Comparative Analysis of the Effect of the Evolution of Energy Saving Regulations on the Indoor Summer Comfort of Five Homes on the Coast of the Basque Country
Abstract
:1. Introduction
1.1. Background and Aims
1.2. Evolution of the National Energy Efficiency Regulations for Buildings in Spain
1.3. Implementation of Private Green Building Certificates in Spain and Associated Challenges
1.4. Literature Review
2. Materials and Methods
2.1. Description of Case Studies
2.1.1. Flat 1: Prim
2.1.2. Flat 2: Zarautz
2.1.3. Flats 3, 4 and 5: Bolueta Low, Medium and High
2.2. User Comfort Surveys
2.3. Data Collection
2.4. Thermal Comfort Models
- The first criterion sets a limit for the number of hours that the operating temperature can exceed the comfort temperature threshold (upper limit of the comfort temperature range) by 1 K or more during the occupied hours of a normal period outside the heating season (1 May to 30 September).
- The second criterion refers to the severity of overheating on any given day, which can be as important as its frequency, the level of which is a function of both the increase in temperature and its duration. This criterion sets a daily limit for acceptability.
- The third criterion establishes an absolute maximum daily temperature for a room, beyond which the level of overheating is unacceptable.
2.5. Exterior Climate Data Sourcing and Analysis
2.5.1. Data Sources
2.5.2. Microclimate Analysis
- Distance from the sea: it has a regulating effect on the thermal gradient, reducing maximum temperatures and increasing minimum temperatures.
- Altitude: In humid climates, the temperature drops by 0.3 to 0.8 °C. In addition, there is higher solar radiation and higher nocturnal radiation, which increases the thermal gradient.
- Presence of vegetation: it has a similar effect as the sea, preventing overheating of the soil and avoiding nocturnal radiation, and reducing the day–night temperature jump, resulting in a typically cool climate during the day and temperate at night.
- Location: the intricate and mountainous orography of the area in question and its location in relation to the Iberian Peninsula, which is itself a mountainous area with a high average altitude, makes the Basque Country and Navarre a hinge area between the Iberian Peninsula and the Aquitaine Depression, which is therefore influenced by these geographical areas and, although neither of them is the source of air masses, they are of great importance in terms of baric and hydric changes.
- Prim: a sensor located in the façade of the flat, in the shaded courtyard.
- Zarautz: a sensor located on the outside the dwelling.
3. Results
3.1. Overall Thermal Comfort
3.2. Night-Time Comfort
3.3. CO2 Concentration
4. Discussion
5. Conclusions
- The amplitude of the temperature readings is greater the higher the performance of the building envelope is, in terms of insulation and airtightness.
- The former could be both caused by the reduced thermal inertia of the building and by the actions dwellers take to try to mitigate overheating, such as constant ventilation. For this reason, buildings equipped with MHRV systems can be analyzed under criteria for naturally ventilated ones, for instance, by using CIBSE TM:59 criteria (a) and (b).
- Buildings that are less efficient in winter can also be better at dissipating heat in an overheating event, and thus, more resilient in this aspect.
- nZEBs are fine-tuned machines that are more sensible to microclimate variations, internal heat gains, occupation density and solar radiation, especially if they are not fitted with adequate sun protection and do not have the potential for intensive ventilation (e.g., no cross-ventilation is possible due to the layout).
- The advances and developments in the regulations that limit winter energy demands and consumption should be accompanied with greater study on the implications they have in summer energy demands and thermal comfort.
- Bedrooms tend to experiment higher temperatures than other rooms used during the daytime, and should be the subject of future studies considering the impact this has in sleep quality and overall health, especially for aging people, small children and vulnerable people.
6. Physical Quantities and Units
(CO2) | ppm | CO2 Concentration |
Cep | kWh/m2 y | Primary Energy Consumption |
g | dimensionless | Solar Factor |
Lden | dB | Complete Day Noise Level |
Ln | dB | Night-time Noise Level |
n50 | h−1 | Hourly Air Changes at a Differential Pressure of 50 Pa |
RH | % | Relative Humidity |
T | °C | Temperature |
U | W/m2 K | Thermal Transmittance |
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BREEAM | Building Research Establishment Environmental Assessment Method |
CASBEE | Comprehensive Assessment System for Built Environment Efficiency |
CIBSE | Chartered Institution of Building Services Engineers |
CO2 | Carbon Dioxide |
CTE | Código Técnico de la Edificación (English: Technical Building Code) |
CTE DB-HE | Código Técnico de la Edificación: Documento Básico Ahorro de Energía (English: Technical Building Code—Energy Savings section) |
CTE DB-HS | Código Técnico de la Edificación: Documento Básico Salubridad (English: Technical Building Code—Sanitary Conditions section) |
DHW | Domestic Hot Water |
EU | European Union |
EVE | Ente Vasco de la Energía (English: Basque Energy Agency) |
FTP | File Transfer Protocol |
GHG | Greenhouse Gases |
h | Hour |
LBL | Lawrence Berkeley National Laboratory |
LEED | Leadership in Energy and Environmental Design |
MVHR | Mechanical Ventilation Heat Recovery |
NBE CT-79 | Norma Básica de la Edificación: Condiciones Térmicas en los Edificios (English: Basic Standards for Buildings: Thermal Conditions) |
nZEB | Net Zero Energy Building |
PH | Passivhaus |
PHI | Passivhaus Institut |
POE | Post-Occupancy Evaluation |
RH | Relative Humidity |
RITE | Reglamento de Instalaciones Térmicas en los Edificios (English: Regulation of Thermal Installations in Buildings) |
T&D | T&D Corporation |
TM | Technical Memorandum |
TMYx | Typical Meteorological Year |
UTM | Universal Transverse Mercator Coordinate System |
VPO | Vivienda de Protección Oficial (English: Public Protected Housing) |
YoC | Year of Construction |
References
- Brew, G. OPEC, International Oil, and the United States. In Oxford Research Encyclopedia of American History; Oxford University Press: Oxford, UK, 2019. [Google Scholar] [CrossRef]
- Long-Term Low Greenhouse Gas Emission Development Strategy of the European Union and its Member States|UNFCCC, Council of the European Union. 2020. Available online: https://unfccc.int/documents/210328 (accessed on 16 November 2021).
- Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings, European Parliament. 2010. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32010L0031 (accessed on 11 January 2019).
- Commission Recommendation (EU) 2016/1318 of 29 July 2016 on Guidelines for the Promotion of Nearly Zero-Energy Buildings and Best Practices to Ensure that, by 2020, All New Buildings are Nearly Zero-Energy Buildings, European Commission. 2016. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32016H1318 (accessed on 1 October 2020).
- European Union 2020 Climate & Energy Package. Available online: https://ec.europa.eu/clima/eu-action/climate-strategies-targets/2020-climate-energy-package_en (accessed on 9 December 2021).
- European Union 2030 Climate & Energy Framework. Available online: https://ec.europa.eu/clima/eu-action/climate-strategies-targets/2030-climate-energy-framework_en#tab-0-0 (accessed on 16 November 2021).
- Burke, R.V.; Gil, M.S.; González, D.J.; Rodríguez, J.S. Guía de Aplicación DB HE 2019; Ministerio de Transportes, Movilidad y AgendaUrbana: Madrid, Spain, 2020; Available online: https://www.codigotecnico.org/pdf/GuiasyOtros/Guia_aplicacion_DBHE2019.pdf (accessed on 16 November 2021).
- Technical Standards for Homes|BREEAM—Sustainability Assessment Method. Available online: https://www.breeam.com/discover/technical-standards/homes/ (accessed on 16 November 2021).
- LEED Rating System|U.S. Green Building Council. Available online: https://www.usgbc.org/leed (accessed on 27 December 2021).
- Passivhaus Institut. Available online: https://passivehouse.com/02_informations/01_whatisapassivehouse/01_whatisapassivehouse.htm (accessed on 16 November 2021).
- The MINERGIE Standard for Buildings. Available online: https://residence-immobilien.ch/sites/default/files/the_minergie_standard_for_buildings_en_0.pdf (accessed on 16 November 2021).
- CASBEE Comprehensive Assessment System for Built Environmental Efficiency. Available online: https://www.ibec.or.jp/CASBEE/english/document/CASBEE_brochure_2016.pdf (accessed on 16 November 2021).
- Fletcher, M.J.; Johnston, D.K.; Glew, D.W.; Parker, J.M. An empirical evaluation of temporal overheating in an assisted living Passivhaus dwelling in the UK. Build. Environ. 2017, 121, 106–118. [Google Scholar] [CrossRef]
- Tabatabaei Sameni, S.M.; Gaterell, M.; Montazami, A.; Ahmed, A. Overheating investigation in UK social housing flats built to the Passivhaus standard. Build. Environ. 2015, 92, 222–235. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, R.; Natarajan, S. Overheating risk in Passivhaus dwellings. Build. Serv. Eng. Res. Technol. 2019, 40, 446–469. [Google Scholar] [CrossRef]
- McLeod, R.S.; Hopfe, C.J.; Kwan, A. An investigation into future performance and overheating risks in Passivhaus dwellings. Build. Environ. 2013, 70, 189–209. [Google Scholar] [CrossRef] [Green Version]
- da Graca, G.C.; Augusto, A.F.R.; Lerer, M.M. Solar powered net zero energy houses for southern Europe: Feasibility study. Sol. Energy 2012, 86, 634–646. [Google Scholar] [CrossRef]
- Colclough, S.; Kinnane, O.; Hewitt, N.; Griffiths, P. Investigation of nZEB social housing built to the Passive House standard. Energy Build. 2018, 179, 344–359. [Google Scholar] [CrossRef]
- Attia, S.; Eleftheriou, P.; Xeni, F.; Morlot, R.; Ménézo, C.; Kostopoulos, V.; Betsi, M.; Kalaitzoglou, I.; Pagliano, L.; Cellura, M.; et al. Overview and future challenges of nearly zero energy buildings (nZEB) design in Southern Europe. Energy Build. 2017, 155, 439–458. [Google Scholar] [CrossRef]
- Larsen, T.S.; Jensen, R.L. Comparison of Measured and Calculated Values for the Indoor Environment in One of the First Danish Passive Houses. In Proceedings of the Building Simulation 2011: 12th Conference of International Building Performance Simulation Association, Sydney, Australia, 14–16 November 2011; pp. 1414–1421. [Google Scholar] [CrossRef]
- Costanzo, V.; Fabbri, K.; Piraccini, S. Stressing the passive behavior of a Passivhaus: An evidence-based scenario analysis for a Mediterranean case study. Build. Environ. 2018, 142, 265–277. [Google Scholar] [CrossRef]
- Hidalgo, J.M.; Psomas, T.; García-Gáfaro, C.; Millán, J.A. Overheating Assessment of a Passive House Case Study in Spain. In Proceedings of the 36th AIVC Conference “Effective Ventilation in High Performance Buildings”, Madrid, Spain, 23–24 September 2015; pp. 645–655. Available online: https://www.aivc.org/resource/overheating-assessment-passive-house-case-study-spain (accessed on 16 November 2021).
