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Abstract: A great abundance of rural houses lacking design guidance exists in the cold regions of
China, often accompanied by huge energy loss. Particularly, a courtyard-style dwelling (CSD) has
more complex and diverse building elements than a common house, rendering the design opti-
mization extremely costly. Sensitivity analysis (SA) can screen the significant parameters of energy
consumption for prediction and optimization. In this paper, (1) the design variables related to CSDs
and their data details were extracted; (2) a ranking of parameters sensitive to energy demand was for-
mulated; (3) an energy prediction model was trained and (4) dual-objective optimization was carried
out. Using the survey data from 150 units in nine villages, 25 control variables were extracted for se-
quential global sensitivity analysis (GSA). Thus, the ranking of sensitivity parameters was formulated
with the two-stage-and-three-sort GSA method. Furthermore, an energy prediction model was then
trained with Gaussian Process Regression (GPR) and compared with the other four high-precision
models. Based on the obtained prediction model, optimization was then carried out on energy and
economic concerns. Consequently, a GSA-based workflow for CSD optimization was proposed to
help architectural designers figure out the most efficient energy-saving parameter strategy.

Keywords: global sensitivity analysis; courtyard-style dwelling; energy demand; prediction model;
optimization

1. Introduction

Building performance analysis (BPA) is a powerful tool that integrates different design
and operation factors into a comprehensive assessment of buildings [1]. Although complete
coverage of various input parameters can improve the accuracy and robustness, it is
unacceptable for complex models. Sensitivity analysis (SA) is a feasible solution to this
problem since it is a science that focuses on how to allocate the uncertainty of outputs to
each of the inputs [2].

SA methods can be classified into two main categories: local sensitivity analysis (LSA)
and global sensitivity analysis (GSA). LSA is a one-parameter-at-a-time (OAT) method,
which usually entails evaluating the significance of input parameters by calculating the
derivatives at specific points [3] or averaging the derivatives at several points [4]. LSA is
not appropriate for dependent input parameters and nonlinear or non-additive models [5].
Moreover, its results rely highly on the central values of the parameters and cannot be used
to estimate the uncertainty of the model output [6].

Distinct from LSA, GSA allows for a more comprehensive exploration into the effects
of input parameters on output results, and therefore, an increasing preference for GSA is
emerging to identify the sensitive variables of the building energy model (BEM) [7,8]. GSA
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methods can be divided into four primary categories: screening-based [9–11], regression-
based [12–14], variance-based [15,16], and metamodel-based [17–19].

As an advanced version of LSA, the screening-based method filters out factors from a
vast quantity of parameters based on no reduction in output variance. Distinct from the
OAT concept of LSA, the global screening method directly alters another input argument
x2 after the first argument x1 changes, that is, all the inputs are changed in a single iteration,
which is also known as the Morris method. This method has been broadly used for BPA
due to its high efficiency. Heiselberg et al. [20] used the Morris method to present the
dominant design parameters for heating energy consumption, taking an office building
in Denmark as an example. Maučec et al. [21] employed the Morris method to derive
the overall U-value of windows, solar heat gain coefficient (SHGC), and heating setpoint
temperature as the most sensitive parameters affecting the energy loads, which provides
design guidelines for wood-frame buildings in various climatic conditions.

Most commonly used in BPA are the regression-based methods, including Standard
Regression Coefficients (SRC), Partial Correlation Coefficients (PCC), Standardized Rank
Regression Coefficients (SRRC), and Partial Rank Correlation Coefficients (PRCC). SRC
calculates the regression equations using normalized data. PCC is the correlation coefficient
between two variables when the effects of other variables are eliminated. SRRC and
PRCC are the rank transformations of SRC and PCC, respectively, which can be employed
in nonlinear monotonic functions. The various regression-based methods differ in the
correlation requirements of the inputs. Tian and de Wilde [22] adopted SRC and ACOSSO
to explore the uncertainty and sensitivity in predicting the building thermal performance
under climate change, by taking a school building in the UK as an example. Yildiz and
Arsan [23] performed the GSA and uncertainty analysis (UA) of an existing apartment
building in Izmir, Turkey, using the SRRC with the Latin Hypercube Sampling technique.

To quantify the sensitivity more precisely, a variance-based approach is proposed,
which decomposes the output variance into the effects of individual and combined pa-
rameters. Thus, it can quantify the independent input effects on the output as well as the
joint effects between the inputs. The most popular variance-based methods are Sobol and
FAST. The Sobol method assesses the parameter sensitivity by evaluating the contribution
of single and multiple parameters to the output variance. It is considered a non-model
approach and applies to various linear or non-linear models, provided that the inputs
are mutually independent. FAST focuses on calculating the contribution of individual
arguments to the output variance, which is widely applicable but cannot take into account
the interactions between inputs. The variance-based method is extensively applied in BPA
due to its quantifiability and reliability, even though it demands a massive computing
process. Spitz et al. [24] used the Sobol method with 6669 simulations to identify influential
parameters in building energy performance and to determine the influence of parame-
ter uncertainty on the building performance based on an experimental house in France.
Shen and Tzempelikos [25] applied an expanded FAST method to a private office space
in Philadelphia, USA, taking seven parameters including window-to-floor ratio, shading
transmittance, shading front and back reflectance, spatial aspect ratio, thermal insulation,
and glass type to find the significant factors affecting daily illumination, lighting power
consumption, as well as heating and cooling demand of the building.

Further, the metamodel-based method can be regarded as developing to address the
drawbacks of the variance-based method with high computational expense. The basic idea
is to calculate sensitivity measures with nonparametric regression models before perform-
ing variance-based SA, thus providing more efficient sensitivity indices. The frequently
used metamodels include Random Forest, Neural Networks, Treed Gaussian Process, Mul-
tivariate Adaptive Regression Splines, Support Vector Regression, etc. Although such
method can effectively reduce the execution time of the model, it also results in the validity
domain and the applicability depending heavily on the training data [26]. Owing to the
advances in computing technology, this method maintains its full vitality and potential in
the field of BPA. Pang and O’Neill [27] conducted an uncertainty and sensitivity analysis on
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the usage behavior of hotel domestic hot water as well as its key influencing factors using
a Bayesian Network-based Sobol method. Østergård et al. [28] compared the accuracy,
efficiency, ease-of-use, robustness, and interpretability of the six prevalent metamodeling
techniques based on five metrics of building performance and eight test problems to find
suitable metamodeling techniques for different outputs of BPA.

