateway modules periodically connect through TCP-IP sockets to the Apps in 
the Driver layer to send the latest measurements and to receive user commands (the set-
ting points and the switch-ON/OFF commands issued through the graphic interface by 
the inhabitants). The gateway-issued messages used for transmitting the measurements 
contain the following information: the timestamp, gateways’ serial number, message 
type, priority, number of measurements included in the message, and pairs <data-
SourceIdx, value>. The App must be seen as a message broker: its main functionality is 
to listen for incoming connections, create a queue of lists (one list contains messages 
from one gateway), and pass it to the upper hierarchical level. Each App handles 1 to m 
gateways. If the number of requests per second is greater than the threshold, another 
App is launched. The Apps are configured by the Manager. 

Industrial environments typically use three-phase power supply. One solution for 
metering systems that can be adopted in these environments is the ST’s three-phase me-
ter [71], integrating a STPM34 board for sensing the current and voltage in the primary 
and secondary phase and a STPM33 board for sensing the current and voltage in the 
third phase. A microcontroller facilitates the aggregation of the information provided by 
the two metering devices, computing total energy and power. Direct communication 
with each individual metering device is also possible. 

While for residential homes, the most important measurement is the active power, 
for industrial environments, the measurements of interest are power quality, reactive 
power, and harmonics. STPM3x measures voltages and currents on up to two lines and 
computes the following quantities [72]: 
 Active power and energy wideband 0 Hz (4 Hz)–3.6 kHz (the effects of harmonics 

within this range are included); 
 Fundamental active power and energy 45–65 Hz (the current and voltage wave-

forms are filtered for removing all the harmonics except the first); 
 Reactive power and energy; 
 Apparent power and energy from RMS data; 
 Apparent power vectorial calculation based on the scalar product of active and re-

active power; 
 Signal parameters, such as the zero-crossing, line period, phase-delay between volt-

age and current, sag and swell events, tamper and RMS values of the current and 
voltage on each phase are computed on T = 200 ms every 128 μs. 
Each computed power value is stored in a 32-bit register and accumulated (with 

sign) in the corresponding 32-bit energy register at a rate of 7.8125 kHz. 

Figure 39. Scalable software architecture.



Buildings 2022, 12, 1034 30 of 35

The gateway modules periodically connect through TCP-IP sockets to the Apps in the
Driver layer to send the latest measurements and to receive user commands (the setting
points and the switch-ON/OFF commands issued through the graphic interface by the
inhabitants). The gateway-issued messages used for transmitting the measurements contain
the following information: the timestamp, gateways’ serial number, message type, priority,
number of measurements included in the message, and pairs <dataSourceIdx, value>. The
App must be seen as a message broker: its main functionality is to listen for incoming
connections, create a queue of lists (one list contains messages from one gateway), and
pass it to the upper hierarchical level. Each App handles 1 to m gateways. If the number of
requests per second is greater than the threshold, another App is launched. The Apps are
configured by the Manager.

Industrial environments typically use three-phase power supply. One solution for
metering systems that can be adopted in these environments is the ST’s three-phase me-
ter [71], integrating a STPM34 board for sensing the current and voltage in the primary
and secondary phase and a STPM33 board for sensing the current and voltage in the third
phase. A microcontroller facilitates the aggregation of the information provided by the two
metering devices, computing total energy and power. Direct communication with each
individual metering device is also possible.

While for residential homes, the most important measurement is the active power, for
industrial environments, the measurements of interest are power quality, reactive power,
and harmonics. STPM3x measures voltages and currents on up to two lines and computes
the following quantities [72]:

• Active power and energy wideband 0 Hz (4 Hz)–3.6 kHz (the effects of harmonics
within this range are included);

• Fundamental active power and energy 45–65 Hz (the current and voltage waveforms
are filtered for removing all the harmonics except the first);

• Reactive power and energy;
• Apparent power and energy from RMS data;
• Apparent power vectorial calculation based on the scalar product of active and

reactive power;
• Signal parameters, such as the zero-crossing, line period, phase-delay between voltage

and current, sag and swell events, tamper and RMS values of the current and voltage
on each phase are computed on T = 200 ms every 128 µs.