- Vidal, I.R.; Isasi, X.O.; de Arce, J.O. Overheating risk in social collective housing in the Basque Country and Navarre built under the Passivhaus standard Monitoring campaign and comfort analysis of a 171-dwelling building in Bilbao, Spain. In Proceedings of the 35th PLEA Conference on Passive and Low Energy Architecture (PLEA 2020), A Coruña, Spain, 1–3 September 2020; Gonçalves, J.C.S., Álvarez, J.R., Eds.; University of A Coruña: A Coruña, Spain, 2021; pp. 1281–1286. [Google Scholar] [CrossRef]
- Vidal, I.R.; Otaegi, J.; Oregi, X. Thermal comfort in nZEB collective housing in Northern Spain. Sustainability 2020, 12, 9630. [Google Scholar] [CrossRef]
- Bolueta in Bilbao, Spain, is Now the Tallest Passive House Building in the World—PRISM. Available online: https://prismpub.com/bolueta-in-bilbao-spain-is-now-the-tallest-passive-house-building-in-the-world/ (accessed on 31 October 2018).
- Airtightness: One of the New Parameters in HE 2019—Colegio Oficial de Aparejadores y Arquitectos Técnicos de Bizkaia. Available online: http://www.coaatbi.org/tecnicos-edificacion-ante-cambio-climatico/hermeticidad-y-blower-door (accessed on 20 October 2020).
- Pérez, M.R.; González, V.R. Guía de Aplicación DB HE 2019—Ejemplos (I); Madrid, Spain, 2021; pp. 97–101. Available online: https://www.codigotecnico.org/pdf/GuiasyOtros/Guia_aplicacion_DBHE2019_Ejemplos_I.pdf (accessed on 16 November 2021).
- Borrallo-Jiménez, M.; LopezDeAsiain, M.; Esquivias, P.M.; Delgado-Trujillo, D. Comparative study between the Passive House Standard in warm climates and Nearly Zero Energy Buildings under Spanish Technical Building Code in a dwelling design in Seville, Spain. Energy Build. 2022, 254, 111570. [Google Scholar] [CrossRef]
- Laustsen, J. Energy Efficiency Requirements in Building Codes, Energy Efficiency Policies for New Buildings; International Energy Agency: Paris, France, 2008. Available online: https://www.osti.gov/etdeweb/servlets/purl/971038 (accessed on 16 November 2021).
- Economidou, M.; Todeschi, V.; Bertoldi, P.; D’Agostino, D.; Zangheri, P.; Castellazzi, L. Review of 50 years of EU energy efficiency policies for buildings. Energy Build. 2020, 225, 110322. [Google Scholar] [CrossRef]
- UK National Energy Efficiency Action Plan. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/307993/uk_national_energy_efficiency_action_plan.pdf (accessed on 16 November 2021).
- Arrêté du 10 avril 1974 relatif à l’isolation thermique et au réglage automatique des installations de chauffage dans les bâtiments d’habitation, République Française. 1974. Available online: https://www.legifrance.gouv.fr/loda/id/JORFTEXT000000853955/ (accessed on 16 November 2021).
- Guazzi, G.; Bellazzi, A.; Meroni, I.; Magrini, A. Refurbishment design through cost-optimal methodology: The case study of a social housing in the northern Italy. Int. J. Heat Technol. 2017, 35, S336–S344. [Google Scholar] [CrossRef]
- Friege, J. Increasing homeowners’ insulation activity in Germany: An empirically grounded agent-based model analysis. Energy Build. 2016, 128, 756–771. [Google Scholar] [CrossRef]
- Decreto 1490/1975, de 12 de junio, por el que se establecen medidas a adoptar en las edificaciones con objeto de reducir el consumo de energía., Presidencia del Gobierno de España, Madrid. 1975. Available online: https://www.boe.es/buscar/doc.php?id=BOE-A-1975-14782 (accessed on 17 November 2021).
- Graham, H. Spain’s Transition to Democracy. Hist. J. 1990, 33, 1017–1023. [Google Scholar] [CrossRef] [Green Version]
- Real Decreto 2429/1979, de 6 de julio, por el que se aprueba la norma básica de edificación NBE-CT-79, sobre condiciones térmicas en los edificios, Presidencia del Gobierno de España, Madrid. 1979. Available online: https://www.boe.es/boe/dias/1979/10/22/pdfs/A24524-24550.pdf (accessed on 17 November 2021).