A comparative review of the features of the dominant GSA methods is presented
in Figure 1, where the metamodel-based method is excluded since the variance-based
method remains in use, bringing them in line with each other except for the lower compu-
tational expense and more efficient sensitivity indices [29]. Yet, although the GSA method
has been well established in the BPA field, it is rare to find its application in the huge
stock of courtyard-style dwellings (CSDs) in China. These differ significantly from urban
buildings in various aspects such as building form, layout, occupancy patterns, thermal
requirements, etc. Tabadkani et al. [30] employed a brute-force approach to conducting
a parametric analysis of courtyard design variants in residential buildings for different
climates to assess the occupant thermal comfort, energy loads, and costs in air-conditioned
residential buildings. Furthermore, highly accurate deep learning models were constructed
to provide superior forecasting skills for courtyard design thermal comfort and utility costs.
Soflaei et al. [31] performed a library and field research study to compare the socio-
environmental sustainability of traditional courtyards in Iran and China. They derived a
series of socio-environmental design concepts which they suggested for application to all
scenarios with similar climatic circumstances. However, the research on the huge energy
consumption of traditional rural dwellings in China is still dominated by orthogonal exper-
iments and LSA [32,33]. Worse still, the adoption of a single SA method tends to deviate the
results, while a multi-category and multi-stage SA method can strengthen the robustness
of the conclusions. Therefore, in this paper, a two-stage with three-method sequential SA
was carried out for Chinese traditional CSDs to identify the globally significant factors
regarding building energy demand. More specifically, a balance between efficiency and
accuracy was achieved by first pre-screening a wide range of design parameters with the
highly efficient Morris and the SRRC, followed by the second stage of SA on the previous
screened results using the even more detailed variance-based Sobol method. This is the first
time within our limited horizon that sequential GSA embedded in three methods has been
used to obtain robust conclusions for CSDs and applied to design optimization studies.
The key procedures of this research are as follows:

• Extract 25 design variables from CSDs in cold regions of China and their data details
by field research

• Conduct a sequential SA to recognize and inspect energy-influential design variables
• Set up a reliable prediction model on the energy demand of CSDs
• Obtain and inspect the energy-economy-optimal solutions of CSD key parameters
• Propose a set of GSA-based workflow for CSD design optimization.
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The paper is organized in the following way: Section 2 presents the sequential SA
method with BPA and the route of the whole study. Section 3 describes the data details of
the extracted important variables and the established parametric BEM. In Section 4, the
findings of the two-stage GSA are compared and discussed in detail. In Section 5, based on
the reliable energy prediction model, dual-objective optimization solutions are successively
obtained. Finally, the principal research findings, limitations, and recommendations for
future work are summarized.

2. Methodology
2.1. SA Method with BPA

The benefit of the SA method with BPA lies in that it is based on the Monte Carlo
method to generate pseudo-random values and sample point sets from joint probability
distributions, which can substantially conserve the resource consumption of the simulations
while ensuring that the outcomes do not have significant bias occurring. To achieve this
goal, this paper establishes a link between Simlab and Grasshopper platform, through
Honeybee & Ladybug and TT Toolbox to enable the traversal calculation of samples, with
all inputs and outputs automatically integrated into Excel and then read by Simlab to
complete the GSA. The whole process of the research is shown in Figure 2.
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2.1.1. Step 1: Define Inputs and Combine Sampling

The first step, always the most critical one, tends to have the greatest impact on the
final results. To begin with, the details of the design variables, derived from the literature
review and field research, were specified in Simlab as in Section 3.1 (containing the data
type, interval length, upper and lower thresholds, and distribution type). Then, the type
and size of sampling were determined by various SA methods as shown in Table 1, thus
completing the sampling of the input arguments. Eventually, the sampled N sets of data
were stored in Excel.

Table 1. The sampling type and scale specified by different SA methods in different stages.

SA Method Sampling Type Sampling Size Calculation Method
(K as Custom Factor)

SRRC Latin Hypercube Sampling 250 (K = 10) K · N, K ≥ 10 [34]
Morris Morris Sampling 216 (K = 8) K · (N + 1), K = 4, 6, 8 . . . .

Sobol Sobol Sampling 3328 for cooling (>2600 when K = 100)
3328 for heating (>3000 when K = 100) K · (2N + 2), K = 100, 200, 500 . . . . [35]

2.1.2. Step 2: Construct Parametric BEM

To conduct an SA, a tunable parametric model is essential. Rhino & Grasshopper were
employed to create a prototype CSD following the field research (as Section 3.1). On this
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basis, Ladybug & Honeybee were called to set up an energy simulation program to convert
the geometric model into a BEM that has thermal properties.

2.1.3. Step 3: Read and Store Data Automatically

GSA requires a substantial volume of samples that would be virtually infeasible to
manipulate manually. To automate the data reading and storage, TT Toolbox was called
to access Excel, which could read the N sets of the sample data stored in Step 1 and could
assign the variables of each set of the sample data to the BEM. The greatest feature of TT
Toolbox is the ability to automatically traverse N sets of input arguments, enabling the BEM
to perform N calculations. The TT Toolbox then wrote the N sets of inputs and outputs
to Excel.

2.1.4. Step 4: Run SA Program

The data stored in Excel were imported into Simlab to identify the sensitivity of cooling
and heating demands to each design variable. The option of SA methods is also critical, a
wide range of which is provided in Simlab, such as SRC, PCC, SRRC, PRCC, Morris, Sobol,
FAST, etc.