Each computed power value is stored in a 32-bit register and accumulated (with sign)
in the corresponding 32-bit energy register at a rate of 7.8125 kHz.

Another solution appropriate for three-phase smart-meter nodes is indicated in [73].
It combines a hardware front-end realized with sigma-delta modulators with a dedicated
digital filter for sigma–delta modulator (DFSDM) blocks available in STM32F413. The
setup depicted in Figure 40 uses only three pairs of two-wire communication lines, which
need to be optically isolated. When compared with the direct extension toward the three-
phase measurement of the single-phase setup implemented in the prototype smart meter
(i.e., replicating the measurement chip three times, Figure 41), the galvanic isolation block
significantly increases the cost. The high rates and higher number of lines in the case of SPI
affect this, as indicated in Tables 5 and 6.
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Figure 41. Extension of the implemented single-phase setup for measurements in three-phase
systems.

Table 5. Main components in the setup of Figure 40.

Component Producer Unit Price Quantity Total

STPMS2 STMicroelectronics 1.10 3.00 3.30
STISO621W STMicroelectronics 1.30 3.00 3.90

STM32F413RHT6TR STMicroelectronics 6.79 1.00 6.79

Total 13.99

Table 6. Main components in the setup of Figure 41.

Component Producer Unit Price Quantity Total

STPM32 STMicroelectronics 1.39 3.00 4.17
IL260 NVE Corporation 5.71 3.00 17.12

STM32L496RGT3 STMicroelectronics 7.40 1.00 7.40

Total 28.69

6. Conclusions

The paper introduced the hardware/software codesign of an integrated smart-home
architecture that is able to combine typical distributed sensing and control networks
(targeting user comfort in smart homes) with energy-monitoring and management systems,
implemented as smart nodes organized in sensor networks.
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Communication architectures and data-management systems appropriate for real-time
aggregating time series were reviewed and analyzed from the perspective of consumption-
data measurement and logging. A scalable data-transfer architecture that can cope with
time series generated by a large number of home-energy-management systems was intro-
duced, together with associated database applications for supporting the optimization and
modeling of load profiles at cluster level, sector level, and city level.

A smart-meter node that shares the processing and communication architecture with
the smart sensors previously implemented for user-comfort management (smart home
infrastructure) was developed to support the automated process of power-measurement
collection and archiving. The ability of this node to process power measurements with
a programable granularity level (seconds/minutes/hours) at the local (edge) level and
stream the processed measurement results at the selected granularity to the cloud was
identified as a valuable feature for a large range of applications (model identification,
power saving, prediction). The impact of the real-time transfer of the measured data from
each smart meter directly to the upper hierarchical levels (cloud database server, inference
engine, and strategy planner) was analyzed in relation to the scaling-up of the number of
monitored buildings. Solutions for extending the proposed setup for buildings in industrial
environments (three phase systems) were proposed.

It should be emphasized that the node introduced here is implemented at a mature
level of technology readiness and provides the essential functionalities of a smart meter [74]:
regular and precise metering, two-way communication, appliance control, and support for
demand-side management procedures.

The recorded profiles generated by the smart meter nodes and by the sensors involved
on HVAC control are easily visualized with the developed suite of software applications.
Piecewise linear approximations of the load profiles corresponding to specific appliances
were introduced and implemented in the DB application. Their ease of representation and
suitability for generating the daily profiles needed in the simulation of the optimization al-
gorithms were exemplified using some typical appliances. The advantages of the new PWL
representation for optimization procedures were demonstrated by the better performance
(higher energy savings) in load scheduling and rescheduling using the proposed system.

The modular architecture of the sensor node facilitates the reuse of the same platform
to develop edge nodes that measure environmental comfort variables and air quality, or
nodes that provide the functionality of smart meters. This supports the integration of
typical smart-home networks with energy-monitoring networks in a novel, easier, and
affordable way. The use of mature technologies for communication and database systems
combined with the scalability of the cloud-based approach suggests that the proposed
solution is futureproof.
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