- Real Decreto 314/2006, de 17 de marzo, por el que se aprueba el Código Técnico de la Edificación; Ministerio de Vivienda del Gobierno de España: Madrid, Spain. 2006. Available online: https://www.boe.es/boe/dias/2006/03/28/pdfs/A11816-11831.pdf (accessed on 17 November 2021).
- Spain Building Code Implementation-Country Summary. Available online: https://tools.gbpn.org/sites/default/files/Spain_Country%20Summary_0.pdf (accessed on 17 November 2021).
- Real Decreto 1027/2007, de 20 de julio, por el que se aprueba el Reglamento de Instalaciones Térmicas en los Edificios. 2007. Available online: https://www.boe.es/boe/dias/2007/08/29/pdfs/A35931-35984.pdf (accessed on 17 November 2021).
- Reglamento de Instalaciones Térmicas en los Edificios (RITE). Versión consolidada 2013., (2013) 1–137. Available online: https://energia.gob.es/desarrollo/EficienciaEnergetica/RITE/Reglamento/RDecreto-1027-2007-Consolidado-9092013.pdf (accessed on 17 November 2021).
- Directive 2002/91/EC of the European Parliament and of the Council of 16 December 2002 on the energy performance of buildings, European Parliament and Council of Europe. 2002. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32002L0091&from=EN (accessed on 17 November 2021).
- Orden FOM/1635/2013, de 10 de septiembre, por la que se actualiza el Documento Básico DB-HE “Ahorro de Energía”, del Código Técnico de la Edificación, aprobado por Real Decreto 314/2006, de 17 de marzo; Ministerio de Fomento del Gobierno de España: Madrid, Spain. 2013. Available online: https://www.boe.es/boe/dias/2013/09/12/pdfs/BOE-A-2013-9511.pdf (accessed on 17 November 2021).
- Real Decreto 238/2013, de 5 de abril, por el que se modifican determinados artículos e instrucciones técnicas del Reglamento de Instalaciones Térmicas en los Edificios, aprobado por Real Decreto 1027/2007, de 20 de julio; Ministerio de Presidencia del Gobierno de España: Madrid, Spain. 2013. Available online: https://www.boe.es/boe/dias/2013/04/13/pdfs/BOE-A-2013-3905.pdf (accessed on 17 November 2021).
- Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings, European Parliament and Council of Europe. 2010. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32010L0031&from=en (accessed on 24 October 2019).
- Martín, A.D. Implementation of the EPBD in Spain—epbd-ca.eu. Available online: https://epbd-ca.eu/ca-outcomes/outcomes-2015-2018/book-2018/countries/spain (accessed on 1 December 2016).
- Passive House Database: Certified Buildings in Spain. Available online: https://passivehouse-database.org/index.php?lang=en#s_8a6fbeafbefc885da12b06afade2af2c (accessed on 17 November 2021).
- Passivhaus Designers and other Members in Spain—Plataforma Edificación Passivhaus (PEP). Available online: https://www.plataforma-pep.org/directorio-socios/?community=&certification=&occupations=&tipology=&institutions=&company=&search= (accessed on 17 November 2021).
- Moreno-Rangel, A. Passivhaus. Encyclopedia 2020, 1, 20–29. [Google Scholar] [CrossRef]
- First Spanish Passivhaus in Moraleda de Zafayona (Granada). Available online: https://passivehouse-database.org/index.php#d_1690 (accessed on 17 November 2021).
- Barnes, J. Passivhaus Trust UK, Passivhaus Capital Cost Research Project. Available online: https://www.passivhaustrust.org.uk/UserFiles/File/Technical%20Papers/150128%20PH%20Capital%20Costs.pdf (accessed on 1 January 2015).
- Hopfe, C.; McLeod, R. The Passivhaus Designer’s Manual: A Technical Guide to Low and Zero Energy Buildings; Routledge: London, UK, 2015. [Google Scholar] [CrossRef]
- Nasuvinsa se une al Consorcio Passivhaus—Consorcio Passivhaus. Available online: https://www.consorciopassivhaus.com/nasuvinsa-se-une-al-consorcio-passivhaus/ (accessed on 18 November 2021).
- Nasuvinsa—Navarra de Suelo y Vivienda S.A., Gobierno de Navarra—Nafarroako Gobernua. Navarra Social Housing. The Commitment of the Government of Navarra for Social Rental and Sustainable and Energy Efficient Building. Available online: https://www.nasuvinsa.es/ficheros/INFORME%20NHN%20Ingl%C3%A9s%20ok.pdf (accessed on 18 November 2021).
- El Gobierno foral promociona 600 viviendas del plan de alquiler “Navarra Social Housing”|Noticias de Navarra en Diario de Navarra. Available online: https://www.diariodenavarra.es/noticias/navarra/2021/10/29/el-gobierno-foral-promociona-600-viviendas-plan-alquiler-navarra-social-housing-505705-300.html (accessed on 18 November 2021).