2.2. Sequential SA Method

Since different SA methods have different characteristics, adopting multi-sort and
multi-stage SA methods provides the benefits of (1) mutual validation to prevent single-
method unreliability, (2) a comprehensive conclusion drawn by complementary methods,
and (3) balanced accuracy and efficiency. The hybrid SA method requires that the proper
methods be specified in a reasonable order. Thus, a two-stage SA was performed to provide
more robust conclusions.

2.2.1. Stage 1: Morris and SRRC

In the initial stage, Morris and SRRC were used to preselect the relatively significant
ones from a vast set of variables, thereby fixing or eliminating the minor ones. These
two methods both have their own strengths in SA. Morris offers high operational efficiency
and the ability to account for the interactions between input variables; SRRC is similarly
computationally small and applicable to the nonlinear monotonic functions between inputs
and outputs. However, neither can exactly quantify the variance of the output for various
input elements, and the aim of the pairing is to synthesize and identify which input variables
have a major impact on the output uncertainty of the high-dimensional models. Morris has
two evaluation indicators: µ is used to assess the primary effect of the input on the output,
while σ can be employed to determine the interaction of the parameters with nonlinear
response. The primary computational process of Morris can be expressed as [5,20,34]:

EEi =
y(x + ei∆i)− y(x)

∆i
, (1)

µi =
1
r

r

∑
i=1

EEi, (2)

σi =

√
1

(r − 1) ∑r
i=1(EEi − µi), (3)

where EEi represents the elementary effect to determine the effect of input variations on
outputs; y(x) and y(x + ei∆i) represent the model outputs before and after input variations,
respectively; ei is zero vector; ∆i is variation value of xi; µi and σi are mean value and
standard deviation, respectively.

Regression-based methods have numerous types, all of which establish the correlation
between inputs and outputs by modeling the mathematical expressions, but with different
application conditions. Therefore, the correlation of the independent variables and the
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monotonic nonlinearity of the model need to be determined well in advance before it starts
formally working. SRRC was employed in this paper, with its pre-processing discussed in
more detail in Section 4.1.

2.2.2. Stage 2: Sobol Indices

In the second stage, the effect of the inputs on the outputs was quantitatively evaluated
using the even more robust Sobol, which not only quantifies the output variances due
to each of the inputs, but also takes into account the interactions between the variables.
Nevertheless, it requires mutually independent inputs and a high sample size to ensure
model convergence, dramatically increasing the computational effort. That is the key
benefit of setting Stage 1. The Sobol results consist of the first-order effect and total effect
indices of the variables. The variance-based SA are premised on decomposing a square
integrable mathematical function into [35,36]:

Y(x) = Y0 +
k

∑
i

Yi(xi) +
k

∑
i<j

Yij
(
xi, xj

)
+ · · ·+ Y12...k(x1, x2 . . . xk), (4)

where Y0 is a constant; xi represents an input.
The total model variance V(Y) can be decomposed into the variance generated by the

independent action and the joint effect of parameters [37]:

V(Y) = ∑
i

Vi + ∑
i<j

Vij + · · ·+ V12...k, (5)

where Vi denotes the effect of the i th input to the output; Vij and V12...k are the effect of the
interactions between two inputs and k inputs on the output.

Thus, the first-order effect that reflects the contribution of xi to the total variance of
Y can be expressed as Si, which is an estimate of the expected variance fraction in the
model output [37]:

Si =
Vi

V(Y)
, (6)

For both sides of Equation (5) divide simultaneously by V(Y) to be able to find ∑
i

Si ≤ 1,

where ∑
i

Si = 1 for linear and additive models:

1 = ∑
i

Si + ∑
i<j

Sij + · · ·+ S12...k, (7)

Further, the total effect indices STi can be calculated as [38]:

STi = Si + Sij + S12...k = 1 − V∼i
V(Y)

, (8)

3. Case Study
3.1. Control Variables and Parameters

Rural and urban housing share distinctly different patterns in terms of both design
and use. Consequently, the design lessons of urban buildings cannot be transferred to
rural ones. From nine villages in the cold IIB region of China, 150 units were studied in
the field to bring the findings as close to practice as possible. Details on this work can be
found in Appendix A. By field research and literature review [31,39–41], 25 variables were
identified for SA, where No. 1–13 refer to the spatial parameters while No. 14–25 refer to
the envelope parameters. All variables were set as uniformly distributed continuous data.
The abbreviated names, intervals, and reference values of each variable follow in Table 2.
The reference value comes close to the mean of the actual measured parameters of CSDs.
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Table 2. Extracted design variables and their details.

# Variable Abbr. Interval Ref.
Value Unit

1 EastWingSpacing EWS [1.00, 4.00] 2.50 m
2 WestWingSpacing WWS [1.00, 4.00] 2.50 m
3 EastWingWide EWW [0.00, 4.50] 3.60 m
4 WestWingWide WWW [0.00, 4.50] 3.60 m
5 EastWingHeight EWH [2.80, 4.00] 3.00 m
6 WestWingHeight WWH [2.80, 4.00] 3.00 m
7 CourtyardWallHeight CWH [2.80, 4.00] 3.00 m
8 Orientation ORT [−45.00, 45.00] 0.00 deg
9 FloorHeight FLH [2.80, 4.00] 3.80 m
10 ShadingRatio SDR [0.20, 1.20] 0.80 /
11 Width WDH [11.00, 17.00] 12.60 m
12 Length LGH [4.50, 7.50] 7.00 m
13 RoofSlope RFS [15.00, 45.00] 30.00 deg
14 EastWindowWallRatio EWWR [0.00, 0.30] 0.15 /
15 SouthWindowWallRatio SWWR [0.20, 0.50] 0.40 /
16 WestWindowWallRatio WWWR [0.00, 0.30] 0.15 /
17 NorthWindowWallRatio NWWR [0.00, 0.30] 0.10 /
18 SolarHeatGainCoefficient SHGC [0.20, 0.50] 0.35 /
19 U-valueofWindows UWD [1.20, 5.00] 4.00 W/m2K
20 U-valueofExteriorWall UEW [0.20, 2.00] 1.50 W/m2K
21 U-valueofRoof URF [0.20, 1.70] 1.50 W/m2K
22 U-valueofGround UGD [0.40, 3.40] 3.00 W/m2K
23 AirTightness ATN [0.17, 1.00] 0.50 h−1

24 RoofSolarAbsorptionRate RSAR [0.10, 0.90] 0.48 /
25 ExteriorWallSolarAbsorptionRate WSAR [0.10, 0.90] 0.48 /

3.2. Parametric BEM

Single-story CSDs of L-shaped and U-shaped layouts were designated for the research,
which could be interchanged by adapting the dimensions of the wings. The BEM built
with Rhino & Grasshopper was used to estimate the annual heating and cooling demands,
with heating and cooling setpoints at 15 ◦C and 26 ◦C, respectively. The occupant density
was 0.1 person/m2, and the occupancy rate as indicated in Figure 3. The lighting power
density was set to 4.0 W/m2 which remained on between 6:00–8:00 and 18:00–22:00. Other
less-used devices dissipating heat were neglected. The calculated U-values of the interior
walls and ceilings were 1.72 W/m2K and 1.62 W/m2K, respectively. The U-values of the
interior walls and ceilings, roughly calculated by layers and material properties, were
1.72 W/m2K and 1.62 W/m2K, respectively.
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4. Results and Discussion
4.1. Parameters Screening by SRRC & Morris

The parameter correlation and model nonlinearity always dictate the selection of SA
methods, especially the regression-based method. Therefore, the monotonicity of the model
needs to be determined first to ascertain the validity of the method. A parametric sweep
of 25 variables using the OAT approach yields the fluctuation trend of energy demand as
shown in Figure 4. Definitively, the outputs maintained monotonically vary to different
inputs, without extreme points within the interval, which could provide the basis for the
subsequent SA method selection.
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The correlations between the inputs, as shown in Figure 5, were identified with the
Pearson correlation coefficient. The entire graph was shaded extremely faintly, indicating
that the variables had very weak mutual correlations. The elliptical direction of the upper
triangle indicated the positive and negative correlations between the variables, and the
bottom triangle gave the precise values. The overwhelming majority of the variables had
correlation coefficients with absolute values less than 0.1, while a small minority were also
below 0.2. It suggested that the variables were so weakly correlated that they could be
regarded as uncorrelated. Thus, for the regression-based method, SRC and SRRC could be
initially identified as the applicable SA methods for this study. For further examination of
the approach validity, whether the model was linear or not was then discussed, and a linear
regression study of 25 variables versus annual cooling and heating demands was conducted.
It was evident that the linear correlation of annual energy demand with variables was less
robust (R2 = 0.51 for cooling demand; R2 = 0.62 for heating demand), that is, only 51% of the
cooling demand data and 62% of the heating demand data could be linearly explained with
the inputs. Furthermore, the p-values of cooling and heating demands were 4.89 × 10−25

and 2.19 × 10−44, respectively, which were both far below 0.001. Therefore, a significant
nonlinear correlation could be concluded between the inputs and outputs. To sum up,
SRRC and Morris were used as the mutually complementary SA methods at the first stage
to screen the significance parameters rationally.
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With regard to cooling demand, Figure 6 shows the sensitivity rankings of the variables
presented by Morris and SRRC. Surprisingly, the two SA methods exhibited fairly consistent
results on this issue. From the 25 parameters, the top 12 highly sensitive parameters were
sorted out and used as the inputs for the subsequent SA rounds, namely RSAR, ATN,
FLH, WSAR, SHGC, UEW, LGH, NWWR, WWWR, EWWR, SDR, WDH. Despite that, the
rankings of the 12 parameters still differed slightly between the two methods. First, the
shading ratio was the most sensitive variable in terms of the spatial parameters, except for
the width, the depth, and the floor height. It was once speculated that the presence of wings
and fences in courtyard houses might interfere with the solar absorption of the principal
building and thus the energy demand. However, apparently, the dimensional parameters
concerning the courtyard fences and the wings, inclusive of the spacing between the wings
and the principal building, were identified as secondary parameters ranked in the bottom
ten. The phenomenon most likely arose because these variables even when taken to the
boundary values, still could not shade the principal building: in fact, the heights of the
wings and fences were less than the floor heights of the principal building and the wings
had a distance of 1 m closest to the principal building. Then it also suggested that in certain
higher latitudes, the sensitivity rankings of these parameters might shift forward. The
impact of south-side window-to-wall ratio was less significant than that of the north-side
one due to the sun-shading effect, while the highest influential factor was found on the
east–west side. Second, in terms of envelope parameters, the U-value ranked high as
expected, but only for those of exterior walls, while those of other parts such as exterior
windows, roofs, and floors showed only limited significance. Compared to the U-value,
the radiation properties of the envelope had a more significant effect on cooling demand.
The solar absorptivity of roofs and façades as well as SHGC ranked in the top five by
both methods. The impact of envelope parameters on cooling demand tended to be more
significant than that of spatial ones, owing to the pronounced role of solar heat gain on
building cooling.