- Bolueta, Proyectos Emblemáticos Visesa. Available online: https://www.visesa.euskadi.eus/bolueta/ (accessed on 18 November 2021).
- Moreno-Rangel, A.; Sharpe, T.; McGill, G.; Musau, F. Indoor Air Quality in Passivhaus Dwellings: A Literature Review. Int. J. Environ. Res. Public Health 2020, 17, 4749. [Google Scholar] [CrossRef]
- Causone, F.; Tatti, A.; Pietrobon, M.; Zanghirella, F.; Pagliano, L. Yearly operational performance of a nZEB in the Mediterranean climate. Energy Build. 2019, 198, 243–260. [Google Scholar] [CrossRef] [Green Version]
- Chvatal, K.M.S.; Corvacho, H. The impact of increasing the building envelope insulation upon the risk of overheating in summer and an increased energy consumption. J. Build. Perform. Simul. 2009, 2, 267–282. [Google Scholar] [CrossRef]
- Myers, D.; Gorse, C.; Johnston, D. Understanding Factors Influencing Overheating: The UK’s First Large-Scale Domestic Passivhaus Retrofit. Sustain. Ecol. Eng. Des. 2020, volume 1, 393–410. [Google Scholar] [CrossRef]
- Ibrahim, A.; Pelsmakers, S.L. Low-energy housing retrofit in North England: Overheating risks and possible mitigation strategies. Build. Serv. Eng. Res. Technol. 2018, 39, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Figueroa-Lopez, A.; Arias, A.; Oregi, X.; Rodríguez, I. Evaluation of passive strategies, natural ventilation and shading systems, to reduce overheating risk in a passive house tower in the north of Spain during the warm season. J. Build. Eng. 2021, 43, 102607. [Google Scholar] [CrossRef]
- Rodrigues, L.; Sougkakis, V.; Gillott, M. Investigating the potential of adding thermal mass to mitigate overheating in a super-insulated low-energy timber house. Int. J. Low-Carbon Technol. 2016, 11, 305–316. [Google Scholar] [CrossRef] [Green Version]
- Mavrogianni, A.; Wilkinson, P.; Davies, M.; Biddulph, P.; Oikonomou, E. Building characteristics as determinants of propensity to high indoor summer temperatures in London dwellings. Build. Environ. 2012, 55, 117–130. [Google Scholar] [CrossRef] [Green Version]
- Porritt, S.; Cropper, P.; Shao, L.; Goodier, C. Ranking of interventions to reduce dwelling overheating during heat waves. Energy Build. 2012, 55, 16–27. [Google Scholar] [CrossRef]
- Beizaee, A.; Lomas, K.; Firth, S. National survey of summertime temperatures and overheating risk in English homes. Build. Environ. 2013, 65, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Lomas, K.J.; Kane, T. Summertime temperatures and thermal comfort in UK homes. Build. Res. Inf. 2013, 41, 259–280. [Google Scholar] [CrossRef] [Green Version]
- Mavrogianni, A.; Davies, M.; Taylor, J.; Chalabi, Z.; Biddulph, P.; Oikonomou, E.; Das, P.; Jones, B. The impact of occupancy patterns, occupant-controlled ventilation and shading on indoor overheating risk in domestic environments. Build. Environ. 2014, 78, 183–198. [Google Scholar] [CrossRef]
- Taylor, J.; Davies, M.; Mavrogianni, A.; Chalabi, Z.; Biddulph, P.; Oikonomou, E.; Das, P.; Jones, B. The relative importance of input weather data for indoor overheating risk assessment in dwellings. Build. Environ. 2014, 76, 81–91. [Google Scholar] [CrossRef]
- van Hooff, T.; Blocken, B.; Hensen, J.; Timmermans, H. On the predicted effectiveness of climate adaptation measures for residential buildings. Build. Environ. 2014, 82, 300–316. [Google Scholar] [CrossRef]
- Gupta, R.; Kapsali, M. Empirical assessment of indoor air quality and overheating in low-carbon social housing dwellings in England, UK. Adv. Build. Energy Res. 2016, 10, 1–23. [Google Scholar] [CrossRef]
- Makantasi, A.-M.; Mavrogianni, A. Adaptation of London’s social housing to climate change through retrofit: A holistic evaluation approach. Adv. Build. Energy Res. 2016, 10, 99–124. [Google Scholar] [CrossRef]
- Mulville, M.; Stravoravdis, S. The impact of regulations on overheating risk in dwellings. Build. Res. Inf. 2016, 44, 520–534. [Google Scholar] [CrossRef] [Green Version]
- Fosas, D.; Coley, D.A.; Natarajan, S.; Herrera, M.; de Pando, M.F.; Ramallo-Gonzalez, A. Mitigation versus adaptation: Does insulating dwellings increase overheating risk? Build. Environ. 2018, 143, 740–759. [Google Scholar] [CrossRef]
- Los vecinos de Torre Bolueta reclaman una solución por el exceso de calor en sus pisos|El Correo, El Correo. Available online: https://www.elcorreo.com/bizkaia/vecinos-torre-bolueta-20201026204852-nt.html (accessed on 18 November 2021).