Several of the previous patterns were retained for the heating demand, but there
were a few differences. Figure 7 shows the sensitivity ranking of the variables for the
heating energy consumption presented by Morris and SRRC. Both methods consistently
identified 14 highly sensitive parameters, which, as expected, still had slightly different
rankings. The inputs screened for the second SA round consisted of UEW, UWD, ATN,
FLH, LGH, URF, SHGC, WDH, WSAR, SDR, NWWR, SWWR, RSAR, RFS. Roof slope was
the spatial parameter that had a significant effect on the heating demand in addition to the
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four aforementioned sensitive variables. The previous situation was reversed in terms of
envelope parameters: the heat transfer coefficient became the primary significant parameter.
At this point, the heat transfer coefficients of either exterior walls, exterior windows, or roofs
exerted a strong impact on the heating demand. The reason for such a result might be that
radiation was relatively weak in winter, while the indoor–outdoor temperature difference
was much larger than that in summer, so the heat transfer driven by the temperature
difference would be even greater if the thermal resistance of the large area of the envelope
was poor. In addition, the airtightness of the building had a remarkable impact on heating
demand. Similar to the results for cooling demand, the spatial parameters had a minor
impact on energy consumption compared to the envelope ones.
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4.2. Quantitative Analysis by Sobol

From the initial SA screening, 12 and 14 significant parameters remained on cooling
and heating demands, respectively. Although both Morris and SRRC gave superior sensi-
tivity rankings for these variables in their SA results, the rankings within these variables
differed. To rectify this deficiency and to quantify the sensitivities more precisely, Sobol, a
variance-based method, was used in the second-stage SA.

Figure 8 shows the distributions of the cooling and heating demands corresponding
to the 3328 sample sets, which were attempted to be depicted as lognormal vs. normal.
The cooling demand was positively skewed, and its values were concentrated in the
interval 27.4, 45.3. At this point, the geometric mean µg was 34.9 ± 0.2 kWh/m2 rang-
ing from 21.7 kWh/m2 to 64.6 kWh/m2, which indicated the significant effect of these
12 parameters on cooling demand. Likewise, the heating demand also showed a positive
skewed distribution whose values concentrated at the interval 30.3, 87.1. At this point, the
geometric mean µg was 53.1 ± 1.2 kWh/m2 ranging from 12.2 kWh/m2 to 135.9 kWh/m2,
suggesting that the effect of these 14 parameters on the heating demand was consider-
able. Then, the normal Q-Q plot revealed that the cooling and heating demands could
meet the normal distribution. The mean values of cooling and heating demands µ were
37.1 kWh/m2 and 62.5 kWh/m2 respectively at that time, with the standard deviation σ of
6.9 and 21.1, respectively.

Buildings 2022, 12, x FOR PEER REVIEW 11 of 21 
 

 
Figure 7. Ranking of sensitivity parameters to heating demand obtained by the two methods in the 
first-stage SA: (a) SRRC; (b) Morris. 

4.2. Quantitative Analysis by Sobol 
From the initial SA screening, 12 and 14 significant parameters remained on cooling 

and heating demands, respectively. Although both Morris and SRRC gave superior sen-
sitivity rankings for these variables in their SA results, the rankings within these variables 
differed. To rectify this deficiency and to quantify the sensitivities more precisely, Sobol, 
a variance-based method, was used in the second-stage SA. 

Figure 8 shows the distributions of the cooling and heating demands corresponding to 
the 3328 sample sets, which were attempted to be depicted as lognormal vs. normal. The 
cooling demand was positively skewed, and its values were concentrated in the interval 
27.4, 45.3. At this point, the geometric mean μg was 34.9 ± 0.2 kWh/m2 ranging from 21.7 
kWh/m2 to 64.6 kWh/m2, which indicated the significant effect of these 12 parameters on 
cooling demand. Likewise, the heating demand also showed a positive skewed distribution 
whose values concentrated at the interval 30.3, 87.1. At this point, the geometric mean μg 
was 53.1 ± 1.2 kWh/m2 ranging from 12.2 kWh/m2 to 135.9 kWh/m2, suggesting that the effect 
of these 14 parameters on the heating demand was considerable. Then, the normal Q-Q plot 
revealed that the cooling and heating demands could meet the normal distribution. The 
mean values of cooling and heating demands μ were 37.1 kWh/m2 and 62.5 kWh/m2 respec-
tively at that time, with the standard deviation σ of 6.9 and 21.1, respectively. 

  
(a) 

Buildings 2022, 12, x FOR PEER REVIEW 12 of 21 
 

  
(b) 

Figure 8. Frequency distribution of cooling and heating demands and normal Q-Q plot: (a) cooling 
demand; (b) heating demand. 

Figure 9 indicates the first-order effect indices (S1) and the total effect indices (St) ob-
tained by Sobol. Among the parameters that had a significant effect on the annual cooling 
demand, those concerning the solar absorptivity of the envelope occupied three of the top 
five. The solar absorptivity of roofs and facades as well as SHGC could induce variations 
in cooling demand of 23.2%, 17.4%, and 11.7% (52.3% in total), respectively. Meanwhile, 
the airtightness, the floor height, and the heat transfer coefficient of the exterior wall were 
also parameters not to be ignored, which were capable of causing 17.4%, 16.7%, and 8.1% 
(42.2% in total) variations in cooling energy consumption independently. The sensitivity 
of the cooling demand to the solar absorptivity of the facade increased by 4% when the 
interaction of other parameters was considered. In addition, the floor height, the U-value 
of exterior walls, and the airtightness were also significantly affected by the interaction, 
while the other parameters showed little difference. Out of the significant parameters af-
fecting the annual heating demand, the U-value and airtightness of the envelope were the 
most prominent. The U-value of exterior walls and windows as well as the airtightness 
could induce 32.5%, 21.1%, and 18.1% (71.7% in total) variations in heating demand sepa-
rately. Similar to the cooling demand, the floor height had considerable sensitivity to heat-
ing demand, which acted alone to induce a 13.3% variation in heat demand. Regarding 
the parameter interaction, except for the heat transfer coefficient of the exterior windows 
and the floor height, the S1 and St of the remaining parameters were quite similar, that is, 
the variability of the parameter sensitivity due to the interaction was not considerable. 

  
(a) (b) 

Figure 9. First-order effect indices (S1) and total effect indices (St) of sensitivity parameters to energy 
demand obtained by the Sobol method in the second-stage SA: (a) cooling demand; (b) heating de-
mand. 

Figure 8. Frequency distribution of cooling and heating demands and normal Q-Q plot: (a) cooling
demand; (b) heating demand.



Buildings 2022, 12, 1132 12 of 21

Figure 9 indicates the first-order effect indices (S1) and the total effect indices (St)
obtained by Sobol. Among the parameters that had a significant effect on the annual cooling
demand, those concerning the solar absorptivity of the envelope occupied three of the top
five. The solar absorptivity of roofs and facades as well as SHGC could induce variations
in cooling demand of 23.2%, 17.4%, and 11.7% (52.3% in total), respectively. Meanwhile,
the airtightness, the floor height, and the heat transfer coefficient of the exterior wall were
also parameters not to be ignored, which were capable of causing 17.4%, 16.7%, and 8.1%
(42.2% in total) variations in cooling energy consumption independently. The sensitivity
of the cooling demand to the solar absorptivity of the facade increased by 4% when the
interaction of other parameters was considered. In addition, the floor height, the U-value of
exterior walls, and the airtightness were also significantly affected by the interaction, while
the other parameters showed little difference. Out of the significant parameters affecting
the annual heating demand, the U-value and airtightness of the envelope were the most
prominent. The U-value of exterior walls and windows as well as the airtightness could
induce 32.5%, 21.1%, and 18.1% (71.7% in total) variations in heating demand separately.
Similar to the cooling demand, the floor height had considerable sensitivity to heating
demand, which acted alone to induce a 13.3% variation in heat demand. Regarding the
parameter interaction, except for the heat transfer coefficient of the exterior windows and
the floor height, the S1 and St of the remaining parameters were quite similar, that is, the
variability of the parameter sensitivity due to the interaction was not considerable.
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The Sobol method had been proven to be the most accurate of the three methods in
previous studies [38,42]. In this study, it was also easy to find the conclusion differences
between the three methods given, as shown in Table 3. Out of the 12 significant variables
for cooling demand, the three methods consistently provided the top five parameters,
even if their rankings differed somewhat. The sensitivity ranking of the parameters was
essentially the same for SRRC compared to S1, where their maximum ranking difference
did not exceed two. Since the interaction between these 12 parameters was not very
prominent, similar findings could be found in the comparison of SRRC vs. St., while Morris
yielded a three-position difference in rankings compared to Sobol. As can be seen, although
Morris could effectively screen most of the significant parameters, its ranking of parameter
sensitivity was not yet quite robust, for which one potential solution was to expand the
sample size. Among the 14 significant variables for heating demand, the three methods
were in general agreement in determining the top six parameters in the sensitivity ranking.
For these six parameters, SRRC agreed exactly with the ranking given by Sobol, while
Morris presented the different one for ATN and FLH. For the latter eight parameters in the
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sensitivity ranking, SRRC was relatively close to the conclusion reached by S1, while Morris
fully underestimated the significant effect of SHGC on heating demand in the process. In
general, the ranking discrepancy between SRRC, Morris, S1, and St could be attributed to
two main aspects: (1) the mis-ranking of the not significant parameters might be because
their sensitivity indices were so small that the absolute differences were negligible; (2) the
ranking discrepancy between St and the others might be due to the fact that the sensitivity
indices themselves were small enough that although the interaction was not obvious, it
was sufficient to shift the sensitivity ranking of those parameters.

Table 3. The difference comparison of parameter ranking of energy demand given by various
methods in the sequential SA process.

Cooling Demand Heating Demand

Var. Morris SRRC S1 St Var. Morris SRRC S1 St

RSAR 1 1 1 1 UEW 1 1 1 1
WSAR 4 4 3 2 UWD 2 2 2 2
FLH 3 3 4 3 ATN 4 3 3 3
ATN 2 2 2 4 FLH 3 4 4 4

SHGC 5 5 5 5 LGH 5 5 5 5
UEW 8 6 6 6 URF 6 6 6 6
LGH 6 7 7 7 NWWR 9 12 11 7

EWWR 11 9 8 8 WSAR 8 9 8 8
WWWR 7 8 9 9 SHGC 11 7 7 9
NWWR 12 10 11 10 WDH 7 8 10 10
WDH 10 12 10 11 SWWR 10 14 14 11
SDR 9 11 12 12 SDR 14 11 9 12

/
RFS 12 13 12 13

RSAR 13 10 13 14

5. Energy Prediction and Optimization Study
5.1. Prediction Model Description

Building energy simulations tend to require a vast number of complex inputs, requiring
substantial effort to access and difficult to control uncertainty. SA helps the designer to
exclude a large amount of secondary information and thus obtain a highly accurate output
by the saliency parameters alone, which supports the design aspects that need to be adjusted
iteratively to optimize the building performance. Here in this section, the prediction
model of cooling and heating demands was developed based on the significant parameters
identified in the previous study. Several assumptions should be stated in advance to ensure
the model validity: (1) the experimental building form could be approximately described by
the established model as in Figure 3; (2) the parameter ranges of the experimental building
could be contained in or approximated to those of the established model; (3) the fixed
parameters in the model building, such as heating and cooling setpoints, user schedules,
etc., could describe closely the actual situation; (4) the meteorological conditions should be
consistent with or similar to those of the established model.

Gaussian Process Regression (GPR) was used to train prediction models, which were
typically appropriate for addressing nonlinearities. Since the GPR achieved prediction by
the very process of probabilistic inference, it was capable of quantifying the prediction un-
certainty in a principled way. However, the drawback of GPR was that as a non-parametric
model, its computational complexity surged with the volume of data; specifically, for N
samples, it would have a complexity of O (N3), exactly the problem solved by the previous
SA. Likewise, Support Vector Machine (SVM), Random Forest (RF), and Multi-layered
Perceptron (MLP) were all recognized as excellent prediction algorithms; thus they were
used to verify the training precision. In addition, Linear Regression (LR) was employed to
compare the results with the machine learning algorithms.
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5.2. Model Performance Evaluation