- Ramos, A.M. El Ensanche de San Sebastián, Antonio Cortázar y las referencias influyentes. Ciudad. Y Territ. Estud. Territ. 1999, XXXI, 293–305. Available online: https://recyt.fecyt.es/index.php/CyTET/article/view/85582/62447 (accessed on 2 May 2022).
- Martín-Garín, A.; Millán-García, J.A.; Hidalgo-Betanzos, J.M.; Hernández-Minguillón, R.J.; Baïri, A. Airtightness Analysis of the Built Heritage–Field Measurements of Nineteenth Century Buildings through Blower Door Tests. Energies 2020, 13, 6727. [Google Scholar] [CrossRef]
- Meiss, A.; Feijó-Muñoz, J.; Padilla-Marcos, M.A. Evaluación, diseño y propuestas de sistemas de ventilación en la rehabilitación de edificios residenciales españoles. Estudio de caso. Inf. De La Construcción 2016, 68, e148. [Google Scholar] [CrossRef] [Green Version]
- Mapa de ruido de Donostia-San Sebastián 2017—Medio Ambiente—Ataria. Available online: https://www.donostia.eus/ataria/es/web/ingurumena/ruido/mapa-de-ruido (accessed on 19 December 2021).
- Mapa Estratégico de Ruido 2017—Bilbao. Available online: https://www.bilbao.eus/cs/Satellite?cid=1279175993929&language=es&pagename=Bilbaonet%2FPage%2FBIO_contenidoFinal (accessed on 19 December 2021).
- Lomas, K.J.; Porritt, S.M. Overheating in buildings: Lessons from research. Build. Res. Inf. 2017, 45, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Passive House Institute. Criterios para los Estándares Casa Pasiva, EnerPHit y PHI Edificio de baja demanda energética; Darmstad, Germany, 2016; Available online: https://passipedia.org/_media/picopen/9f_160815_phi_criterios_edificios_es.pdf (accessed on 18 June 2022).
- Chartered Institution of Building Services Engineers. TM59 Design Methodology for the Assessment of Overheating Risk in Homes; Chartered Institution of Building Services Engineers: London, UK, 2017. [Google Scholar]
- ISO 7730:2005; Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria. International Organization for Standardization: Geneva, Switzerland, 2005.
- EN 16798-1:2019; Energy Performance of Buildings—Ventilation for Buildings—Part 1: Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics. 2019. Available online: https://standards.iteh.ai/catalog/standards/cen/b4f68755-2204-4796-854a-56643dfcfe89/en-16798-1-2019 (accessed on 2 May 2022).
- Chartered Institution of Building Services Engineers. TM52 The Limits of Thermal Comfort: Avoiding Overheating in European Buildings; Chartered Institution of Building Services Engineers: London, UK, 2013. [Google Scholar]
- Descargas DesignBuilder—Aurea Consulting—DesignBuilder España. Available online: https://ecoeficiente.es/descargas-designbuilder/#toggle-id-6 (accessed on 19 December 2021).
- TMYx Weather Files for WMO Region 6—Europe. Available online: https://climate.onebuilding.org/WMO_Region_6_Europe/default.html (accessed on 19 December 2021).
- ISO-ISO 15927-4:2005; Hygrothermal Performance of buildings—Calculation and Presentation of Climatic Data—Part 4: Hourly Data for Assessing the Annual Energy Use for Heating and Cooling. International Organization for Standardization: Geneva, Switzerland. Available online: https://www.iso.org/standard/41371.html (accessed on 19 December 2021).
- Ucar, J.; Iglesias, G.C.; Gamboa, M.L. Manual de diseño bioclimático: (referido a la Comunidad Autónoma del País Vasco); Ente Vasco de la Energía (EVE): Bilbao, Spain, 1990. [Google Scholar]
- Gutierrez, L.; Mendizabal, M. Mapa Térmico de la ciudad de Donostia—San Sebastián. Available online: https://www.donostia.eus/ataria/documents/8023875/0/DSSmapatermico_entregable_vdef+%281%29.pdf/a905bd6b-6615-96e3-1c3c-09d66e906457 (accessed on 19 December 2021).