During the model training, the significant parameters with St larger than 0.04 were
retained, namely RSAR, WSAR, FLH, ATN, SHGC, UEW, LGH, UWD, and URF. The GPR
model was trained and tested with 10 cross-validation folds based on a set of 7122 samples.
Several factors might affect the accuracy of GPR models, such as basis function, kernel
function, kernel scale, sigma, etc., which gave difficulty in specifying artificially the optimal
or near-optimal values. Thus, Bayesian optimization was employed to identify the specific
values of the hyperparameters so as to obtain a highly accurate GPR model. At this point,
the acquisition function was set as expected improvement per second plus and the signal
standard deviations of the energy demand models were predefined as 4.91 and 14.95,
respectively. Table 4 shows the optimized hyperparameters of the GPR model as well
as their search range. Eventually, the optimization process for both the cooling demand
and heating demand models went through 30 iterations. Figure 10 shows the optimizable
GPR models and their prediction results for energy. From the results, it could be seen
that the accuracy of the model was significantly improved by optimization, with good
consistency between the predicted and actual values, and the residuals could be kept within
an acceptable range.

Buildings 2022, 12, x FOR PEER REVIEW 15 of 21 
 

  

  

  
(a) (b) 

Figure 10. Energy prediction model trained by optimizable GPR with 10 cross-validation folds 
through 30 iterations: (a) cooling demand; (b) heating demand. 

A comparative experiment was conducted using linear regression and machine 
learning algorithms (including SVM, RF, and MLP) to further evaluate the prediction ac-
curacy of the GPR model. The specific configurations of these algorithms are shown in 
Table 5, and the performance of all these algorithms was compared with 10-fold cross-
validation. Figure 11 is a box plot comparing the prediction residuals of the models de-
rived from GPR vs. LR and three machine learning algorithms. As we can see, the residu-
als of all five models were well controlled, with the absolute value of the residuals distrib-
uted below three for the vast majority of the data. However, whether for predicting cool-
ing or heating demand, the GPR model remained the best performance among these mod-
els. For cooling demand prediction, the RMSEs of each model were ranked as LR (2.7564) 
> MLP (1.9426) > SVM (1.5231) > RF (1.5109) > GPR (1.2901). Similarly, in heating demand, 
the RMSE ranking of the models was LR (4.8936) > MLP (3.5804) > RF (3.3442) > SVM 
(2.8163) > GPR (2.3259). 

Table 5. Configurations of the regression models concerned. 

# Model Type Configurations 
1 Linear regression Terms = ‘Interactions, Robust option = ‘On’ 

2 Support vector machines 

Kernel function = ‘Gaussian’, Kernel scale = 2.6, Box 
constraint = 6.601, Epsilon = 0.6601, Standardize data 
= ‘On’ (for cooling)03A0Kernel function = ‘Gaussian’, 

Kernel scale = 2.4, Box constraint = 22.72, Epsilon = 
22.72, Standardize data = ‘On’ (for heating) 

3 Random forest regression Minimum leaf size = 8, No. of learners = 30 

Figure 10. Energy prediction model trained by optimizable GPR with 10 cross-validation folds
through 30 iterations: (a) cooling demand; (b) heating demand.



Buildings 2022, 12, 1132 15 of 21

Table 4. Hyperparameter search range of optimizable GPR model training.

# Hyperparameter Search Range

1 Sigma 0.0001~69.38 for cooling demand, 0.0001~211.45 for heating demand
2 Basis function Constant, Zero, Linear

3 Kernel function

Nonisotropic Exponential, Nonisotropic Matern 3/2, Nonisotropic
Matern 5/2, Nonisotropic Rational Quadratic, Nonisotropic Squared
Exponential, Isotropic Exponential, Isotropic Matern 3/2, Isotropic

Matern 5/2, Isotropic Rational Quadratic, Isotropic Squared Exponential
4 Kernel scale 0.0029062~2.9062 for cooling, 0.00465~4.65 for heating
5 Standardize true, false

A comparative experiment was conducted using linear regression and machine learn-
ing algorithms (including SVM, RF, and MLP) to further evaluate the prediction accuracy
of the GPR model. The specific configurations of these algorithms are shown in Table 5,
and the performance of all these algorithms was compared with 10-fold cross-validation.
Figure 11 is a box plot comparing the prediction residuals of the models derived from
GPR vs. LR and three machine learning algorithms. As we can see, the residuals of all
five models were well controlled, with the absolute value of the residuals distributed below
three for the vast majority of the data. However, whether for predicting cooling or heating
demand, the GPR model remained the best performance among these models. For cooling
demand prediction, the RMSEs of each model were ranked as LR (2.7564) > MLP (1.9426) >
SVM (1.5231) > RF (1.5109) > GPR (1.2901). Similarly, in heating demand, the RMSE ranking
of the models was LR (4.8936) > MLP (3.5804) > RF (3.3442) > SVM (2.8163) > GPR (2.3259).

Table 5. Configurations of the regression models concerned.

# Model Type Configurations

1 Linear regression Terms = ‘Interactions, Robust option = ‘On’

2 Support vector machines

Kernel function = ‘Gaussian’, Kernel scale = 2.6, Box constraint = 6.601,
Epsilon = 0.6601,

Standardize data = ‘On’ (for cooling)
Kernel function = ‘Gaussian’, Kernel scale = 2.4, Box constraint = 22.72,

Epsilon = 22.72,
Standardize data = ‘On’ (for heating)

3 Random forest regression Minimum leaf size = 8, No. of learners = 30

4 Multi-layered perceptron
No. of fully connected layers = 3, Each layer size = 10,

Activation = ‘ReLU’, Iteration limit = 1000, Regularization strength = 0;
Standardize data = ‘Yes’
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5.3. Optimization

In this part, optimal design was used as an instance of the advanced usage of prediction
models. Naturally, the main purpose of this paper would be to provide decision support
for the design of CSDs, thus the optimization was centered on minimizing the total annual
energy demand with the above screened sensitive parameters. On this basis, construction
cost was introduced as the second objective, which in turn led to a dual-objective optimiza-
tion for the nine parameters. Here, the construction cost was assumed to conform to a
linear function, fitted by the collected data during field research. The optimization process
was performed based on the Nondominated Sorting Genetic Algorithm III (NSGA-III). The
crossover fraction was set to 0.8, and the population size and stall generation limit were set
to 200 and 500, respectively. Figure 12 illustrates the final optimization result. The random
data shown in Figure 12 were the output solutions corresponding to the random matrix
generated with the rand function following the interval of nine variables for verifying the
reliability of the Pareto front.