Certification Criteria (Residential) | Cool-Moderate Climate | |
---|---|---|
Specific Heating Demand | ≤15 kWh/(m2 a) | |
(or) Specific Heating Load | ≤10 W/m2 | |
Specific Total Primary Energy Demand | ≤120 kWh/(m2 a) | |
n50 Airtightness at 50 Pa | ≤0.6 h−1 | |
Overheating Frequency | ≤10% Operative Temperature ≥ 25 °C |
Flat | YoC 1 | Floor Area | Occupation | Orientation 2 | Glazed Area | Shading System | Cross-Vent. 3 | ||
---|---|---|---|---|---|---|---|---|---|
Prim | 1905 | 106 m2 | 4 adults/26.5 m2/pp | Two | E-W | 10.7 m2 | Shutters | Opposing fac. | |
Zarautz | 2006 | 74.9 m2 | 2 adults/37.45 m2/pp | Two | E-SW | 9.9 m2 | Ext. Blinds | Opposing | |
Bolueta | Low | 2018 | 81.8 m2 | 3 adults/27.27 m2/pp | Two | NW-SE | 10.8 m2 | Interior Roller Screens | Opposing |
Med. | 54.5 m2 | 2 adults/27.25 m2/pp | Mono | S | 4.6 m2 | No | |||
High | 68.6 m2 | 1 adult + 1 child/34.3 m2/pp | Two | E-SE | 7.7 m2 | Corner |
Flat | YoC 1 | Walls 2 | Windows | Airtightness n50 | Partitions | |||
---|---|---|---|---|---|---|---|---|
Ufaçade | Ucourtyard | Uframe | Uglass | g | ||||
Prim | 1905 | 1.7–2.0 3 | 1.3–1.9 3 | N.A. | N.A. | N.A. | 9–18.3 h−1 [77] | Clay Brick |
Zarautz 4 | 2006 | 0.52 | 0.57 | 3.90 | 3.00 | N.A. | 6 h−1 | Lightweight |
Bolueta 5 | 2018 | 0.22 | Does Not Apply | 1.1 | 0.55 | 0.57 | 0.3 h−1 | Lightweight |
Case Study | Room | Reported Monitoring Period | |
---|---|---|---|
Prim | Living Room | 16 July–31 October | |
Bedroom 1 | |||
Bedroom 2 | |||
Exterior | |||
Zarautz | Living Room | 1 April–31 October | |
Exterior | |||
Bolueta | Low | Living Room | 1 April–31 October |
Bedroom | 16 July–31 October | ||
Medium | Living Room | 1 April–31 October | |
High | Living Room | 1 April–31 October |
Standard | Overheating Criteria |
---|---|
Passivhaus Institut [82] | Limits number of hours T > 25 °C. Max. hours where T < 25 °C: 10%, recommends < 5%. |
Number of hours T > 25 °C:
| |
CIBSE Guide A [83] | Tmax is 25 °C for living rooms and 23 °C for bedrooms. Overheating when T > 28 °C during 1% of year for living rooms and T > 26 °C during 1% of the year for bedrooms. |
ISO 7730 [84] | Predominantly mechanically ventilated buildings RHmin = 40% and maximum RHmax = 60%:
|
EN 16798-1 [85] | Predominantly naturally ventilated buildings
When the upper temperature limits according to the categories cannot be guaranteed by passive means, mechanical cooling is unavoidable. |
CIBSE TM:52 [86] | Predominantly naturally ventilated buildings
|
CIBSE TM:59 [83] | Predominantly naturally ventilated buildings (a)Living rooms, kitchens and bedrooms: The number of hours during which ∆T is greater than or equal to a 1 K during the period from May to September will not be more than 3% of occupied hours (CIBSE Criteria TM:52 1: Hours of He Exceedance). (b) Bedrooms only: To ensure comfort during sleeping hours, the operating temperature in the bedroom from 10 p.m. to 7 a.m. should not exceed 26 °C for more than 1% of the annual hours (32 h). Predominantly mechanically ventilated Living rooms, kitchens and bedrooms: Annual hours ∆T > 1 K less than 3% of occupied hours. |
Case Study | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | |
---|---|---|---|---|---|---|---|---|
Prim | 24.7 1 | 24.8 | 23.1 | 21.0 | ||||
Zarautz | 21.0 | 22.4 | 23.4 | 24.7 | 25.6 | 24.5 | 20.58 | |
Bolueta | Low | 23.1 | 23.4 | 23.6 | 25.2 | 25.4 | 23.4 | 22.4 |
Medium | 24.3 | 23.4 | 23.6 | 24.4 | 25.2 | 24.3 | 23.7 | |
High | 23.4 | 25.5 | 26.2 | 27.2 | 27.9 | 26.8 | 23.3 2 |
Case Study | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | |
---|---|---|---|---|---|---|---|---|
Prim | 6 % 1 | 66% | 62% | 59% | ||||
Zarautz | 59% | 63% | 64% | 66% | 66% | 62% | 61% | |
Bolueta | Low | 48% | 53% | 55% | 57% | 59% | 58% | 54% |
Medium | 44% | 54% | 55% | 58% | 56% | 53% | 48% | |
High | 47% | 48% | 49% | 51% | 52% | 47% | 49% 2 |
Case Study | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | |
---|---|---|---|---|---|---|---|---|
Prim | 105 1 | 300 | 77 | 0 | ||||
Zarautz | 0 | 1 | 38 | 261 | 594 | 256 | 0 | |