After the dual-objective optimization, 80 sets of optimal combinations regarding the
nine variables were obtained. To comprehensively evaluate and compare their technical
economy (TE), the definition of RB was introduced as:

RB =


Eavg − Eopt

Copt − Cavg
, Eavg > Eopt

0 , Eavg < Eopt

, (9)

where Eavg and Eopt represent the mean energy demand of the random matrix output and
the energy demand of the Pareto front, respectively; Similarly, Cavg and Copt are the mean
cost of the random matrix output and the cost of the Pareto front, respectively.
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When using RB for evaluation, the larger its value indicates that the solution would
yield better energy investment benefits, and solutions without energy conservation effect
were excluded as zero. Figure 13 gives a comparative evaluation of the 80 optimal parameter
sets. From the selected optimal TE solutions, it could be found that most of the variables were
not completely biased towards the interval boundaries. The bias of the optimal variables
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towards the interval boundary might be explained in two reasonable ways: (1) the additional
investment in the variable exceeded the improvement in energy efficiency by a large margin;
(2) the same energy objective could be achieved more efficiently by adding investments
to other variables. Therefore, it could be believed that the specific state of the optimal
solution depended heavily on the mutual response between the two objective functions,
which indicated that the uncertainty of the objective function would significantly cut the
generalizability of the optimal solution. Nevertheless, the resulting Pareto front could still
preserve its learning value for design decisions.
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6. Conclusions

The present research set out to organize a GSA-based workflow for the optimal design
of CSDs in cold regions of China. This workflow comprised several fragmentation processes
such as UA, GSA, energy prediction model regression, and multi-objective optimization.
First, the principles and characteristics of the four prevailing SA methods were reviewed
and identified. Second, the uncertainty of energy demand to parameters and the sensitivity
ranking of parameters were acquired by the sequential SA with Morris, SRRC, and Sobol.
Third, a GPR model capable of predicting the annual energy demand was trained and
outperformed in comparison with the accuracy of LR, SVM, RF, and MLP. Fourth, based
on the obtained prediction models, an optimal design of the case building with a dual
objective of energy and economy was accomplished by using NSGA-III. These efforts
provide a relatively complete and robust strategy to support the CSD design, screening
nine significant parameters on energy demand to aid qualitative optimization, as well as
a set of 80 techno-economically sound Pareto front solutions for quantitative strategies.
Further, the GSA-based optimization workflow ties the above fragmented studies into
a logical sequence, offering a framework for further depth and richness in each area
of research.

One limitation of this study lies in the insufficient sample size, which may make
these findings less generalizable to CSDs in each region. For practical analytical reasons,
it is quite challenging to retrieve the perfect parameter intervals and to fit the full range
of cost data, which will lead to a certain bias of the final Pareto front. To remedy this
deficiency, the research samples were persistently expanded to cover as much information
as possible, even though this entails a substantial cost, which in fact will still take quite
a bit of time for the vast size of China. Despite its limitations, the study certainly adds
to our understanding of the problems of energy-saving design strategy support of CSDs,
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which would be a fruitful area for further work. Thus, greater efforts might be needed to
expand the scope of application as follows: (a) Developing a plug-in for real-time parameter
adjustment—a python-based framework is under development to address the dependency
of multiple fragmented studies of this workflow on their respective software platforms,
and in the near future, the workflow could be easily available to architects as a plug-in
of grasshopper; (b) Refining more efficiency–accuracy balanced sequential SA methods—
the hybrid SA approach can effectively integrate the merits of various SA methods, of
which the sequential SA method with Morris/SRRC and Sobol proposed in this paper is
just one, and numerous other possible rational hybrid methods deserve to be explored;
(c) Establishing a set of constantly improving rural housing databases—our team is per-
sisting with extensive field research and statistics on rural building data in cold regions
of China, covering the construction historical information, building prototype clustering,
occupant behavior data, construction cost statistics, etc. This work serves as a data basis for
the replication of more generalized findings.
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Abbreviations

BPA Building performance analysis
SA Sensitivity analysis
LSA Local sensitivity analysis
GSA Global sensitivity analysis
OAT One-parameter-at-a-time
BEM Building energy model
SHGC Solar heat gain coefficient
SRC Standard Regression Coefficients
PCC Partial Correlation Coefficients
SRRC Standardized Rank Regression Coefficients
PRCC Partial Rank Correlation Coefficients
UA Uncertainty analysis
CSD Courtyard-style dwelling
S1 First-order effect indices
St Total effect indices
GPR Gaussian Process Regression
SVM Support Vector Machine
RF Random Forest
MLP Multi-layered Perceptron
LR Linear Regression
NSGA-III Nondominated Sorting Genetic Algorithm III
TE Technical economy
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Table A1. Common enclosure structure form of rural houses in the survey.

Type Main Material
Construction Layer (Inside Out)

Layer 1 Layer 2 Layer 3

Exterior wall

Clay brick Gypsum/PVC
Main structure

(Without insulation)

Mortar/Tile/Vacant
Hollow block Gypsum/PVC Mortar/Tile/Vacant

Adobe Wrapped clay brick/
Choi steel/Vacant Gypsum

Roof Hollow slab/
Concrete slab

Main structure
(Without insulation)

Cinder lime Tile/Vacant

Tile/Choi steel /

Window
Single glass

Curtain/Vacant
Wood/PVC/Aluminum

alloy/Bridge-cut-off aluminum alloy Plastic cloth/VacantDouble glass

Door Wood/Stainless steel
/Aluminum alloy Main structure Curtain /
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