Bolueta | Low | 8 | 96 | 101 | 449 | 511 | 116 | 1 |
Medium | 79 | 127 | 86 | 259 | 453 | 309 | 38 | |
High | 16 | 507 | 656 | 744 | 739 | 680 | 2 2 |
Case Study | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | |
---|---|---|---|---|---|---|---|---|
Prim | 0 1 | 2 | 0 | 0 | ||||
Zarautz | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
Bolueta | Low | 0 | 0 | 0 | 5 | 4 | 0 | 0 |
Medium | 0 | 0 | 0 | 0 | 3 | 2 | 0 | |
High | x | 0 | 10 | 97 | 242 | 69 | 0 2 |
Case Study | April | May | June | July | August | September | October | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. | ||
Prim 1 | 23.1 | 27.9 | 20.6 | 28.8 | 19.9 | 26.2 | 18.4 | 23.4 | |||||||
Zarautz | 17.3 | 23.5 | 20.1 | 25.4 | 20.5 | 25.7 | 21.5 | 26.6 | 21.5 | 27.5 | 21.2 | 26.9 | 18.0 | 22.8 | |
Bolueta | Low | 20.9 | 26.2 | 19.7 | 26.6 | 20.2 | 26.7 | 20.3° | 28.2 | 20.1 | 28.7 | 18.9 | 28.0 | 19.8 | 25.2 |
Medium | 20.5 | 27.9 | 17.5 | 27.4 | 17.9 | 27.1 | 20.0 | 27.4 | 18.9 | 28.3 | 17.5 | 28.6 | 17.1 | 26.7 | |
High 2 | 19.8 | 25.4 | 23.4 | 27.8 | 24.4 | 28.4 | 25.4 | 29.1 | 24.0 | 29.3 | 22.7 | 29.0 | 21.1 | 25.3 |
Case Study | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | |
---|---|---|---|---|---|---|---|---|
Prim | Living R. | 11 1 | 21 | 0 | 0 | |||
Bedroom 1 | 24 1 | 111 | 33 | 0 | ||||
Bedroom 2 | 13 1 | 51 | 16 | 0 | ||||
Zarautz (Living Room) | 0 | 0 | 0 | 2 | 49 | 26 | 0 | |
Bolueta | Low | 0 | 0 | 0 | 106 | 71 | 5 | 0 |
Low-Bedr. | 8 2 | 73 | 19 2 | |||||
Medium | 0 | 0 | 0 | 6 | 64 | 20 | 0 | |
High | 0 | 61 | 120 | 264 | 279 | 268 | 18 3 |
Case Study | Apr. | May | Jun. | Jul. | Aug. | Sep. | Oct. | |
---|---|---|---|---|---|---|---|---|
Prim—Bedroom 1 1 | 645 2 | 503 | 540 | 726 | ||||
Prim—Bedroom 2 1 | 493 2 | 402 | 599 | 751 | ||||
Zarautz | 595 | 581 | 523 | 543 | 520 | 551 | 582 | |
Bolueta | Low | 566 | 552 | 509 | 552 | 578 3 | ||
Medium | 573 | 559 | 511 | 470 | 473 | 481 | 581 | |
High | 581 | 596 | 606 | 574 | 601 | 598 | 586 4 |
Case Study | Prim 1 | Zarautz | Bolueta Low | Bolueta Medium | Bolueta High |
---|---|---|---|---|---|
Passivhaus Institut | 6.02% | 13.13% | 14.63% | 15.34% | 38.17% |
“Acceptable” 2 | “Poor” | “Poor” | “Catastrophic” | “Catastrophic” | |
CIBSE TM:52 (Cat.II) 3 | |||||
Criterion 1 | Pass | Pass | Pass | Pass | Pass |
Criterion 2 | Fail | Pass | Pass | Fail | Fail |
Criterion 3 | Pass | Pass | Pass | Pass | Pass |
CIBSE TM:59 (Cat.II) 3 | Predominantly Naturally Ventilated | ||||
Criterion 1 | Pass | Pass | Pass | Pass | Pass |
Criterion 2 | Fail | Fail | Fail | Fail | Fail |
CIBSE TM:59 (Cat.II) 3 | Predominantly Mechanically Ventilated | ||||
Criterion 1 | Does Not Apply | Does Not Apply | Fail | Fail | Fail |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otaegi, J.; Hernández, R.J.; Oregi, X.; Martín-Garín, A.; Rodríguez-Vidal, I. Comparative Analysis of the Effect of the Evolution of Energy Saving Regulations on the Indoor Summer Comfort of Five Homes on the Coast of the Basque Country. Buildings 2022, 12, 1047. https://doi.org/10.3390/buildings12071047
Otaegi J, Hernández RJ, Oregi X, Martín-Garín A, Rodríguez-Vidal I. Comparative Analysis of the Effect of the Evolution of Energy Saving Regulations on the Indoor Summer Comfort of Five Homes on the Coast of the Basque Country. Buildings. 2022; 12(7):1047. https://doi.org/10.3390/buildings12071047
Chicago/Turabian StyleOtaegi, Jorge, Rufino J. Hernández, Xabat Oregi, Alexander Martín-Garín, and Iñigo Rodríguez-Vidal. 2022. "Comparative Analysis of the Effect of the Evolution of Energy Saving Regulations on the Indoor Summer Comfort of Five Homes on the Coast of the Basque Country" Buildings 12, no. 7: 1047. https://doi.org/10.3390/buildings12071047
APA StyleOtaegi, J., Hernández, R. J., Oregi, X., Martín-Garín, A., & Rodríguez-Vidal, I. (2022). Comparative Analysis of the Effect of the Evolution of Energy Saving Regulations on the Indoor Summer Comfort of Five Homes on the Coast of the Basque Country. Buildings, 12(7), 1047. https://doi.org/10.3390/buildings12071047